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Pan-cancer whole-genome analyses of 
metastatic solid tumours
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Petronella O. Witteveen11, Egbert F. Smit3,5, Stefan Sleijfer3,4, Emile E. Voest3,5 &  
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Metastatic cancer is a major cause of death and is associated with poor treatment 
efficacy. A better understanding of the characteristics of late-stage cancer is required 
to help adapt personalized treatments, reduce overtreatment and improve outcomes. 
Here we describe the largest, to our knowledge, pan-cancer study of metastatic solid 
tumour genomes, including whole-genome sequencing data for 2,520 pairs of tumour 
and normal tissue, analysed at median depths of 106× and 38×, respectively, and 
surveying more than 70 million somatic variants. The characteristic mutations of 
metastatic lesions varied widely, with mutations that reflect those of the primary 
tumour types, and with high rates of whole-genome duplication events (56%). 
Individual metastatic lesions were relatively homogeneous, with the vast majority 
(96%) of driver mutations being clonal and up to 80% of tumour-suppressor genes 
being inactivated bi-allelically by different mutational mechanisms. Although 
metastatic tumour genomes showed similar mutational landscape and driver genes to 
primary tumours, we find characteristics that could contribute to responsiveness to 
therapy or resistance in individual patients. We implement an approach for the review 
of clinically relevant associations and their potential for actionability. For 62% of 
patients, we identify genetic variants that may be used to stratify patients towards 
therapies that either have been approved or are in clinical trials. This demonstrates 
the importance of comprehensive genomic tumour profiling for precision medicine 
in cancer.

In recent years, several large-scale whole-genome sequencing (WGS) 
analysis efforts have yielded valuable insights into the diversity of the 
molecular processes that drive different types of adult1,2 and paediat-
ric3,4 cancer and have fuelled the promises of genome-driven oncology 
care5. However, most analyses were done on primary tumour material, 
whereas metastatic cancers—which cause the bulk of the disease burden 
and 90% of all cancer deaths—have been less comprehensively studied 
at the whole-genome level, with previous efforts focusing on tumour-
specific cohorts6–8 or at a targeted gene panel9 or exome level10. As 
cancer genomes evolve over time, both in the highly heterogeneous 
primary tumour mass and as disseminated metastatic cells11,12, a better 
understanding of metastatic cancer genomes will be highly valuable 
to improve on adapting treatments for late-stage cancers.

Here we describe the pan-cancer whole-genome landscape of meta-
static cancers based on 2,520 paired tumour (106× average depth) and 
normal (blood, 38×) genomes from 2,399 patients (Supplementary 
Tables 1 and 2, Extended Data Fig. 1). The sample distribution over age 

and primary tumour types broadly reflects the incidence of solid can-
cers in the Western world, including rare cancers (Fig. 1a). Sequencing 
data were analysed using an optimized bioinformatic pipeline based on 
open source tools (Methods, Supplementary Information) and iden-
tified a total of 59,472,629 single nucleotide variants (SNVs), 839,126 
multiple nucleotide variants (MNVs), 9,598,205 insertions and deletions 
(indels) and 653,452 structural variants (SVs) (Supplementary Table 2).

Mutational landscape of metastatic cancer
We analysed the mutational burden of each class of variant per cancer 
type based on the tissue of origin (Fig. 1, Supplementary Table 2). In 
line with previous studies on primary cancers13,14, we found extensive 
variation in the mutational load of up to three orders of magnitude 
both within and across cancer types.

The median SNV counts per sample were highest in skin, predomi-
nantly consisting of melanoma (44,000) and lung (36,000) tumours, 
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with tenfold higher SNV counts than sarcomas (4,100), neuroendo-
crine tumours (NETs) (3,500) and mesotheliomas (3,400). SNVs were 
mapped to COSMIC mutational signatures and were found to broadly 
match the patterns described in previous cancer cohorts per cancer 
type13 (Extended Data Figs. 2, 3). However, several broad spectrum 
signatures such as S3, S8, S9 and S16 as well as some more specific 
signature (for example, S17 in specific tumour types) appear to be over-
represented in our cohort. These observations may indicate enrichment 
of tumours that are deficient in specific DNA repair processes (S3), 
increased hypermutation processes (S9) among advanced cancers, 
or reflect the mutagenic effects of previous treatments15.

The variation for MNVs was even greater, with lung (median of 821) 
and skin (median of 764) tumours having five times the median MNV 
counts of any other tumour type. This can be explained by the well-
known mutational effect of UV radiation (CC>TT) and smoking (CC>AA) 
mutational signatures, respectively (Extended Data Fig. 2). Although 
only dinucleotide substitutions are typically reported as MNVs, 10.7% of 
the MNVs involve three nucleotides and 0.6% had four or more nucleo-
tides affected.

Indel counts were typically tenfold lower than SNVs, with a lower 
relative rate for skin and lung cancers (Fig. 1c). Genome-wide analysis 
of indels at microsatellite loci identified 60 samples with microsatellite 
instability (MSI) (Supplementary Table 2), which represents 2.5% of all 
tumours (Extended Data Fig. 4). Notably, 67% of all indels in the entire 
cohort were found in the 60 MSI samples, and 85% of all indels in the 
cohort were found in microsatellites or short tandem repeats. The high-
est rates of MSI were observed in central nervous system (CNS) (9.4%), 
uterine (9.1%) and prostate (6.1%) tumours. For metastatic colorectal 
cancer lesions, we found an MSI frequency of only 4.0%, which is lower 
than that reported for primary colorectal cancer, and in line with bet-
ter prognosis for patients with localized MSI colorectal cancer, which 
metastasizes less often16.

The median rate of SVs across the cohort was 193 per tumour, with the 
highest median counts observed in ovarian (412) and oesophageal (372) 
tumours, and the lowest in kidney tumours (71) and NETs (56). Simple 
deletions were the most commonly observed subtype of SV (33% of all 
SVs), and were the most prevalent in every cancer type except stomach 
and oesophageal tumours, which were highly enriched in translocations 
(Extended Data Fig. 2).

To gain insight into the overall genomic differences between pri-
mary and metastatic cancer, we compared the mutational burden in 
the Hartwig Medical Foundation (HMF) metastatic cohort with the 
Pancancer Analysis of Whole Genomes (PCAWG) dataset14, which, to 
our knowledge, is the largest comparable whole-genome sequenced 
tumour cohort (n = 2,583) available so far, and which has 95% of biopsies 

taken from treatment-naive primary tumours. In general, the SNV 
mutational load does not seem to be indicative for disease progres-
sion as it is not significantly different in this study compared with the 
PCAWG for most cancer types (Fig. 1b). Prostate and breast cancer are 
clear exceptions with structurally higher mutational loads (q < 1 × 10−10, 
Mann–Whitney test), which potentially reflects relevant tumour biol-
ogy and is, for prostate cancer, consistent with other reports8,17. CNS 
tumours also have a higher mutational load that is explained by the 
different age distributions of the cohorts.

By contrast, the mutational loads of indels, MNVs and SVs are sig-
nificantly higher across nearly all cancer types analysed (Fig. 1c). This 
is most notable for prostate cancer, in which we observe a more than 
fourfold increased rate of MNVs, indels and SVs. Although these obser-
vations may represent the advancement of disease and the higher 
rate of certain mutational processes in metastatic cancers, they are 
also partially due to differences in sequencing depth and bioinfor-
matic analysis pipelines (Extended Data Figs. 5, 6, Supplementary 
Information).

Copy number alteration landscape
Pan-cancer, the most highly amplified regions in our metastatic cancer 
cohort contain established oncogenes such as EGFR, CCNE1, CCND1 and 
MDM2 (Fig. 2). The chromosomal arms 1q, 5p, 8q and 20q are also highly 
enriched in moderate amplification across the cohort, with each affect-
ing more than 20% of all samples. For amplifications of 5p and 8q, this 
is probably related to the common amplification targets of TERT and 
MYC, respectively. However, the targets of amplifications on 1q, which 
are predominantly found in breast cancers (more than 50% of samples), 
and amplifications on 20q, which are predominantly found in colorectal 
cancers (more than 65% of samples), are less clear.

Overall, an average of 23% of the autosomal DNA per tumour has 
loss of heterozygosity (LOH). Unsurprisingly, TP53 has the highest LOH 
recurrence at 67% of samples, and many of the other LOH peaks are also 
explained by well-known tumour-suppressor genes (TSGs). However, 
several clear LOH peaks are observed that cannot easily be explained 
by known TSG selection, such as one on 8p (57% of samples). LOH at 8p 
has previously been linked to lipid metabolism and drug responses18, 
although the involvement of individual genes has not been established.

There are remarkable differences in the LOH between cancer types 
(Supplementary Fig. 1). For instance, we observed LOH events on the 
3p arm in 90% of kidney samples19 and LOH of the complete chromo-
some 10 in 72% of CNS tumours (predominantly glioblastoma mul-
tiforme20). Furthermore, the mechanism for LOH in TP53 is highly 
specific to tumour type, with ovarian cancers exhibiting LOH of the 
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Fig. 1 | Mutational load of metastatic cancer. a, Violin plot showing age 
distribution of each tumour type, with twenty-fifth, fiftieth and seventy-fifth 
percentiles marked. b, c, Cumulative distribution function plot (individual 
samples were ranked independently for each variant type) of mutational load for 
each tumour type for SNVs and MNVs (b) and indels and SVs (c). The median for 

each tumour type is indicated by a horizontal bar. Dotted lines indicate the 
mutational loads in primary cancers from the PCAWG cohort14. Only tumour 
types with more than ten samples are shown (n = 2,350 independent patients), 
and are ranked from the lowest to the highest overall SNV mutation burden 
(TMB). CUP, cancer of unknown primary.
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full chromosome 17 in 75% of samples, whereas in prostate cancer (also 
70% LOH for TP53) this is nearly always caused by highly focal deletions.

Unlike LOH events, homozygous deletions are nearly always 
restricted to small chromosomal regions. Not a single example was 
found in which a complete autosomal arm was homozygously deleted. 
Homozygous deletions of genes are also surprisingly rare: we found 
only a mean of 2.0 instances per tumour in which one or several con-
secutive genes are fully or partially homozygously deleted. In 46% of 
these events, a putative TSG was deleted. Loss of chromosome Y is a 
special case and is deleted in 36% of all male tumour genomes but varies 
strongly between tumour types, from 5% deleted in CNS tumours to 
68% deleted in biliary tumours (Extended Data Fig. 7).

An extreme form of copy number change can be caused by whole-
genome duplication (WGD). We found WGD events in 56% of all samples 
ranging from 15% in CNS to 80% in oesophageal tumours (Fig. 2). This is 
much higher than previously reported for primary tumours (25–37%)21,22 
and from panel-based sequencing analyses of advanced tumours (30%)23.

Significantly mutated genes
Analyses for significantly mutated genes using strict significance cut-off 
values (q < 0.01) reproduced previous results on cancer drivers24, and 
identified a few novel genes that are potentially related to metastatic 
cancer (Extended Data Fig. 8, Supplementary Table 3). In the pan-cancer 
analyses, we identified MLK4 (also known as MAP3K21; q = 2 × 10−4)—a 
mixed lineage kinase that regulates the JNK, P38 and ERK signalling 
pathways and has been reported to inhibit tumorigenesis in colorectal 
cancer25. In addition, in our tumour type-specific analyses, we identified 
a metastatic breast cancer-specific significantly mutated gene—ZFPM1 
(also known as FOG1; q = 8 × 10−5), a zinc-finger transcription factor 
protein without clear links to cancer. Our cohort also lends support 
to previous findings for significantly mutated genes that are currently 
not included in the COSMIC Cancer Gene Census26. In particular, eight 
significantly mutated putative TSGs found previously in an independent 
dataset24 were also found in our analyses, including GPS2 (pan-cancer, 

breast), SOX9 (pan-cancer, colorectal), TGIF1 (pan-cancer, colorectal), 
ZFP36L1 (pan-cancer, urinary tract) and ZFP36L2 (pan-cancer, colo-
rectal), HLA-B (lymphoid), MGA (pan-cancer), KMT2B (skin) and RARG 
(urinary tract).

We also searched for genes that were significantly amplified or deleted 
(Supplementary Table 4). CDKN2A and PTEN were the most significantly 
deleted genes overall, but many of the top genes involved common frag-
ile sites, particularly FHIT and DMD, which were deleted in 5% and 4% of 
samples, respectively. The role of common fragile sites in tumorigenesis 
is unclear and aberrations that affect these genes are frequently treated 
as passenger mutations that reflect localized genomic instability27. In 
CTNNB1, we identified a recurrent in-frame deletion of the complete 
exon 3 in 12 samples, 9 of which are colorectal cancers. Notably, these 
deletions were homozygous but thought to be activating as CTNNB1 
normally acts as an oncogene in the WNT and β-catenin pathway and 
none of these nine colorectal samples had any APC driver mutations. 
We also identified several significantly deleted genes not previously 
reported, including MLLT4 (n = 13) and PARD3 (n = 9).

Unlike homozygous deletions, amplification peaks tend to be broad 
and often encompass large numbers of genes, making identification of 
the amplification target challenging. However, SOX4 (6p22.3) stands 
out as a significantly amplified single gene peak (26 amplifications) 
and is highly enriched in urinary tract cancers (19% of samples highly 
amplified). SOX4 is known to be overexpressed in prostate, hepatocel-
lular, lung, bladder and medulloblastoma cancers with poor prognostic 
features and advanced disease status and is a modulator of the PI3K and 
Akt signalling pathway28.

Also notable was a broad amplification peak of 10 genes around ZMIZ1 
at 10q22.3 (n = 32), which has not previously been reported. ZMIZ1 is a 
transcriptional coactivator of the protein inhibitor of activated STAT 
(PIAS)-like family and is a direct and selective cofactor of NOTCH1 in 
the development of T cells and leukaemia29. CDX2, previously identi-
fied as an amplified lineage-survival oncogene in colorectal cancer30, is 
also highly amplified in our cohort with 20 out of 22 amplified samples 
found in colorectal cancer, representing 5.4% of all colorectal samples.

Driver mutation catalogue
We created a comprehensive catalogue of mutations in known (COSMIC 
curated genes31) and newly discovered (ref. 24 and this study) cancer 
genes across all samples and variant classes, similar to that previously 
described for primary tumours32 (N. Lopez, personal communication). 
We used a prioritization scheme to give a likelihood score for each 
mutation being a potential driver event. By taking into account the 
proportion of SNVs and indels estimated to be passengers using the 
dNdScv R package, we found 13,384 somatic candidate driver events 
among the 20,071 identified mutations in the combined gene panel 
(Supplementary Table 5), together with 189 germline predisposition 
variants (Supplementary Table 6). The somatic candidate drivers include 
7,400 coding mutations, 615 non-coding point-mutation drivers, 2,700 
homozygous deletions (25% of which are in common fragile sites), 2,392 
focal amplifications and 276 fusion events. For non-coding variants, only 
essential splice sites and promoter mutations in TERT were included in 
the study owing to the current lack of robust evidence for other recurrent 
oncogenic non-coding mutations33. A total of 257 variants were found 
at 5 known recurrent variant hotspots9 and included in the candidate 
driver catalogue.

For the cohort as a whole, 55% of point mutations in the gene panel 
candidate driver catalogue were predicted to be genuine driver events, 
using our prioritization scheme (Methods). To facilitate the analysis of 
variants of unknown significance at a per-patient level, we calculated a 
sample-specific likelihood score for each point mutation being a driver 
event by taking into account the mutational burden of the sample, 
the biallelic inactivation status for TSGs, and hotspot positions for 
oncogenes. Predictions of pathogenic variant overlap with known 
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biology—for example, clustering of benign missense variants in the 3′ 
half of the APC gene (Supplementary Fig. 2)—fits with the absence of 
FAP-causing germline variants in this part of the gene34.

Overall, the catalogue is similar to previous inventories of cancer 
drivers, with TP53 (52% of samples), CDKN2A (21%), PIK3CA (16%), APC 
(15%), KRAS (15%), PTEN (13%) and TERT (12%) identified as the most com-
monly mutated genes, which together make up 26% of all the candidate 
driver mutations in the catalogue (Fig. 3). However, all of the ten most 
frequently mutated genes in our catalogue were reported at a higher rate 
than for primary cancers35, which may reflect the more advanced disease 
state. AR and ESR1 in particular are more prevalent, with putative driver 
mutations in 44% of prostate and 16% of breast cancers, respectively. 
Both genes are linked to resistance to hormonal therapy, a common 
treatment for these tumour types, and have been previously reported 
as enriched in advanced metastatic cancer9 but are identified at higher 
rates in this study.

At the per-patient level, the mean number of total candidate driver 
events per patient was 5.7, with the highest rate in urinary tract tumours 
(mean value of 8.0) and the lowest in NETs (mean of 2.8) (Fig. 4). Oesopha-
geal and stomach tumours also had increased driver counts, largely 
owing to a much higher rate of deletions in common fragile site genes 
(mean of 1.6 for both stomach and oesophageal tumours) compared 
with other cancer types (pan-cancer mean of 0.3). Fragile sites aside, the 
differential rates of drivers between cancer types in each variant class 
do correlate with the relative mutational load (Extended Data Fig. 4), 
with the exception of skin cancers, which have a lower than expected 
number of SNV drivers.

In 98.6% of all samples, at least one somatic candidate driver mutation 
or germline predisposition variant was found. Of the 34 samples with 
no identified driver, 18 were NETs of the small intestine (representing 

49% of all patients of this subtype). This probably indicates that small 
intestine NETs have a distinct set of yet drivers that are not captured 
in any of the cancer gene resources used and are also not prevalent 
enough in our relatively small NET cohort to be detected as significant. 
Alternatively, NETs could be mainly driven by epigenetic mechanisms 
that are not detected by WGS36.

The number of amplified driver genes varied significantly between 
cancer types (Extended Data Fig. 7), with highly increased rates per 
sample in breast cancer (mean of 2.1), oesophageal cancer (mean of 1.8), 
urinary tract and stomach cancers (both mean of 1.7), nearly no 
amplification drivers in kidney cancer (mean of 0.1), and none in the 
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Fig. 3 | The most prevalent driver genes in metastatic cancer. a–c, The most 
prevalent somatically mutated oncogenes (a), TSGs (b) and germline 
predisposition variants (c). From left to right, the heat map shows the 
percentage of samples in each cancer type that are found to have each gene 
mutated; absolute bar chart shows the pan-cancer percentage of samples with 

the given gene mutated; relative bar chart shows the breakdown by type of 
alteration. For TSGs (b), the final bar chart shows the percentage of samples 
with a driver in which the gene is biallelically inactivated, and for germline 
predisposition variants (c), the final bar chart shows the percentage of samples 
with loss of wild type in the tumour.
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mesothelioma cohort. In tumour types with high rates of amplifica-
tions, these amplifications are generally found across a broad spectrum 
of oncogenes, which suggests that there are mutagenic processes active 
in these tissues that favour amplifications, rather than tissue-specific 
selection of individual driver genes. AR and EGFR are notable excep-
tions, with highly selective amplifications in prostate cancer, and in 
CNS and lung cancers, respectively, in line with previous reports20,37,38. 
Notably, we also found twofold more amplification drivers in samples 
with WGD events despite amplifications being defined as relative to 
the average genome ploidy.

The 189 germline variants identified in 29 cancer predisposition genes 
(present in 7.9% of the cohort) consisted of 8 deletions and 181 point 
mutations (Fig. 3c, Supplementary Table 6). The top five affected genes 
(containing nearly 80% of variants) were the well-known germline drivers 
CHEK2, BRCA2, MUTYH, BRCA1 and ATM. The corresponding wild-type 
alleles were found to be lost in the tumour sample in more than half of 
the cases, either by LOH or somatic point mutation, indicating a high 
penetrance for these variants, particularly in BRCA1 (89% of cases), APC 
(83%) and BRCA2 (79%).

The 276 fusions consisted of 168 in-frame coding fusions, 90 cis-
activating fusions that involve repositioning of regulatory elements in 
5′ genic regions, and 18 in-frame intragenic deletions in which one or 
more exons was deleted (Supplementary Table 7). ERG (n = 88), BRAF 
(n = 17), ERBB4 (n = 16), ALK (n = 12), NRG1 (9 samples) and ETV4 (n = 7) 
were the most commonly observed 3′ partners, which together make 
up more than half of the fusions. In total, 76 out of the 89 ERG fusions 
were TMPRSS2–ERG and affected 36% of all prostate cancer samples in 
the cohort. There were 146 fusion pairs not previously recorded in CGI, 
OncoKb, COSMIC or CIViC databases31,39–41.

We found that 71% of somatic driver point mutations in oncogenes 
occur at or within five nucleotides already known to pathogenic muta-
tional hotspots. In the six most prevalent oncogenes (KRAS, PIK3CA, 
BRAF, NRAS, TERT and ESR1), the rate was 97% (Extended Data Fig. 9). 
Furthermore, in many of the key oncogenes, we document several likely 
activating but non-canonical variants near known mutational hotspots, 
particularly in-frame indels. Despite in-frame indels being exception-
ally rare overall (mean of 1.7 per tumour), we found an excess in known 
oncogenes including PIK3CA (n = 18), KIT (n = 17), ERBB2 (n = 10) and BRAF 
(n = 8) frequently occurring at or near known hotspots (Extended Data 
Fig. 9). In FOXA1, we identified ten in-frame indels that are highly enriched 
in prostate cancer (seven out of ten cases) and clustered at two locations 
that were not previously associated with pathogenic mutations42.

For TSGs, our results strongly support the Knudson two-hit hypoth-
esis43, with 80% of all TSG drivers found to have biallelic inactivation by 
genetic alterations (Fig. 3), homozygous deletion (32%), multiple somatic 
point mutations (7%), or a point mutation in combination with LOH (41%). 
This rate is, to our knowledge, the highest observed in any large-scale 
WGS cancer study. For many key TSGs, the biallelic inactivation rate is 
almost 100%—TP53 (93%), CDKN2A (97%), RB1 (94%), PTEN (92%) and 
SMAD4 (96%)—which suggests that biallelic genetic inactivation of these 
genes is a strong requirement for metastatic cancer. Other prominent 
TSGs, however, have lower biallelic inactivation rates, including ARID1A 
(55%), KMT2C (49%) and ATM (49%). For these cases, the other allele 
may also be inactivated by non-mutational epigenetic mechanisms, 
or tumorigenesis may be driven via a haploinsufficiency mechanism.

We examined the pairwise co-occurrence of driver gene mutations 
per cancer type and found ten combinations of genes that were signifi-
cantly mutually exclusively mutated, and ten combinations of genes 
that were significantly concurrently mutated (Extended Data Fig. 10). 
Although most of these relationships are well established, in breast 
cancer, we found new positive relationship for GATA3–VMP1 (q = 6 × 10−5) 
and FOXA1–PIK3CA (q = 3 × 10−3), and negative relationships for ESR1–
TP53 (q = 9 × 10−4) and GATA3–TP53 (q = 5 × 10−5). These findings will 
need further validation and experimental follow-up to understand the 
underlying biology.

Clonality of variants
To obtain insight into ongoing tumour evolution dynamics, we examined 
the clonality of all variants. Notably, only 6.6% of all SNVs, MNVs and 
indels across the cohort and just 3.7% of the point-mutation drivers were 
found to be subclonal (Extended Data Fig. 11). The low proportion of sam-
ples with subclonal variants could be partially due to the detection limits 
of the sequencing approach (sequencing depth, bioinformatic analysis 
settings), particularly for low purity samples. However, even for samples 
with more than 80% purity, the total proportion of subclonal variants 
only reaches 10.6% (Extended Data Fig. 11). Furthermore, sensitized 
detection of variants at hotspot positions in cancer genes showed that 
our analysis pipeline detected over 96% of variants with allele frequen-
cies above 3%. Although the cohort contains some samples with high 
fractions of subclonal variants, overall the metastatic tumour samples 
are relatively homogeneous without the presence of multiple diverged 
major subclones. Low intratumour heterogeneity may be in part attrib-
uted to the fact that nearly all biopsies were obtained by a core needle 
biopsy, which results in highly localized sampling, but is nevertheless 
much lower than previous observations in primary cancers12.

In the 117 patients with independently collected repeat biopsies from 
the same patient (Supplementary Table 8), we found 11% of all SNVs to 
be subclonal. Although 71% of clonal variants were shared between 
biopsies, only 29% of the subclonal variants were shared. We cannot 
exclude the presence of larger amounts of lower frequency subclonal 
variants, and our results suggest a model in which individual metastatic 
lesions are dominated by a single clone at any one point in time and that 
more limited tumour evolution and subclonal selection takes places 
after distant metastatic seeding. This contrasts with observations in 
primary tumours, in which larger degrees of subclonality and several 
major subclones are more frequently observed12,44, but supports other 
recent studies that demonstrate minimal driver gene heterogeneity in 
metastases6,45.

Clinical associations
We analysed opportunities for biomarker-based treatment for all 
patients by mapping driver events to clinical annotation databases 
(CGI41, CIViC39 and OncoKB40). In 1,480 patients (62%), at least one 
predicted candidate ‘actionable’ event was identified (as defined in 
the Methods, Supplementary Table 9), in line with results from primary 
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tumours32. Half of the patients with a predicted candidate actionable 
event (31% of total) contained a biomarker with a predicted sensitivity 
to a drug at level A (approved anti-cancer drugs) and lacked any known 
resistance biomarkers for the same drug (Fig. 5a). In 18% of patients, 
the suggested therapy was a registered indication, whereas in 13% of 
cases it was outside the labelled indication. In a related pilot study with 
implementation in 215 treated patients, we showed that such treatment 
with anticancer drugs outside of their approved label can result in overall 
clinical benefits46. In a further 31% of patients, a level B (experimental 
therapy) biomarker was identified. The predicted actionable events 
spanned all variant classes including 1,815 SNVs, 48 MNVs, 190 indels, 745 
copy number alterations, 69 fusion genes and 60 patients with micros-
atellite instability (Fig. 5b).

Tumour mutation burden (TMB) is an important emerging biomarker 
for responses to immune checkpoint inhibitor therapy as it is a proxy 
for the amount of neo-antigens in the tumour cells. In two large phase 3 
trials of patients with non-small-cell lung cancer, both progression-free 
survival and overall survival are significantly improved with first line 
immunotherapy as compared with chemotherapy for patients whose 
tumours have a TMB of greater than 10 mutations per megabase47,48.

Although various clinical studies based on this parameter are currently 
emerging, TMB was not yet included in the above actionability analysis. 
However, when applying this cut-off to all samples in our cohort, 18% of 
patients would qualify, varying from 0% for patients with mesothelioma, 
liver and ovarian cancers to more than 50% for patients with lung and 
skin cancers (Extended Data Fig. 4b).

Data availability and resource access
The Hartwig Medical cohort described here is, to our knowledge, the 
largest metastatic whole-genome cancer resource, and based on a broad 
patient consent was specifically developed as a community resource 
for international academic cancer research. Somatic variants and basic 
clinical data (tumour type, gender, age) are publicly available and can 
be explored at the patient, cohort and gene level through a graphical 
interface (database.hartwigmedicalfoundation.nl) originally devel-
oped by the International Cancer Genome Consortium49. Patient-level 
genome-wide germline and somatic data (raw BAM files and annotated 
variant call data) are considered privacy sensitive and available through 
an access-controlled mechanism (see www.hartwigmedicalfoundation.
nl/en for details).

The cohort is still expanding, with data from 4,000 patients already 
available, and includes data that go beyond the basic clinical and 
genomic data analysed in this paper such as post-biopsy treatments 
and responses, and previous treatment information.

Discussion
Genomic testing of tumours faces numerous challenges in meeting clini-
cal needs, including the interpretation of variants of unknown signifi-
cance, the steadily expanding universe of actionable genes—often with 
an increasingly small fraction of patients affected—and the development 
of advanced genome-derived biomarkers such as tumour mutational 
load, DNA repair status and mutational signatures. Our results demon-
strate that WGS analyses of metastatic cancer can provide novel and 
relevant insights and are instrumental in addressing some of the key 
challenges of precision medicine in cancer.

First, our systematic and large-scale pan-cancer analyses on metastatic 
cancer tissue allowed for the identification of several cancer drivers and 
mutation hotspots. Second, the driver catalogue analyses can be used 
to mitigate the problem of variants of unknown significance interpreta-
tion32 both by leveraging previously identified pathogenic mutations 
(accounting for more than two-thirds of oncogenic point-mutation 
drivers) and by careful analysis of the biallelic inactivation of putative 
TSGs that accounts for over 80% of TSG drivers in metastatic cancer. 

Third, we demonstrate the importance of accounting for all types of 
variant, including large-scale genomic rearrangements (via fusions and 
copy number alteration events), which account for more than half of 
all drivers, but also activating MNVs and indels that we have shown are 
commonly found in many key oncogenes. Fourth, we have shown that 
using WGS, even with very strict variant calling criteria, we could find 
candidate driver variants in more than 98% of all metastatic tumours, 
including predicted putatively actionable events in a clinical and experi-
mental setting for up to 62% of patients.

Although we did not find metastatic tumour genomes to be funda-
mentally different from primary tumours in terms of the mutational 
landscape or genes that drive advanced tumorigenesis, we described 
characteristics that could contribute to responsiveness to therapy or 
resistance in individual patients. In particular, we showed that WGD 
events are a more pervasive element of tumorigenesis than previously 
understood, affecting over half of all metastatic cancers. We also found 
metastatic lesions to be less heterogeneous than reported for primary 
tumours, although the limited sequencing depth does not allow conclu-
sions to be made about low-frequency subclonal variants.

The cohort described here provides a valuable complementary 
resource to whole-sequence-based data of primary tumours such as 
the PCAWG project in advancing fundamental and translational cancer 
research. Although it was established as a pan-cancer resource, several of 
the tumour type-specific cohorts are very large in their own rights. Already 
two of these cohorts (prostate50 and breast51) have been analysed in more 
detail, providing enhanced cancer subtype stratification and revealing 
characteristic genomic differences between primary and metastatic 
tumours. As the Hartwig Medical cohort includes a mix of treatment-
naive metastatic patients and patients who have undergone (extensive) 
previous systemic treatments, it provides unique opportunities to study 
responses and resistance to treatments and discover predictive biomark-
ers, as these data are available for discovery and validation studies.
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Methods

A detailed description of methods and validations is available as Supple-
mentary Information. No statistical methods were used to predetermine 
sample size. The experiments were not randomized, and investigators were 
not blinded to allocation during experiments and outcome assessment.

Sample collection
Patients with advanced cancer not curable by local treatment options 
and being candidates for any type of systemic treatment and any line 
of treatment were included as part of the CPCT-02 (NCT01855477) and 
DRUP (NCT02925234) clinical studies, which were approved by the 
medical ethical committees (METC) of the University Medical Center 
Utrecht and the Netherlands Cancer Institute, respectively. A total of 
41 academic, teaching and general hospitals across The Netherlands 
participated in these studies and collected material and clinical data 
by standardized protocols52. Patients have given explicit consent for 
whole-genome sequencing and data sharing for cancer research pur-
poses. Core needle biopsies were sampled from the metastatic lesion, 
or when considered not feasible or not safe, from the primary tumour 
site and frozen in liquid nitrogen. A single 6-μm section was collected 
for haematoxylin and eosin (H&E) staining and estimation of tumour 
cellularity by an experienced pathologist and 25 sections of 20-μm were 
collected in a tube for DNA isolation. In parallel, a tube of blood was col-
lected. Leftover material (biopsy, DNA) was stored in biobanks associ-
ated with the studies at the University Medical Center Utrecht and the 
Netherlands Cancer Institute.

Whole-genome sequencing and variant calling
DNA was isolated from biopsies (>30% tumour cellularity) and blood 
according to the supplier’s protocols (Qiagen) using the DSP DNA Midi 
kit for blood and QIAsymphony DSP DNA Mini kit for tissue. A total of 
50–200 ng of DNA (sheared to average fragment length of 450nt) was 
used as input for TruSeq Nano LT library preparation (Illumina). Bar-
coded libraries were sequenced as pools on HiSeqX generating 2 × 150 
read pairs using standard settings (Illumina). BCL output was converted 
using bcl2fastq tool (Illumina, v.2.17 to v.2.20) using default parameters. 
Reads were mapped to the reference genome GRCH37 using BWA-mem 
v.0.7.5a53, duplicates were marked for filtering and INDELs were realigned 
using GATK v.3.4.46 IndelRealigner54. GATK HaplotypeCaller v.3.4.4655 
was run to call germline variants in the reference sample. For somatic 
SNV and indel variant calling, GATK BQSR56 was applied to recalibrate 
base qualities. SNV and indel somatic variants were called using Strelka 
v.1.0.1457 with optimized settings and post-calling filtering. Structural 
Variants were called using Manta (v.1.0.3)58 with default parameters 
followed by additional filtering to improve precision using an internally 
built tool (Breakpoint-Inspector v.1.5). To assess the effect of sequenc-
ing depth on variant calling sensitivity, we downsampled the BAMS of 
10 samples at random by 50% and reran the identical somatic variant 
calling pipeline.

Purity, ploidy and copy number calling
Copy number calling and determination of sample purity were per-
formed using PURPLE (PURity & PLoidy Estimator), which combines 
B-allele frequency, read depth and structural variants to estimate the 
purity of a tumour sample and determine the copy number and minor 
allele ploidy for every base in the genome. The purity and ploidy esti-
mates and copy number profile obtained from PURPLE were validated on 
in silico simulated tumour purities, by DNA fluorescence in situ hybridi-
zation (FISH) and by comparison with an alternative tool (ASCAT59). 
ASCAT was run on GC-corrected data using default parameters except 
for gamma, which was set to 1 (which is recommended for massively 
parallel sequencing data). We implement a simple heuristic that deter-
mines if a WGD event has occurred: major allele ploidy > 1.5 on at least 
50% of at least 11 autosomes as the number of duplicated autosomes 

per sample (that is, the number of autosomes which satisfy the above 
rule) follows a bimodal distribution with 95% of samples have either ≤6 
or ≥15 autosomes duplicated.

Sample selection for downstream analyses
Following copy number calling, samples were filtered out based on 
absence of somatic variants, purity <20%, and GC biases, yielding a 
high-quality dataset of 2,520 samples. Where multiple biopsies exist 
for a single patient, the highest purity sample was used for downstream 
analyses (resulting in 2,399 samples).

Mutational signature analysis
Mutational signatures were determined by fitting SNV counts per 96 
tri-nucleotide context to the 30 COSMIC signatures26 using the muta-
tionalPatterns package60. Residuals were calculated as the sum of the 
absolute difference between observed and fitted across the 96 buckets. 
Signatures with <5% overall contribution to a sample or absolute fitted 
mutational load <300 variants were excluded from the summary plot.

Germline predisposition variant calling
We searched for pathogenic germline variants (SNVs, indels and copy 
number alterations) in a broad list of 152 germline predisposition genes 
previously curated61, using GATK HaplotypeCaller55 output from each 
sample. For each variant identified, we assessed the genotype in the 
germline (HET or HOM), whether there was a second somatic hit in the 
tumour, and whether the wild type or the variant itself was lost by a copy 
number alteration. We observed that for the variants in many of the 152 
predisposition genes that a loss of wild type in the tumour via LOH was 
lower than the average rate of LOH across the cohort and that fewer 
than 5% of observed variants had a second somatic hit in the same gene. 
Moreover, in many of these genes, the ALT variant was lost via LOH as 
frequently as the wild type, suggesting that a considerable portion of the 
566 variants may be passengers. For our downstream analysis and driver 
catalogue, we therefore restricted our analysis to a more conservative 
‘high confidence’ list including only the 25 cancer related genes in the 
ACMG secondary findings reporting guidelines (v.2.0)62, together with 
four curated genes (CDKN2A, CHEK2, BAP1 and ATM), selected because 
these are the only additional genes from the larger list of 152 genes with 
a significantly increased proportion of called germline variants with loss 
of wild type in the tumour sample.

Clonality and biallelic status of point mutations
The ploidy of each variant is calculated by adjusting the observed VAF 
by the purity and then multiplying by the local copy number to work 
out the absolute number of chromatids that contain the variant. We 
mark a mutation as biallelic (that is, no wild type remaining) if variant 
ploidy > local copy number − 0.5. For each variant, we also determine a 
probability that it is subclonal. This is achieved via a two-step process 
involving fitting the somatic ploidies for each sample into a set of clonal 
and subclonal peaks and calculating the probability that each individual 
variant belongs to each peak. Subclonal counts are calculated as the 
total density of the subclonal peaks for each sample. Subclonal driver 
counts are calculated as the sum across the driver catalogue of subclonal 
probability × driver likelihood.

MSI status determination
To determine the MSI status, we used the method described by the 
MSIseq tool63 and counted the number of indels per million bases occur-
ring in homopolymers of five or more bases or dinucleotide, trinucleo-
tide and tetranucleotide sequences of repeat count four or more. MSIseq 
score of >4 were considered MSI.

Significantly mutated driver genes
We used Ensembl64 v.89.37 as a basis for gene definitions and have taken 
the union of Entrez identifiable genes and protein-coding genes as our 
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base panel (25,963 genes of which 20,083 genes are protein coding). 
Pan-cancer and at an individual cancer level we tested the normalized 
nonsynonymous (dN) to synonymous substitution (dS) rate (that is, 
dN/dS) using dNdScv24 against a null hypothesis that dN/dS = 1 for each 
variant subtype. To identify significantly mutated genes in our cohort, 
we used a strict significance cut-off value of q < 0.01.

To search for significantly amplified and deleted genes, we first calcu-
lated the minimum exonic copy number per gene. For amplifications, we 
searched for all the genes with high-level amplifications only (defined 
as minimum exonic copy number >3 × sample ploidy). For deletions, 
we searched for all the genes in each sample with either full or partial 
homozygous gene deletions (defined as minimum exonic copy number 
< 0.5) excluding the Y chromosome. We then searched separately for 
amplifications and deletions, on a per-chromosome basis, for the most 
significant focal peaks, using an iterative GISTIC-like peel off method65. 
Most of the deletion peaks resolve clearly to a single target gene, which 
reflects the fact that homozygous deletions are highly focal, but for 
amplifications this is not the case and most of our peaks have ten or 
more candidates. We therefore annotated the peaks, to choose a single 
putative target gene using an objective set of automated curation rules. 
Finally, filtering was applied to yield highly significant deletions and 
amplifications.

Homozygous deletions were also annotated as common fragile sites 
based on their genomic characteristics, including a strong enrichment in 
long genes (>500,000 bases) and a high rate (>30%) of deletions between 
20 kb and 1 Mb27.

Somatic driver catalogue construction
We created a catalogue of mutations in known cancer genes in our cohort 
across all variant types on a per-patient basis. This was done in a similar 
incremental manner to that previously described32 (N. Lopez, personal 
communication) in which we first calculated the number of genes with 
putative driver mutations in a broad panel of known and significantly 
mutated genes across the full cohort, and then assigned the candidate 
driver mutations for each gene to individual patients by ranking and 
prioritizing each of the observed variants. Key points of difference in 
this study were both the prioritization mechanism used and our choice 
to ascribe each mutation a probability of being a driver rather than a 
binary cut-off based on absolute ranking.

The four steps to create the catalogue are as follows. (1) Create 
a panel of candidate genes for point mutations using significantly 
mutated genes and known cancer genes using the union of Mar-
tincorena significantly mutated genes24 (filtered to significance of 
q < 0.01), HMF significantly mutated genes (q < 0.01) at global level or 
at cancer type level and COSMIC curated genes26 (v.83). (2) Determine 
TSG or oncogene status of each significantly mutated gene using a 
logistic regression classification model (trained using COSMIC anno-
tation). (3) Add mutations from all variant classes to the catalogue 
when meeting any of the following criteria: (i) all missense and in-
frame indels for panel oncogenes; (ii) all non-synonymous and essen-
tial splice point mutations for TSGs; (iii) all high-level amplifications 
for significantly amplified target genes and panel oncogenes; (iv) 
all homozygous deletions for significantly deleted target genes and 
panel TSGs; (v) all known or promiscuous in-frame gene fusions; and 
(vi) recurrent TERT promoter mutations. (4) Calculate a per-sample 
likelihood score (between 0 and 1) for each mutation in the catalogue 
as a potential driver event, to ensure that only likely pathogenic and 
excess mutations (based on dN/dS) are used to determine the number 
of drivers. All putative driver mutation counts reported at a per-cancer 
type or sample level refer to the sum of driver likelihoods for that 
cancer type or sample.

Clinical associations and actionability analysis
To determine clinical associations and potential actionability of the 
variants observed in each sample, we compared all variants with 

three external clinical annotation databases (OncoKB40, CGI41 and 
CIViC39) that were mapped to a common data model as defined by 
https://civicdb.org/help/evidence/evidence-levels. Here, we con-
sidered only A and B level variants. This classification of potential 
actionable events can also be mapped to the recently proposed ESMO 
Scale for Clinical Actionability of molecular Targets (ESCAT)66 as fol-
lows: ESCAT I-A+B (for A on-label) and I-C (for A off-label) and ESCAT 
II-A+B (for B on-label) and III-A (for B off-label). For each candidate 
actionable mutation, it was also determined to be either on-label 
(that is, evidence supports treatment in that specific cancer type) 
or off-label (evidence exists in another cancer type). To do this, we 
annotated both the patient cancer types and the database cancer 
types with relevant DOIDs, using the disease ontology database67. For 
each candidate actionable mutation in each sample, we aggregated 
all the mapped evidence that was available supporting both on-label 
and off-label treatments at the A or B evidence level. Treatments that 
also had evidence supporting resistance based on other biomarkers 
in the sample at the same or higher evidence level were excluded as 
non-actionable. Samples classified as MSI in our driver catalogue 
were also mapped as actionable at level A evidence based on clinical 
annotation in the OncoKB database. For each sample, we reported 
the highest level of predicted actionability, ranked first by evidence 
level and then by on-label vs off-label.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
All data described in this study are freely available for academic use from 
the Hartwig Medical Foundation through standardized procedures and 
request forms that can be found at https://www.hartwigmedicalfounda-
tion.nl/en/appyling-for-data/.
Available data include germline and tumour raw sequencing data (BAM 
files, including non-mapped reads), annotated somatic and germline 
variants (VCF files with annotated SNV and indels, and pipeline output 
files for purity and ploidy status as well as copy number alteration and 
structural variants) and clinical data. Examples of output files can be 
found at https://resources.hartwigmedicalfoundation.nl. In brief, a 
data request can be initiated by filling out the standard form in which 
intended use of the requested data is motivated. First, an advice on 
scientific feasibility and validity is obtained from experts in the field 
that is used as input by an independent data access board who also 
evaluates if the intended use of the data is compatible with the consent 
given by the patients and if there would be any applicable legal or ethical 
constraints. Upon formal approval by the data access board, a standard 
license agreement that does not have any restrictions regarding intel-
lectual property resulting from the data analysis needs to be signed 
by an official organization representative before access to the data 
are granted. After approval, access to data is provided under a license 
model, with the only main restriction that the data can only be used 
for the research detailed in the original request. Raw data files will be 
made available through a dedicated download portal with two-factor 
authentication.
Non-privacy sensitive somatic variants can also be browsed and explored 
through an open access web-based interface which can be accessed at 
http://database.hartwigmedicalfoundation.nl/.

Code availability
All code used is open source and available from third parties or devel-
oped by Hartwig Medical Foundation (https://github.com/hartwigmedi-
cal/). A full list of tools and versions used including links to the source 
code is provided in the Supplementary Information.
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Extended Data Fig. 1 | Hartwig sample workflow, biopsy locations and 
sequence coverage. a, Sample workflow from patient to high-quality WGS 
data. A total of 4,018 patients were enrolled in the study between April 2016 and 
April 2018. For 9% of patients, no blood and/or biopsy material was obtained, 
mostly because conditions of patients prohibited further study participation. 
Up to four fresh-frozen biopsies were obtained per patient, and were 
sequentially analysed to identify a biopsy with more than 30% tumour 
cellularity as determined by routine histology assessment. For 859 patients, no 
suitable biopsy was obtained, and 2,796 patients were further processed for 
WGS analysis. In total, 44 and 29 samples failed in either DNA isolation or 
library preparation and raw WGS data quality control tests, respectively. For a 
further 385 samples, the WGS data were of good quality, but the determination 

of tumour purity based on WGS data (PURity & PLoidy Estimator; PURPLE) was 
less than 20%, making reliable and comprehensive somatic variant calling 
impossible and were therefore excluded. Eventually, 2,338 pairs of tumour and 
normal tissue samples with high-quality WGS data were obtained, which were 
supplemented with 182 pairs from pre-April 2016, adding up to 2,520 pairs of 
tumour and normal samples that were included in this study. b, Breakdown of 
cohort by biopsy location. Tumour biopsies were taken from a broad range of 
locations. Primary tumour type is shown on the left, and the biopsy location on 
the right. c, Distribution of sample sequencing depth for tumour and blood 
reference samples (n = 2,520 independent samples for each category). The 
median for each is indicated by a horizontal bar.



Extended Data Fig. 2 | Mutational context distribution per tumour type.  
a–e, Variant subtype, mutational context or signature per individual sample for 
each SNV (a), SNV by COSMIC signature (b), MNV (c), indel (d) or SV (e). Each 
column chart is ranked within tumour type by mutational load from low to high 
in that variant class. MNVs are classified by the dinucleotide substitution, with 
‘NN’ referring to any dinucleotide combination. SVs are classified by type. 

DEL, deletion (with microhomology (MH), in repeats and other); DUP, tandem 
duplication; INV, inversion; TRL, translocation; INS, insertion. Highly 
characteristic known patterns can be discerned, for example the high rates of 
C>T SNVs, CC>TT MNVs and COSMIC S18 for skin tumours, and high rates of C>A 
SNVs and COSMIC S4 for lung tumours.
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Extended Data Fig. 3 | SNV mutational signatures. a, Prevalence and median 
mutational load of fitted COSMIC SNV mutational signature per cancer type 
(the number of patients per category is provided). The observed distribution 
largely reflects the patterns observed from primary cancers13. b, Box plots of 
relative residuals in fits per cancer type (sum of absolute difference between 
the fitted and actual divided by total mutational load). Boxes represent the 
twenty-fifth to seventy-fifth percentiles, and whiskers extend to the highest 

and lowest values within 1.5× the upper/lower quartile distance, with outliers 
shown as dots. c, Proportion of variants by 96 trinucleotide mutational context 
for two selected samples with high residuals and high mutational load. Top and 
bottom panels represent the highest outliers for breast (HMF002896) and 
oesophagus (HMF001562) cancers, respectively, from b. Both of these samples 
were previously treated with the experimental drug SYD985—a duocarmycin-
based HER2-targeting antibody–drug conjugate68.



Extended Data Fig. 4 | Mutational load, genome-wide analyses and drivers. 
a, Proportion of samples by cancer type classified as microsatellite instable 
(MSIseq score > 4). b, Proportion of samples with a high mutational burden (TMB 
> 10 SNVs per Mb). c–e, Scatter plots of mutational load per sample for indels 

versus SNVs (c), indels versus SVs (d), and SVs versus SNVs (e). MSI (MSIseq 
score > 4) and high TMB (>10 SNVs per Mb) thresholds are indicated. f–h, Mean 
mutational load versus driver rate for SNVs (f), indels (g) and SVs (h), grouped by 
cancer type. MSI samples were excluded.
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Extended Data Fig. 5 | Effect of sequencing depth on variant calling.  
a–f, Comparison of variant calling of ten randomly selected samples at normal 
depth and 50% downsampled (approximately 50 times, similar to the mean 
coverage for the PCAWG project14) for purity (a), SNV counts (b), SV counts (c), 

ploidy (d), MNV counts (e) and indel counts (f). Decreasing coverage results in 
an average decrease in sensitivity of 10% for SNVs, 2% for indels, 15% for MNVs 
and 19% for SVs.



Extended Data Fig. 6 | Effect of bioinformatic analysis pipeline on variant 
calling. a–d, Comparison of observed mutational count per sample for SNVs 
(a), MNVs (b), indels (c) and SVs (d) on 24 patient samples analysed by the 
PCAWG and HMF pipelines. The PCAWG pipeline was found to have a 43% lower 
sensitivity for indels (which is based on a consensus calling), 18% lower for SVs 
(based on a different algorithm) and 6% lower for MNVs (only includes MNVs 
involving two nucleotides), with nearly the same sensitivity for SNVs.  
e, f, Cumulative distribution function plot for each tumour type (the number of 
independent patients per category is provided) of coverage and pipeline-
adjusted mutational load for SNVs and MNVs (e) and indels and SVs (f). 
Mutational loads as shown in Fig. 1 were adjusted for the sensitivity effects 

caused by differences in sequencing depth coverage (Extended Data Fig. 4) and 
analysis pipeline differences (a–d). After this correction, the TMB between 
primary and metastatic cohorts across all variant types are much more 
comparable (e, f), which indicates that technical differences do contribute to the 
reported mutational load differences between primary and metastatic tumours. 
Prostate cancer is the most notable exception, with approximately twice the 
TMB in all variant classes, although more subtle differences, potentially driven 
by biology, can also be observed for other tumour and mutation types. For 
cancer types that are comparable with the PCAWG cohort, the equivalent 
PCAWG numbers are shown by dotted lines. The median for each cohort is 
shown by a horizontal line.
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Extended Data Fig. 7 | Somatic Y chromosome loss and driver 
amplifications. a, Proportion of male tumours with somatic loss of more than 
50% of Y chromosome (dark blue) grouped by tumour type. b, Mean rate of 

amplification drivers per cancer type. c, Breakdown of the number of 
amplification drivers per gene by cancer type. d, Mean rate of drivers per 
variant type for samples with and without WGD.



Extended Data Fig. 8 | Significantly mutated genes. Tile chart showing genes 
found to be significantly mutated per cancer type (the number of independent 
patients per category is provided) and pan-cancer using dNdScv. Gene names 
marked in orange are also significant in a previous study24, but not found in the 

COSMIC gene census or curated gene databases. Gene names marked in red are 
novel in this study. Significance (Poisson with Benjamini–Hochberg false 
discovery rate correction) is indicated by the intensity of shading.
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Extended Data Fig. 9 | Oncogenic hotspots. Count of driver point mutations 
by variant type. Known pathogenic mutations curated from external databases 
are categorized as hotspot mutations. Mutations within five bases of a known 

pathogenic mutation are shown as near hotspot, and all other mutations are 
shown as non-hotspot.



Extended Data Fig. 10 | Driver co-occurrence. a, Mutated driver gene pairs 
that are significantly positively (right) or negatively (left) correlated in 
individual tumour types (number of independent samples per tumour type is 
indicated in Fig. 1) sorted by q value (Fisher exact test adjusted for false 
discovery rate). Pairs of genes on the same chromosome that are frequently co-
amplified or co-deleted by chance are excluded from positively correlated 
results. The 20 significant findings include previously reported co-occurrence 
of mutated DAX–MEN1 in pancreatic NET (q = 7 × 10−4), and CDH1–SPOP in 
prostate tumours (q = 5 × 10−4), as well as negative associations of mutated genes 
within the same signal transduction pathway such as KRAS–BRAF (q = 4 × 10−4) 

and KRAS–NRAS (q = 0.008) in colorectal cancer, BRAF–NRAS in skin cancer 
(q = 6 × 10−12), CDKN2A–RB1 in lung cancer (q = 8 × 10−5) and APC–CTNNB1 in 
colorectal cancer (q = 3 × 10−6). APC is also strongly negatively correlated with 
both BRAF (q = 9 × 10−5) and RNF43 (q = 4 × 10−6), which together are characteristic 
of the serrated molecular subtype of colorectal cancers69. SMAD2–SMAD3 are 
highly positively correlated in colorectal cancer (q = 0.02), which supports a 
previous report in a large cohort of colorectal cancers70. In breast cancer, we 
found several novel relationships, including a positive relationship for GATA3–
VMP1(q = 6 × 10−5) and FOXA1–PIK3CA (q = 3 × 10−3), and a negative relationship for 
ESR1–TP53 (q = 9 × 10−4) and GATA3–TP53 (q = 5 × 10−5).
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Extended Data Fig. 11 | Subclonality of somatic variants. a, Violin plot 
showing the percentage of point mutations per tumour purity bucket (the 
number of independent samples per category is indicated) that are subclonal 
in each purity bucket per sample. Black dots indicate the mean for each bucket.  
b, Percentage of driver point mutations that are subclonal in each purity bucket. 

c, Approximate somatic ploidy detection cut-off of the HMF pipeline at median 
106× depth coverage for each purity bucket and for sample ploidy 2 and 4. 
Subclonal variants with cellular fraction less than this cut-off are unlikely to be 
detected by our pipeline analyses.
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Statistical parameters
When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main 
text, or Methods section).

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND 
variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars 
State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code
Policy information about availability of computer code

Data collection No software was used for data collection

Data analysis All analyses are based on open source software, which is available from third parties or developed by Hartwig Medical Foundation and 
available on GitHub (https://github.com/hartwigmedical/). The table below lists all external and internally developed software/tools, 
versions used and public links to the source code. 
 
External software/tools: 
bcl2fastq 2.17 to 2.20 http://sapac.support.illumina.com/downloads/bcl2fastq-conversion-software-v2-20.html 
BWA-mem 0.7.5a https://github.com/lh3/bwa 
Sambamba 0.6.5 https://github.com/biod/sambamba/releases/tag/v0.6.5 
Picard 1.141 https://broadinstitute.github.io/picard/ 
GATK 3.4.46 https://software.broadinstitute.org/gatk/download/auth?package=GATK-archive&version=3.4-46-gbc02625 
Strelka 1.0.14 https://github.com/Illumina/strelka 
mutationalPatterns 1.4.3 https://bioc.ism.ac.jp/packages/3.6/bioc/html/MutationalPatterns.html 
Manta 1.0.3 https://github.com/Illumina/manta 
STAR-fusion ?? https://github.com/STAR-Fusion/STAR-Fusion/releases 
Bioconductor CopyNumber package 1.24.0 http://bioconductor.org/packages/release/bioc/html/copynumber.html 
ASCAT 2.52 https://github.com/Crick-CancerGenomics/ascat 
dNdScv 0.1.0 https://github.com/im3sanger/dndscv/releases/tag/0.1.0 
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Circos 0.69.6 http://circos.ca/distribution/circos-0.69-6.tgz 
samtools 1.2 https://github.com/samtools/samtools/releases/tag/1.2 
snpeff 4.3s https://sourceforge.net/projects/snpeff/files/snpEff_v4_3s_core.zip/download 
vcftools 0.1.14 https://vcftools.github.io/index.html 
bcftools 1.9 https://github.com/samtools/bcftools/releases/download/1.9/bcftools-1.9.tar.bz2 
 
HMF internal software/tools: 
Strelka_post_process 1.4 https://github.com/hartwigmedical/hmftools/releases/tag/strelka-post-process-v1-4 
HMF pipeline v3.0 https://github.com/hartwigmedical/pipeline/releases/tag/v3.0 
SAGE 1.1 https://github.com/hartwigmedical/hmftools/releases/tag/sage%E2%80%94v1-1 
BPI 1.5 https://github.com/hartwigmedical/hmftools/releases/tag/bpi-v1-5 
PURPLE 2.10 https://github.com/hartwigmedical/hmftools/releases/tag/purple-v2-10 
Amber 1.5 https://github.com/hartwigmedical/hmftools/releases/tag/amber-v1-5 
Cobalt 1.4 https://github.com/hartwigmedical/hmftools/releases/tag/cobalt-v1-4 
healthchecker 2.1 https://github.com/hartwigmedical/hmftools/tree/master/health-checker 
R analysis suite 1.3 https://github.com/hartwigmedical/scripts/releases/tag/pancancerpaper-v1-3 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

All data described in this study is freely available for academic use from the Hartwig Medical Foundation through standardized procedures and request forms which 
can be found at https://www.hartwigmedicalfoundation.nl/en/appyling-for-data/.  
 
Available data includes germline and tumor raw sequencing data (BAM files, including non-mapped reads), annotated somatic and germline variants (VCF files with 
annotated SNV and indels, and pipeline output files for purity and ploidy status as well as copy number alteration and structural variants) and clinical data. Examples 
of output files can be found at https://resources.hartwigmedicalfoundation.nl. Briefly, a data request can be initiated by filling out the standard form in which 
intended use of the requested data is motivated. First, an advice on scientific feasibility and validity is obtained from experts in the field which is used as input by an 
independent Data Access Board who also evaluates if the intended use of the data is compatible with the consent given by the patients and if there would be any 
applicable legal or ethical constraints. Upon formal approval by the Data Access Board, a standard license agreement which does not have any restrictions regarding 
Intellectual Property resulting from the data analysis needs to be signed by an official organisation representative before access to the data is granted. After 
approval, access to data is provided under a license model, with the only main restriction that the data can only be used for the research detailed in the original 
request. Raw data files will be made available through a dedicated download portal with two-factor authentication.  
 
Non-privacy sensitive somatic variants can also be browsed and explored through an open access web-based interface which can be accessed at http://
database.hartwigmedicalfoundation.nl/.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size The metastatic tumor sample cohort described in the paper consists of 2520 independent samples from 2399 patients (including 121 repeat 
biopsies) collected in 41 hospitals (academic, teaching and general hospitals). No sample size calculations were performed as the main aim of 
the study was to build up a resource

Data exclusions Samples that failed predefined QC criteria or with a tumor purity below 20% were excluded from all analyses and not included in the 2520 
sample cohort (see Extended Data Fig 1). The tumor purity threshold was defined after bioinformatic tool optimization and simulations with 
titration series of reference samples and validation experiments on selected cohort samples.

Replication Independent repeat processing of raw data of the same sample results in the same variant call data

Randomization Not applicable as the primary goal of this study was to create a resource. The study and analyses do not include any experimental 
manipulation and only involved the collection of tissue and blood material, the generation of whole genome sequencing data and the 
collection of clinical data from medical records.
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Blinding Not applicable as the primary goal of this study was to create a resource. The study and analyses do not include any experimental 
manipulation and only involved the collection of tissue and blood material, the generation of whole genome sequencing data and the 
collection of clinical data from medical records.

Reporting for specific materials, systems and methods

Materials & experimental systems
n/a Involved in the study

Unique biological materials

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Unique biological materials
Policy information about availability of materials

Obtaining unique materials Tumor biopsies are collected as part of two clinical studies and remaining material is deposited in local biobanks as described in 
the methods. Because of the nature of the material (very small amount), broad accessibility is not possible. 

Human research participants
Policy information about studies involving human research participants

Population characteristics All patient included where diagnosed with metastatic disease and considered fit enough to undergo an invasive core-needle 
biopsy and planned to start treatment. The median age is 63 years (range 18 - 89). The cohort includes 1221 female and 1178 
male subjects. Age and gender information of each patient is included in Supplementary Table 2. All patients were seen in 
hospitals in the Netherlands, including academic, teaching and general hospitals

Recruitment Metastatic cancer patients were asked to participate in the studies in any of the 41 participating hospitals. Recruitment involved 
hundreds of medical specialists and research nurses which minimizes self-selection biases. Recruitment was independent on 
tumor type. An important requirement for participation was the ability to safely undergo a tumor biopsy. Health conditions and 
lesion site related risk could therefore have resulted in exclusion of patients.
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