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Population flow drives spatio-temporal 
distribution of COVID-19 in China

Jayson S. Jia1, Xin Lu2,3, Yun Yuan4, Ge Xu5, Jianmin Jia6,7 ✉ & Nicholas A. Christakis8

Sudden, large-scale and diffuse human migration can amplify localized outbreaks  
of disease into widespread epidemics1–4. Rapid and accurate tracking of aggregate 
population flows may therefore be epidemiologically informative. Here we use 
11,478,484 counts of mobile phone data from individuals leaving or transiting through 
the prefecture of Wuhan between 1 January and 24 January 2020 as they moved to 
296 prefectures throughout mainland China. First, we document the efficacy of 
quarantine in ceasing movement. Second, we show that the distribution of population 
outflow from Wuhan accurately predicts the relative frequency and geographical 
distribution of infections with severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) until 19 February 2020, across mainland China. Third, we develop a 
spatio-temporal ‘risk source’ model that leverages population flow data (which 
operationalize the risk that emanates from epidemic epicentres) not only to forecast 
the distribution of confirmed cases, but also to identify regions that have a high risk of 
transmission at an early stage. Fourth, we use this risk source model to statistically 
derive the geographical spread of COVID-19 and the growth pattern based on the 
population outflow from Wuhan; the model yields a benchmark trend and an index  
for assessing the risk of community transmission of COVID-19 over time for different 
locations. This approach can be used by policy-makers in any nation with available 
data to make rapid and accurate risk assessments and to plan the allocation of limited 
resources ahead of ongoing outbreaks.

Tracking population flows is especially important in the context of the 
outbreak of COVID-19 in China and the rest of the world. This outbreak 
emerged in Wuhan (a prefecture-level city in the province of Hubei) 
in the run-up to the Chinese Lunar New Year’s Eve on 24 January 2020, 
which is associated with the annual Chunyun mass migration (which 
can involve as many as three billion trips). The potential scale and range 
of the diffusion of the outbreak was particularly alarming given the 
position of Wuhan as a central hub in China’s rail and aviation networks 
and given the severity of COVID-19.

We used nationwide mobile phone data to track population outflow 
from Wuhan and linked this to COVID-19 infection counts by location—
at the prefecture level. Our data include 296 prefectures in 31 prov-
inces and regions in China (average population 4.40 million, 94.07% of 
China’s population). Mobile phone geolocation data—which can reliably 
quantify human movement—provide precise, verifiable and real-time 
information5–11. We conceptualized epidemiological morbidity as a 
function of the movement of the human population from a disease 
epicentre. We therefore normalize disease risk to the population inflow 
from Wuhan rather than to the size of the local population.

Our approach differs from previous studies in which individual mobil-
ity and disease spread1–4,12,13 was linked, as we used real-time data about 
actual movement, focussed on aggregate population flows rather than 

individual tracking, and implemented a new modelling approach. That 
is, other recent studies on COVID-19 have used historical population 
flow data (for example, data on Chunyun migrations from previous 
years) to estimate case exportation during the current outbreak14–18. 
However, the benefits of observing rather than estimating popula-
tion movements are substantial as inaccurate predictions can have 
important consequences for policy-making: under-reaction can result 
in disease spread and over-reaction can lead to medically, socially and 
economically inefficient policies. Moreover, in contrast to previous 
approaches to epidemiological modelling12–18, we take advantage 
of detailed data about the population flow that emanated from the 
source of the outbreak to develop a population-flow-based risk source 
model to test the extent to which population flow data can capture 
the spatio-temporal dynamics of the spread of the SARS-CoV-2 virus.

To measure the total aggregate population outflow from Wuhan 
before the region was quarantined on 23 January 2020, we used 
country-wide data (provided by a major national carrier) that tracked 
all of the movements out of Wuhan between 1 January and 24 January 
2020. The onset of symptoms of the first recorded case of COVID-19 
in Wuhan was 1 December 2019; by 19 February 2020—the end of our 
study period—74,576 infected cases had been verified in mainland 
China according to data from the China Center for Disease Control 
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and Prevention19–21. Our time period includes the time at which the  
news about the outbreak initially appeared (on 31 December 2019 
and 9 January 2020) and the annual Lunar New Year migration (which  
culminated on 24 January 2020). The dataset included any mobile 
phone user who had spent at least 2 h in Wuhan during this period 
and it tracked the total daily flow of such individuals to all other pre-
fectures throughout mainland China. Locations were detected when 
users simply had their phones on. The dataset includes two meas-
ures of population outflow: the customer count of the carrier and 
their extrapolated count of total population movement. We use the  
latter in our primary analyses and the former as a robustness check 
(Supplementary Information).

We defined population flow as the total aggregate count of peo-
ple who entered any given prefecture from Wuhan during the whole 
observation period (1–24 January 2020). Because Wuhan (population 
of 11.08 million people in 2018) is a major transportation hub, many of 
these people were travellers passing through rather than residents. The 
definition is also weighted by the number of transits through Wuhan 
since some people may have entered and exited Wuhan on several occa-
sions in January (especially if they lived in neighbouring prefectures). 
This can be thought of as a linear weighting of additional infection and 
transmission risk from repeated transits. There were 11,478,484 counts 
of movements from Wuhan: 8,685,007 to other prefectures within 
Hubei and 2,793,477 to prefectures in other provinces.

Key dates during this period were 24 January—Lunar New Year’s Eve 
(outbound holiday travel is typically completed before this evening)—
and January 23, when Wuhan was quarantined. We analysed the efficacy 
of the quarantine (Fig. 1b, c), which was manifested in a reduction of 
52% and 38% in inter- and intra-provincial population outflow, respec-
tively, on 23 January 2020 compared with 22 January 2020 (when there 
were 546,324 and 141,208 counts of intra- and extra-provincial travel, 
respectively), and a further reduction of 94% and 84% on 24 January 
2020 compared with 23 January 2020. With the imposition of the quar-
antine—first in Wuhan (and two neighbouring prefectures) at 10:00 
on 23 January 2020, and then in 12 other prefectures in Hubei by the 
end of the day on 24 January 2020—population outflow from Wuhan 
almost completely stopped (the average daily outflow thereafter was 
just 1,087 people to all prefectures outside of Hubei, which probably 
comprised government workers).

We combined the population flow dataset with the count and geo-
graphical location of confirmed cases of COVID-19 nationwide (Fig. 1a), 
which used consistent and stringently enforced case ascertainment 
during this period. As of 19 February 2020, there were 74,576 infected 
cases in mainland China, of which 29,549 occurred outside of Wuhan 
and there were 2,118 fatalities (according to data from the China Center 
for Disease Control and Prevention).

Population flow from Wuhan was hypothesized to export the virus 
to other locations, where it caused local outbreaks (that is, either by 
importation or community transmission (refs. 19–21)). Indeed, we find 
a strong correlation between total population flow and the number of 
infections in each prefecture (Fig. 2a, b). Consistent with our hypoth-
esis, the cumulative number of infections is highly correlated with 
aggregate population outflow from Wuhan from 1 to 24 January 2020, 
and the correlation increases over time from r = 0.522 on 24 January 
2020 to r = 0.919 on 5 February 2020, and increases further to r = 0.952 
on 19 February 2020 (P < 0.001 for all) (Fig. 2a–c). As there is little travel 
throughout the country during this period, the population outflow vari-
able is comparable to a lagged variable in a time series. The correlation 
exhibited the same robust pattern even when different time windows 
of population outflow were used (Extended Data Fig. 1). The corre-
lation between population outflow from Hubei province (excluding 
Wuhan itself) and the number of infections in each prefecture (Fig. 2c)  
followed a similar pattern but was substantially weaker; this cor-
relation increased from r = 0.365 on 24 January 2020 to r = 0.583 on  
19 February 2020.

For completeness we compared the predictive strength of aggregate 
population outflow to other factors—such as the relative frequency of 
Baidu search engine queries for virus-related terms in each prefecture 
(for example, novel coronavirus, flu, SARS, atypical pneumonia and 
surgical mask)22–24, the gross domestic product (GDP) and population 
size of each prefecture, and other movement variables. Each of these 
factors became less predictive of local outbreak size over time, either 
for the number of cumulative cases or the number of daily reported 
cases (Fig. 2c, d and Extended Data Figs. 2, 3).

We also evaluated a gravity model4,13. Gravity models were originally 
developed to model flow volumes or other interactions between geo-
graphical areas based simply on distance between two regions and their 
populations. Here, we use a special case of the gravity model with only 
the population variable for the ‘recipient’ prefecture as Wuhan is always 
the ‘donor’ and thus a constant value (Supplementary Information 
4.1). This model (with a significantly negative parameter for distance) 
predicts the high quantity of travel from Wuhan to other prefectures  
in Hubei and to geographically proximate provinces (Fig. 1). However, it 
does not explain the high traffic of population outflow to more distant 
coastal cities. That outflow does not strictly follow a gravity model is 
not surprising given the rationales for Chunyun migration patterns, 
which are primarily based on social connections8,25.

Furthermore, we tested a gravity model to predict the infection 
count. Although the population size of the recipient prefecture and 
distance were significant predictors (P < 0.001), a mediation analysis 
shows that population flow from Wuhan mediates the effect of dis-
tance. Figure 2c, d illustrates why this is the case. Aggregate popu-
lation flow from Wuhan exhibits a high and progressively stronger 
correlation with infection prevalence in destination locations over 
time. By contrast, the predictive strength of the distance from  
Wuhan, population size and GDP (an alternative source of gravity)  
of each prefecture shows no increases or decreases over time. There 
is no advantage to using distance to estimate population flow and 
infection spread when the actual population flow is observable, as 
in our case.

Next, we used two sets of models—one cross-sectional and one 
dynamic model—to statistically model and benchmark the extent to 
which aggregate population outflow from Wuhan predicts the spread 
and distribution of infections with SARS-CoV-2 across mainland China. 
We developed what we call a risk source model that leverages observed 
population flow data to operationalize the risk emanating from the 
epidemic source.

We first modelled the effect of outflow on infection by using the 
following multiplicative exponential model:

∏y c= e e (1)∑
i

j

m
β x λ I

=1

j ji k
n

k ik=1

in which yi is the number of the cumulative (or daily) confirmed cases in 
prefecture i (depending on the model); x1i is the cumulative population 
outflow from Wuhan to prefecture i from 1 to 24 January 2020; x2i is the 
GDP of prefecture i; x3i is the population size of prefecture i; m is the 
number of variables included; and c and βj are parameters to estimate. 
λk is the fixed effect for province k; n is the number of prefectures con-
sidered in the analysis; Iik is a dummy for prefecture i and Iik = 1, if i ∈ k 
(prefecture i belongs to province k), otherwise Iik = 0 (Supplementary 
Information).

We applied a nonlinear least-squares method (Levenberg–Mar-
quardt algorithm) to estimate the parameters of a model with 
confirmed cases as the dependent variable and aggregate Wuhan 
population outflow from 1–24 January 2020 as the sole predictor vari-
able (R2 = 0.772 on 24 January to R2 = 0.946 on 19 February) and a model 
with population size and GDP as additional co-variates (R2 = 0.809 on 
24 January 24 to R2 = 0.967 on 19 February) (Supplementary Tables 1, 2). 
Although these additional co-variates improve the fit, the parameter 



Nature  |  Vol 582  |  18 June 2020  |  391

for population flow from Wuhan becomes increasingly dominant, 
whereas the GDP and population of a prefecture become increas-
ingly less predictive over time. Overall, the performance of the mod-
els continuously improved as more infected cases were confirmed,  
suggesting that the spreading pattern of the virus gradually con-
verged to the distribution of the population outflow from Wuhan 
to other prefectures in China. As a robustness check, we evaluate 
a model using daily confirmed cases and find consistent results  
(Supplementary Tables 3, 4).

The logic behind this convergence over time, as well as the predictive 
strength of the model, is that population flow from Wuhan to other 
prefectures fundamentally determines the eventual distribution of 
total infections in China. During the earliest phase of the outbreak, 
before the quarantine of Wuhan, there was a relative lack of awareness 
of the virus and few countermeasures preventing its spread. SARS-CoV-2  
should thus have spread relatively randomly across the entire  
prefecture of Wuhan; that is, our results imply that the number of 
infected people was uniformly distributed (statistically speaking) 
in the population outflowing from Wuhan into different prefectures 
across the country.

Using the daily predicted cases in model (1), we are also able to 
calculate a daily risk score for prefectures based on the difference 
between the number of predicted and confirmed cases on any given 

date (Supplementary Information). A higher-than-expected level of 
infection suggests more community transmission (that is, ‘under-
performing’ compared to the benchmark derived from the outflow 
population from Wuhan). On the other hand, ‘over-performing’ pre-
fectures, with fewer cases than expected are also noteworthy, as they 
could have implemented highly successful public health measures (or 
may be prone to inaccurate data reporting). For example, Extended 
Data Fig. 4 identifies prefectures with transmission risk index values 
above the upper bound of the 90% confidence interval on 29 January, 
and the crossing of this threshold was indeed associated with immi-
nent quarantine. The predictive strength of aggregate population 
flow from Wuhan and the overall fit of model (1) over time can also 
act as an early warning index of an epidemiological transition; they 
reflect the degree to which imported infections are dominant at any 
point in time. If model strength decreases significantly at any location, 
this may indicate that community transmission may be overtaking 
imported cases.

We next developed a spatio-temporal model to explore changes in 
distribution and growth of COVID-19 across all prefectures over time 
(rather than on individual dates) (Supplementary Information 3.2). 
We use a Cox proportional hazards framework and replace the con-
stant scaling parameter of model (1) with a time-varying hazard rate 
function λ0(t), which typically has an S-shaped property (for example, 
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Fig. 1 | Geographical distribution of population outflow and confirmed 
COVID-19 cases as of 19 February 2020. a, There is a high overlap between the 
geographical distribution of aggregate population outflow from Wuhan until 
24 January 2020 (in red) and the number of confirmed cases of COVID-19 in 
other Chinese prefectures (n = 296 prefectures). Map source: National 
Catalogue Service for Geographic Information. Grey areas lack population 
outflow data. b, c, During the time that is historically the peak period for 

outbound Lunar New Year holiday travel, total population outflow from Wuhan 
to other parts of Hubei (b) is more than three times higher than the population 
outflow to outside provinces (c). After the implementation of the quarantine at 
10:00 on 23 January 2020, population outflow from Wuhan became minimal, 
except to the adjacent prefectures (b). In b, the first peak possibly corresponds 
to the start of the winter break of (roughly one million) college students in 
Wuhan and the second peak is associated with outbound Chunyun travel.
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logistic, generalized logistic or Gompertz functions26,27) that epidemics  
typically follow:


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in which λ(t|xi) is the hazard function describing the number of cumula-
tive confirmed cases at time t given population outflow from Wuhan 
to prefecture i, and other variables xi = {x1i, x2i, …, xmi} are the realized 
values of the covariates for prefecture i; the other notation is the same 
as model (1).

This model extends our risk source model to a dynamic context; it 
incorporates all infected cases across all locales and dates to statisti-
cally derive the COVID-19 epidemic curve and growth pattern across 
mainland China. We used the same method as before to estimate the 
parameters (Supplementary Information). When using only the single 
variable of total population outflow from Wuhan (from 1 to 24 Janu-
ary 2020) to each other prefecture, we observe R2 = 0.927 for the 

exponential–logistic model (Fig. 3a); the inclusion of local population 
and GDP increases R2 to 0.957 (alternate models are in Supplementary 
Table 5).

We use a similar logic as above to contrast the expected and observed 
outcomes to gauge epidemiological risk. Here, model predictions 
serve as reference patterns across time (Extended Data Figs. 5, 6). The 
differences in the growth trends between the number of predicted and 
confirmed cases can signal higher levels of SARS-CoV-2 community 
transmission. We use the integral of the differences over time to create 
a total transmission risk index (normalized by subtracting the mean 
and dividing by the standard deviation) and identify a list of prefectures 
above and below the 90% confidence interval (Extended Data Fig. 7 
and Supplementary Table 11). Indeed, our model identifies a list of  
statistically significant underperforming prefectures; in most of these 
cases, we observed the subsequent imposition of quarantine (Extended 
Data Figs. 5, 6, Supplementary Information and Supplementary Table 
12). On the other hand, prefectures with lower trends than expected 
might have had more successful public health measures. Figure 3b 
shows the dynamic shifts in the risk index score for selected prefectures, 
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Fig. 2 | Factors correlated with confirmed COVID-19 cases. a, b, The 
relationship between the log-transformed aggregate population outflow from 
Wuhan (up to 24 January 2020) and the log-transformed number of confirmed 
cases by prefecture on 26 January 2020 (a) and 19 February 2020 (b). Red circles 
are prefectures in Hubei; light blue circles are four quarantined prefectures in 
Zhejiang (including Wenzhou); and the six largest prefectures in China are 
indicated with unique colours. c, Relationship over time between the number 
of confirmed cases (cumulative until 19 February 2020) and the cumulative 
population inflow (up to 24 January 2020) from Wuhan, the cumulative inflow 
from Hubei province excluding Wuhan, the frequency of Baidu search terms 
related to the virus, the GDP, population and distance from Wuhan of the 
prefectures. Over time, the correlation between population outflow from 
Wuhan and the number of infected cases increases from Pearson’s r = 0.522 on 

24 January 2020 to r = 0.952 on 19 February (n = 296 prefectures). The decrease 
in the predictive strength of online search behaviour might reflect information 
saturation, while the decrease in the predictive strength of GDP, population 
size and distance suggests that late-stage Chunyun migration from Wuhan was 
to a more diverse set of prefectures (and not merely to the closet, largest and 
most-developed prefectures) and/or that community transmissions began to 
predominate. d, The correlation with daily infections is consistent throughout 
the period with Pearson’s r ranging from 0.496 on 24 January 2020 to a peak of 
0.926 on 4 February 2020 (n = 296 prefectures). Fluctuations probably indicate 
lags in the reporting of cases (that are smoothed in c); weaker correlations on 
the last few days reflect that more than 90% of prefectures outside of Hubei 
reported no new cases.
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which enables the monitoring of prefectures to analyse which  
prefectures performed better in controlling the transmission risk  
over time.

In summary, using detailed mobile-phone geolocation data to  
compute aggregate population movements, we track the transit of 
people from Wuhan to the rest of mainland China up to 24 January 
2020. The geographical flow of people anticipates the subsequent 
location, intensity and timing of outbreaks in the rest of main-
land China up to 19 February 2020. These data outperform other 
measures, such as population size, wealth or distance from the risk 
source. We modelled the epidemic curves of COVID-19 across differ-
ent locales using population flows and showed that deviations from 
model predictions served as tools to detect the burden of community 
transmission.

The logic of our population-flow-based risk source model differs from 
classic epidemiological models that rely on assumptions regarding 
population mixing, population compartment sizes and viral properties. 
By assuming that risk arises from human population movements, our 
risk source model is able to parsimoniously capture the distribution of 
the epidemic. The model has several advantages: it makes no assump-
tions regarding travel patterns or effective distance effects; allows 
for nonlinear estimations; generates a non-arbitrary, source-linked 
risk score; and is easily adapted to other empirical contexts. Nota-
bly, the multiplicative functional form can also accommodate  
multiple risk sources—for example, for countries in which there are 
multiple disease epicentres. As an example, we evaluated the distinct 
impact of population flow from Hubei (excluding Wuhan) as an alter-
native risk source in our models, and found that it had little impact on 
the spread and growth of COVID-19 in the country (Supplementary 
Tables 6, 10).

We focused on the relative strength of the outbreak in each area, 
rather than the absolute number of cases, although one can predict 
the number of cases by using reported data to calibrate the parameters 
of the model. A key contribution of our approach is to robustly char-
acterize the structure or relative distribution of cases across different 
geographical areas and over time, which is driven fundamentally by 
the cumulative outflow from Wuhan. Moreover, another benefit is 
that non-systematic inaccuracy of COVID-19 case-finding is relatively 
unimportant as long as we capture the distribution of population flow 
accurately over time, which we do.

Our approach is generalizable to any dataset that captures popu-
lation movements (for example, train-ticketing or car-tolling data).  

This method can also be implemented in a live fashion (if suitable data 
are available) to facilitate policy decisions—for example, for the alloca-
tion of resources and manpower across specific geographical locales 
based on the predicted strength of the epidemic. This could also yield a 
dynamic performance metric when contrasted against real-time reports 
of infections, and, as we show, identify which areas have higher virus 
transmission risk or more effective measures.

Other techniques to forecast the levels of an epidemic in defined 
populations in advance have, of course, been proposed—whether the 
use of online search behaviour22–24 or the use of network sensors (that 
is, the monitoring of people who are at heightened risk of falling ill 
given their network position)28. Our approach relies on data regarding 
population flow. Indeed, historical (that is, baseline) information about 
population flows—undisturbed by the imposition of quarantines or by 
publicity regarding outbreaks, both of which happened here—could 
also be valuable to public health experts and government officials 
when new outbreaks occur.

When people move, they take contagious diseases with them. Their 
movements are thus a harbinger of the future status of an epidemic, 
and this offers the prospect of using data-analytic techniques to control 
an epidemic before it strikes too hard.
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Extended Data Fig. 1 | Time-window sensitivity test for the correlational 
analysis. a, b, Pearson’s correlation (n = 296 prefectures) between the 
cumulative number of confirmed cases and population outflow from Wuhan on 
different days ranging from 1 to 14 days before 24 January 2020 for the 
cumulative number of diagnosed cases over time (a) and the number of newly 
diagnosed (daily) cases over time (b). Daily outflow is used for the calculation, for 

example, t = 3 indicates that the correlation is measured by daily outflow from 
Wuhan on 21 January 2020 with the cumulative number of confirmed cases from 
24 January 2020 onwards. c, d, Pearson’s correlation (n = 296 prefectures) during 
3 different (8-day) time periods from 1 to 24 January 2020 between population 
outflow and the cumulative number of diagnosed cases over time (c) and the 
number of newly diagnosed (daily) cases over time (d).



Extended Data Fig. 2 | Correlation with alternative population movement 
measures. a, b, Pearson’s correlation (n = 296 prefectures) between alternative 
publicly available movement measurements from the 2018 City/Prefectures 
Statistical Year Book of China (with aggregate population outflow data from 
Wuhan from 1 to 24 January 2020 as a reference) and COVID-19 count using the 

cumulative number of confirmed cases over time (a) and the number of daily 
confirmed cases over time (b). Foreign tourist, domestic tourist, and ‘highway, 
airway and waterway passenger’ numbers reflect inter-prefecture travel, while 
bus passengers and the number of taxis reflect local travel.
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Extended Data Fig. 3 | Search terms and correlation with confirmed cases. 
a, Search frequency of Baidu search terms related to the COVID-19 outbreak: 
the search terms are direct translations of the Chinese keywords that Baidu 
users used during the study period (note the official WHO name ‘COVID-19’  
was only announced on 11 February 2020). b, Pearson’s correlation 
(n = 296 prefectures) between Baidu search terms and the (cumulative) number 

of confirmed cases of COVID-19 over time. The initially high and then 
decreasing predictive strength of search may reflect the fact that, initially, high 
volumes of information search about the virus signalled stronger risk 
perception in any given prefecture (for example, because of early reported 
cases, having more relatives in Wuhan, and so on), but that—over time—
information saturation reduced the impetus for specific searches.



Extended Data Fig. 4 | Prefectures with a high transmission risk index on 
29 January 2020. The predicted structure of the spread of the SARS-CoV-2 
virus can be used as a benchmark to identify which locales deviate significantly. 
As model (1) predicts the number of cases in a prefecture based on the 
population outflow from Wuhan (that is, imported cases and the initial 
transmission of the virus within the local community), a greater difference 

between predicted and confirmed cases indicates a higher level of community 
transmission. Prefectures to the left of the dashed line have community 
transmission risk index values that were higher than the upper bound of the 
90% confidence interval. Our model identified Wenzhou as having the most 
severe community transmission risk on 29 January 2020; the government 
announced a full quarantine of the prefecture on 2 February 2020.
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Extended Data Fig. 5 | Benchmark (predicted) versus actual virus growth in 
the prefectures of Hubei province. Model (2) used aggregate population 
outflow from Wuhan from 1 to 24 January 2020 to provide a reference growth 
pattern (that is, epidemic curves) for the spread of COVID-19 across time and 
space, without making a priori assumptions about the growth pattern or 
mechanism. Differences in the growth trends between predicted and 

confirmed cases can signal higher levels of COVID-19 community transmission 
(Supplementary Table 11). The discrete jumps in confirmed cases in some 
prefectures after 13 February 2020 reflected a change in the infection count 
criteria of local governments; clinically diagnosed cases came to be included in 
total confirmed case counts in those prefectures (within Hubei province).



Extended Data Fig. 6 | Benchmark (predicted) versus actual virus growth in 
selected prefectures outside of Hubei province. Model (2) used aggregate 
population outflow from Wuhan from 1 to 24 January 2020 to provide a 
reference growth pattern (that is, epidemic curves) for the spread of COVID-19 

across time and space, without making a priori assumptions about the growth 
pattern or mechanism. Differences in the growth trends between predicted 
and confirmed cases can signal higher levels of COVID-19 community 
transmission (Supplementary Table 11).
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Extended Data Fig. 7 | The distribution of the transmission risk index.  
The transmission risk index Δ( )i  is the normalized score of the integral of the 
differences between the actual number of confirmed infected cases and 
predicted numbers in our model. Prefectures above the 90% confidence interval 

of the index are likely to experience more local community transmission than 
imported cases, and prefectures below the 90% confidence interval may have a 
better performance in the control of the virus (Supplementary Table 11).



Extended Data Fig. 8 | Robustness check of model (2) with different time 
lags and time-window lengths. We explored which time window and time lags 
of aggregate population outflow best explain the spread and intensity of 
COVID-19. Time window refers to how many days of outflow data were used; 
time lag (0 to 23) is how many days before 24 January 2020 the time window 

starts. For example, analyses using time lag = 1 and time window = 2 use outflow 
data between 23 and 24 January 2020. The surfaces show that a more recent 
time lag improves the R2 (a) as well as the parameter value (b) of the population 
outflow coefficient in model (2).
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Study description We use  data regarding outflow population from Wuahn to different prefectures in China (ascertained with mobile phone records) to 
explore the spread of Coronavirus, ascertained by the Chinese CDC, and to assess transmission risk in difference areas.

Research sample We used aggregate population outflow data of all people transiting through Wuhan, China between Jan 1-24, 2020; data was provided by 
a major national carrier. Types of data described in SI. 

Sampling strategy We used all available population outflow data in analyses (and conducted robustness checks using all different variants/alternative 
measures of the population outflow data provided). N=296 prefectures based on available covariate data (for GDP and population) in 
statistical yearbook published by National Bureau of Statistics of China, which covered 94% of the population. Any prefectures not 
covered was due to lack of data availability from this official government source.

Data collection We obtained the aggregated mobile data via our industry partner in China and linked these records, at the level of 289 Chinese 
prefectures, to publicly available coronavirus cases in these areas.

Timing The mobility data was collected during the period January 1 to January 24, 2020; and the confirmed case data was collected starting from 
January 24 up to February 19, 2020. 

Data exclusions All data that can be matched with the China Prefectures (City) Statistical Year Book have been included in the analysis (to provide 
covariates for our model); smaller sparsely populated prefectures not covered by the official Statistic Bureau's yearbook were excluded.

Non-participation NA  We used aggregated data of all customers of the carrier that traveled through or were in Wuhan during the study period.

Randomization NA  This study was not an experiment, and it did not have experimental conditions.
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Population characteristics We used the aggregated mobile data of the Chinese phone users transiting through Wuhan in January 2020.

Recruitment NA Population flow data was provided in aggregate form by a major Chinese carrier.

Ethics oversight This work has been supported by the National Natural Science Foundation of China for the urgent policy research (given the 
pandemic).  We do not use individual-level data, only anonymized aggregate flows, and this work is exempt from IRB review in 
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