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The digitization of organic synthesis
Ian W. Davies1*

Organic chemistry has largely been conducted in an ad hoc manner by academic laboratories that are funded by grants 
directed towards the investigation of specific goals or hypotheses. Although modern synthetic methods can provide 
access to molecules of considerable complexity, predicting the outcome of a single chemical reaction remains a major 
challenge. Improvements in the prediction of ‘above-the-arrow’ reaction conditions are needed to enable intelligent 
decision making to select an optimal synthetic sequence that is guided by metrics including efficiency, quality and yield. 
Methods for the communication and the sharing of data will need to evolve from traditional tools to machine-readable 
formats and open collaborative frameworks. This will accelerate innovation and require the creation of a chemistry 
commons with standardized data handling, curation and metrics.

T he preparation of oxalic acid and urea by 
Wöhler almost 200 years ago established the 
field that we call organic synthesis1. Human 

insight from reactivity explored in the interim can 
now lead to beautifully organized campaigns of com-
plex natural products and bioactive molecules, which represent the pin-
nacle of synthetic design2. The idea of a synthesis machine that can build 
any molecule dates from the 1960s. However, although the first computer 
programs to design organic syntheses emerged around this time3,4, they 
failed to capture the imagination of chemists. Synthesis laboratories have 
remained sceptical of the ability of computer programs to learn the ‘art’ 
of organic chemistry, and have continued their tried and true approaches 
in their laboratories.

Now, the scepticism of synthetic chemists seems to be on the verge of 
changing. Using computer-aided synthesis planning (CASP), it is now 
possible to take the molecular structure of a desired product and output 
a detailed list of reaction schemes that connect the target molecule to 
known and often purchasable starting materials through a sequence of 
intermediates that are likely to be unknown5,6 (Box 1). For example, the 
decision-tree-like search engine Chematica—which has a user-friendly 
graphical user interface and has been coded with human-curated rules 
over the past decade—has received laboratory validation of the pre-
dicted synthesis of medicinally relevant targets7. Approaches towards 
such programs usually reflect the priorities and prejudices of the pro-
grammers, and others have used different approaches—for example, 
using machine-learning algorithms or Monte Carlo Tree Search (as in 
AlphaGo8) to guide the search, and a filter network to pre-select the most 
promising retrosynthetic steps that is trained on essentially all reactions 
ever published in organic chemistry9–11. In the future, it will be substan-
tially faster for such programs to learn automatically from the primary 
data rather than rely on extracted rules and hand-designed heuristics, in 
analogy to the differences in strategy between Stockfish and AlphaZero 
in learning chess12.

The digitization of multistep organic synthesis is fast approaching, 
and the automation of the synthesis planning is just the first compo-
nent that must be considered before automated reaction prediction can 
become a reality. The selection of reaction conditions is a key element of 
automated reaction prediction and is potentially a far more challenging 
task13 (Fig. 1). This Perspective surveys the current prospects for the pre-
diction of above-the-arrow conditions and addresses the challenges that 
are involved in integrating them into optimal methods of synthesis. For 
one, it has been stated that “syntheses are reported in prose”14. Not only 

are the reactions conditions often poorly communi-
cated, but details are also omitted when explaining 
exactly how operations were carried out, meaning 
that many assumptions are made about the skills of 
the researcher repeating the synthesis. The prediction 

problem must then consider an even broader range of variables in order 
to master or fully execute a synthesis or optimization, depending on the 
context of academic research and medicinal or process chemistry.

Challenges in culture and data reporting
Proposing specific reactions to a given target on the basis of the liter-
ature and canonical rules may seem to be a mysterious and daunting 
task to most, but it is considered a routine activity for practitioners 
of organic synthesis who begin to grasp the principles as chemistry 
undergraduates15. Throughout a career these skills are improved, and 
the well-trained chemist often uses rules and patterns of chemical 
reactivity that they have developed by immersion in the field. With 
a new synthetic problem at hand, the chemist tries to compare it to a 
known one before making sense of it—a similar concept to that used 
by deep-learning algorithms. Historically, having spent a day reading 
the literature or conducting database searches, the chemist absorbs the 
precedents and sets off for the laboratory. Within a modern chemistry 
setting, predicting the starting point for experimentation—especially 
for complex molecular environments—is now challenging for even 
the best-educated of chemists. The yield and the selectivity (chemo-, 
regio-, diastereo- and enantioselectivity) of any transformation in 
the field of catalysis can be controlled by millions of permutations—
including temperature, solvent, ligand and ancillary reagents—even 
before other metrics of quality are applied. Simply using a large num-
ber of experiments in (electronic) notebooks to select the above-
the-arrow conditions has been unsuccessful so far, as the data are 
fractured and collected without diversity of starting materials—often 
because organizations have experience with molecules that were influ-
enced by a target area in biology. Another obstacle related to human  
nature is that when reactions fail, the experimentalist is often not con-
cerned with complete documentation and moves onto another task. 
In the area of medicinal chemistry, in which enormous numbers of 
experiments are performed, it has been stated that there are only two 
yields that matter: enough and not enough16. Overall, the current 
approaches used to record experiments fail to capture the ‘messiness’ 
of organic synthesis, as well as the continuous nature of the solutions 
in the real world.
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To advance the field of machine learning in organic synthesis, enor-
mous improvements will be required to enable the prediction of the 
discrete and continuous variables in the reaction conditions that appear 
above the arrow (Fig. 1). This will be possible only if it is accompanied 
by advances in the reporting of cases in which syntheses are captured 
in the form of digital code that can be published, versioned and trans-
ferred flexibly between platforms to enhance reproducibility. Despite 
the abundant incentives for academic and industrial scientists to share 
synthetic data via publication, the data published in most journal 
articles represents only a fraction of the raw data collected in a given 
research project. As a community we rely on outdated means that are 
mere facsimiles rather than machine-readable formats. A stumbling 
block is not only how to uniformly collect, clean and label data that 
are of use for training inside an organization or laboratory, but also 
how to align incentives to make data broadly available via new data 
intermediaries.

Further challenges for machine learning concern the identification 
and scoring of the criteria for the efficiency of the overall synthetic 

sequence, as there are currently no clear criteria on which this can 
be judged. It is already impossible for a human to assess all availa-
ble options from either the recalling of synthetic methods or search-
ing online. The formulation of such rules has primarily occurred in 
an academic setting around the definition of an ideal synthesis17–19.  
The ‘fit-for-purpose’ rule of academia or medicinal chemistry will cer-
tainly be unacceptable in the fine- and commodity-chemical sectors of 
the industry, in which efficiency, quality and safety are all a necessity. 
The reaction steps, time to a workable answer, speed and throughput, 
availability of diverse raw materials, process economics, sustainability 
and energy consumption all need to be included in assessing digitiza-
tion of the multistep synthesis to define an answer that is beyond the 
output of a detailed list of potential reaction schemes.

Complexity in the execution of synthesis
The total synthesis of maoecrystal V (Fig. 2) is a good illustration of the 
level of above-the-arrow complexity in contemporary natural-product 
synthesis. In the preparation of this compound, which was completed 

Box 1  
Computer-aided synthesis planning
Computer-aided synthesis planning software was first described 
in the late 1960s3,4. Recently, machine-learning-based tools have 
been developed that provide information on route planning for a 
target molecule5,6. These algorithms are trained on the chemical 
literature, learning the ‘rules and reasoning’ of synthesis, and then 
predict a suitable synthetic route. They have been shown to be 
comparable to suggested routes from trained chemists towards 
medicinally relevant targets7.

These critical advances in machine-aided synthesis are still  
limited in their application to more complex molecules such 

as natural products, as well as in dealing with the intricacies 
of medicinal and process chemistry. They rely on the datasets 
published in journal articles, which represent only a fraction of 
the raw data collected in a given research project or company 
portfolio. The continued advancement and proliferation of  
machine learning requires that methods of sharing and 
communicating information change and move to open 
collaborative frameworks with fully published machine  
readable datasets that are more transparent, contextualized  
and traceable.

‘Above-the-arrow’
conditions

• Rational data collection
• Machine readable

• Informed prediction

Synthesis planning
and optimization

Unknown reaction

• Trial-and-error testing
• Human insight using 
   known reactivity

Fig. 1 | Above-the-arrow conditions and the digitization of organic synthesis. To perform an organic chemical reaction in a laboratory, the conditions 
listed above the arrow are required to run the synthesis and isolate the desired product.
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by the Baran laboratory20, what is essentially an aldol reaction—taught 
in first-year organic chemistry classes—proved to be the most chal-
lenging step.

The enolate-based installation of the hydroxymethyl group overcame 
the challenges of chemo- and regioselectivity. Over 1,000 experiments 
were carried out in order to optimize the reaction conditions, changing 
every conceivable variable possible; as a result, the optimized reaction 
has at least 16 conditions listed above the arrow. Conditions such as 
solvent and temperature changes and those used in workups are rarely 
considered in this context, but are essential for the successful repetition 
of the experiment. The desired product 2 was obtained with complete 
chemoselectivity, although the diastereoselectivity (2:1) and the yield 
(84%) remained intransigent to further improvement. Although far 
from optimal, the intermediate hydroxymethylketone 2 was processed 
onto maoecrystal V to provide sufficient material to answer the key 
biological questions presented by this molecule.

Different challenges prevail in the field of medicinal chemistry, 
in which molecules are designed to engage with increasingly more 
complex biological targets. Hundreds or thousands of molecules are 
required to advance from a hit compound to a drug candidate, and 
the synthetic route provides a platform from which to optimize for 
molecular function and explore biology. A consideration for any reac-
tion used in medicinal chemistry is its level of tolerance to the polar 
functional groups and nitrogen heteroatoms that are typically found in 
biologically active molecules. As artificial intelligence and big data are 
increasingly used in medicinal chemistry for compound prediction and 
prioritization, it will become even more important to make the right 
compound the first time21. It is clear that even for well-precedented 
reactions and obvious retrosynthetic disconnections (that is, breaking 
a molecule up into simpler starting materials), there are fundamen-
tal practical limitations when considering the conditions needed to  
make sufficient material for biological testing22. Even within the  
context of the late-stage functionalization of a drug-like molecule, 
the individual conditions in that single step can still profoundly affect 
selectivity23.

As with natural-product synthesis, process chemistry has often been 
described as an ‘art’24. Well-trained organic chemists read literature 
and generate the reaction sequence that in their best estimate meets 
their goals; however, these estimates are often biased by cultural- and 
company-based specific information on route selection, approaches to 
reject impurities, and the preparation of salts to improve the crystallin-
ity, solubility and stability of intermediates or the active pharmaceutical 
compound. Process chemists have developed an intuition as to how 
well a reaction is likely to scale to obtain a high yield, high concentra-
tion, and low catalyst loading with good impurity rejection, and this 
informs the choice of a synthesis. This informal knowledge, acquired 

over many years by real-world reinforcement, is rarely captured in any 
form besides institutional knowledge.

Additionally, only a few well-conceived ideas can currently be pur-
sued by process chemists in the laboratory. Commercial and regulatory 
pressures ensure that, among the range of potential routes identified 
early on, a single approach will be taken forward for validation and  
commercialization. These decisions are made largely with contradictory— 
or, at best, missing—data concerning the future potential efficiency of 
the route. This critical selection process is performed in the absence 
of quantitative efficiency data, and is often influenced by judgements 
on risk mitigation to product filing, or by broad assumptions around 
supply chain and tax and treasury. Although a considerable financial 
impact can be achieved by minimizing the costs of reagents and sol-
vents and by optimizing the conditions for small improvements in 
yield or product quality, this impact cannot overcome the selection of 
a suboptimal route. It is highly desirable to understand all of the viable 
options before beginning full-scale development25.

Further predictions of conditions that are not historically included 
above the arrow must be used to narrow the range of options for further 
exploration. In process chemistry, the crystallinity and solubility, phys-
ical attributes of crystallization kinetics, particle-size reduction, flow 
ability, and solid-state stability are all key to understanding chemical 
intermediates and pharmaceutical properties. Thus, machine-learning 
algorithms should ideally be tailored to different criteria than those in 
other areas of synthesis. We will need to advance our ability to predict 
the organic-solvent solubility, the crystal phase and the morphology 
of compounds if we are to develop viable options without a priori 
knowledge.

Emerging examples of innovation using enhanced data
The goal of building a synthesis machine that can provide high-quality 
reagents for biology—beyond peptides and oligonucleotides—has been 
championed as a way of freeing up chemists for creative thinking by 
removing the bottleneck of synthesis26. However, a general commod-
itization of synthetic medicinal chemistry is not likely to emerge until 
we have made these orders-of-magnitude improvements in above-the-
arrow prediction. Ultimately, machine learning will enable the field to 
predict individual conditions by moving along the spectrum of individ-
ual chemistry experiments, run one at a time, through large data assim-
ilation and then back to individual conditions. A chemist can then, 
with a high degree of confidence, guarantee that sufficient product will 
be obtained in a single experiment to test the function of a molecule.

Scientists at Merck recognized this problem and systematically 
built tools, using high-throughput experimentation and analysis, to 
address the gaps in data27. Using the ubiquitous palladium-catalysed 
Suzuki–Miyaura cross-coupling reaction as a test case, they developed  
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automation-friendly reactions that could operate at room temperature 
by using robotics employed in biotechnology coupled with emerging 
high-throughput analysis techniques. More than 1,500 chemistry 
experiments can be carried out in a day with this setup, using as little as 
0.02 mg of starting material per reaction. This has since been expanded 
to allow for the in situ analysis of structure–activity relationships (nano-
SAR)28. The authors note that, in the future, machine learning may 
aid the navigation of both reaction conditions and biological activity. 
Complementary approaches, such as inverse molecular design using 
machine learning, may also generate models for the rational design of 
prospective drugs29,30.

In order to reduce analysis time, ultra-high-throughput chemistry 
can be coupled to an advanced mass spectrometry method (such as 
matrix-assisted laser desorption ionization–time-of-flight spectrom-
etry; MALDI–TOF) to enable the classification of thousands of experi-
ments in minutes31. This classification approach may at first be slightly 
uncomfortable for synthetic chemists who hold stock in obtaining a 
hard yield, but it will surely become commonplace as more statistical 
methods and predictive models are deployed.

Machine learning has recently been used to predict the performance 
of a reaction on a given substrate in the widely used Buchwald–Hartwig 
C–N coupling reaction32. The Doyle laboratory used a robot-enabled 
simultaneous evaluation method with three 1,536-well plates that 
consisted of a full matrix of aryl halides, Buchwald ligands, bases and 
additives, giving a total of 4,608 reactions. The yields of these reactions 
were used as the model output and provided a clean, structured dataset 
containing substantially more reaction dimensions than have previ-
ously been examined with machine learning. Approximately 30% of 
the reactions failed to deliver any product, with the remainder spread 
relatively evenly over the range of non-zero yields. Using concepts 
popularized by the Sigman group33, scripts were built to compute and 
extract atomic, molecular and vibrational descriptors for the compo-
nents of the cross-coupling. Using these descriptors as inputs and reac-
tion yield as the output, a random forest algorithm was found to afford 
high predictive performance. This model was also successfully applied 
to sparse training sets and out-of-sample reaction outcome prediction, 
suggesting that a systematic reaction-profiling capability and machine 
learning will have general value for the survey and navigation of reac-
tion space for other reaction types.

It has been suggested by Chuang and Keiser that this experimen-
tal design failed classical controls in machine learning, as it cannot 
distinguish chemically trained models from those trained on random 
features34. As they noted, flexible and powerful machine-learning mod-
els have become widespread, and their use can become problematic 
without some understanding of the underlying theoretical frameworks 
behind the models. The ability to distinguish peculiarities of the layout 
of an experiment from those that extract meaningful and actionable 
patterns also need to developed. Regardless, it is clear that the approach 
taken by Doyle—publishing a complete dataset and aligned code on 
GitHub—enables a clear demonstration of the scientific method of test-
ing and generating hypotheses in independent laboratories.

The application of machine learning to the prediction of reactions 
has also been demonstrated for the conversion of alcohols to fluorides, 

the products of which are high-value targets in medicinal chemistry35 
(Fig. 2). In order to train a model for this reaction, descriptors for the 
substrates and reagents used in 640 screening reactions were tabulated. 
These included computed atomic and molecular properties as well as 
binary categorical identifiers (such as primary, secondary, cyclic). 
A random forest algorithm was used and was trained on 70% of the 
screening entries. The model was evaluated using a test set compris-
ing the remaining 192 reactions and was validated on five structurally 
different substrates from outside the training set. The yields of these 
reactions were predicted with reasonable accuracy, which is more than 
sufficient to enable synthetic chemists to evaluate the feasibility of a 
reaction and to select initial reaction conditions. In comparison to  
previous studies, this training set was 80% smaller, encompassed much 
broader substrate diversity and incorporated multiple mechanisms. 
The expansion of the training set for this deoxyfluorination reaction 
to include additional variables (that is, stoichiometry, concentration, 
solvent and temperature) could lead to more accurate and comprehen-
sive coverage of the complex reaction space.

Flow chemistry presents another opportunity for accelerated reaction 
development36. A recent publication by a Pfizer team37 demonstrated 
high-throughput reaction screening of the Suzuki–Miyaura coupling 
with multiple discrete (catalyst, ligand and base) and continuous (tem-
perature, residence time and pressure) variables (5,760 reactions in 
total), overcoming a common problem in which limited amounts of 
material do not allow for the application of flow reaction screening 
in medicinal chemistry (Fig. 3a, b). Quinolines (3a–g) and indazole 
acids (4a–d) were used to validate the platform. In an important 
demonstration of the capability of the platform for the preparation of  
useful quantities of material, the team programmed the injection of 
100 consecutive segments based on optimal conditions from screening, 
enabling the preparation of approximately 100 mg of a target molecule 
per hour.

The Jamison and Jensen groups have described an automated flow-
based platform38 to optimize above-the-arrow conditions to improve 
the yield, selectivity and reaction scope of a diverse range of reactions; 
this is typically a tedious and labour-intensive task in the laboratory. By 
using feedback from online analytics, the system converges on optimal 
conditions that can then be repeated or transferred with high fidelity as 
needed. These automated systems in academic laboratories may also 
play a part in the rapid collection of large, standardized datasets39.

Chemical synthesis may no longer be solely a human activity. In a 
recent study, the Cronin laboratory demonstrated that a robotic reaction- 
handling system controlled by a machine-learning algorithm might 
be able to explore organic reactions an order of magnitude faster than 
a manual process40. The robotic approach enabled the capture of  
information on failed or non-reactive experiments in a struc-
tured fashion, making it useful for reaction mapping. The powerful 
machine-learning algorithm was able to predict the reactivity of 1,000 
reaction combinations from the above Pfizer dataset (Fig. 4a), with 
greater than 80% accuracy, after considering the outcomes of around 
10% of the dataset.

In this machine-learning analysis of the Pfizer work, one-hot 
encoding of the reaction conditions—in which the variables were 
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assigned binary representations—and the clean standardized yield data  
were used to explore the prediction of yields by a neural network  
(catalyst loading and temperature were not included). In this approach, 
a random selection of 10% (n = 576) of the Suzuki–Miyaura reactions 
is used to train the neural net, and the remaining reactions are then 
scored by the model (Fig. 4b). The candidates with the highest pre-
dicted yield are then added to the performed reactions, and the per-
formance of the neural network is evaluated by calculating the mean 
of the true yield and the standard deviation of the yield. The neural 
network is then retrained, and the whole cycle is repeated until the 
entire space is explored in panels of 100 to demonstrate the alignment 
with the high-throughput experimentation as well as to evaluate the 
performance of the neural net. Such rapid evaluation is markedly ena-
bled by the publication of reliable clean data.

A common theme in these three machine-learning examples is that 
predictions can be made with relatively small datasets: in some cases, 
with only 10% of the total number of reactions it is possible to predict 
the outcomes of the remaining 90%, without the need to physically 
conduct the experiments (Fig. 4). The high-fidelity data can originate 

from ultra-high-throughput screening, from flow chemistry or from 
an individual scientist, but the most important feature is the contextu-
alized, internally consistent source that provides effective, secure and 
accurate data. This is important because it is currently not known how 
large these datasets need to be in order to predict across the molecules 
that represent drug-like space. Naturally, some reactivity trends may 
be reflective of how the individual experiments are conducted and 
not truly informative of a particular catalyst or ligand. A diagnostic 
approach using small libraries of curated drug-like molecules—known 
as ‘informer libraries’—has been presented as a way to better capture 
reaction scope and evolve synthetic models, but this should be viewed 
as an intermediary step as the field moves forward22.

There have also been important advances in predictive catalysis41,42. 
This is an exciting, emerging field that uses parameterization and analy-
sis of catalysts to enable the forecast of an attainable improvement—for 
example, the enantioselectivity of a transformation or improved turn-
over in a biocatalytic reaction43–45—to provide confidence for route 
selection. For example, in the synthesis of letermovir46, a series of new 
catalysts was identified that provided the desired product in improved 
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enantioselectivity and facilitated faster route optimization. The models 
are currently limited in scope, requiring a focused solvent screen on 
the best-performing catalysts, and process optimization had already 
taken place for the desired starting material. However, these models 
will greatly improve with the availability of enhanced datasets, which 
encompass a full range of activity from diverse sources47.

Extending these early successes to the prediction of the impurity 
profile of a reaction becomes especially difficult for catalysis, because 
many on-cycle and off-cycle events can markedly alter the optimum 
yield and because impurities do not always track with conversion. The 
current machine-learning systems do not yet take the mechanism of 
byproduct formation into account. However, process chemists will need 
information in order to predict and understand both the fate of impu-
rities formed during each step in the process and where impurities are 
removed in the overall sequence; this is necessary not only to improve 
performance but also, and often more importantly, to meet regulatory 
requirements. Almost all of this information currently resides with cor-
porations and is elusive internally and hidden externally. The messiness 
of data in our broad field of organic synthesis remains a challenge, and 
we should seek more engagement and demand more focused attention 
than we have in the past 50 years48.

Accelerating future innovation
There is a recent trend for organic chemists to publish ever larger 
numbers of examples in methodology papers. However, these reports 
remain focused on the knowledge and the dataset published in a journal 
article, which represents only a small portion of the raw data collected. 
These data have not yet been collected in a standardized manner, and 
highly complex substrates are often not included. In more general 
terms, in the 200-year history of organic synthesis, we have not yet 
developed methods to collect, clean and label data in a way that makes 
it useful for training in the context of new reaction optimization, espe-
cially in the areas of catalysis design and development. Existing datasets 
in the public or private domain have simply not been built with this 
in mind.

We have seen that large datasets or even ultra-high-throughput 
experimentation are not a prerequisite to machine learning. Biopharma 
deals with hundreds of millions of documents—including laboratory 
data and clinical trial reports, publications and patent filings, as well 
as billions of database records. Companies and not-for-profit alliances 
are working to provide solutions to data management. Despite the 
quantity of data, chemical structure information is essentially cap-
tured as an image in a book—it is essentially unusable, whereas above-
the-arrow and other data are currently considered out of scope and 
the vast amounts of historic data in paper and electronic notebooks 
remains orphaned. Consequently, to avoid repeating current synthetic 
methods in the field we need to embrace modern approaches and pay 
attention to future needs. This will avoid simply restating the master 
data problem. Metrics for similarity calculations49 use the fingerprints 
of molecules to compare how similar they are to each other and will 
ensure that we avoid bias introduced by human-curated examples for 
machine learning. We need our data to emerge beyond the positive 
results and the publication- or career-driven biases. A published data 
point should be one click away from raw experimental data, all the 
way from the weighing of materials to analytical data, enabled by the 
Internet of Things50.

Before we do that, we need to provide a framework in which to ena-
ble the collection and publication of new data as it is generated, much 
like the Bermuda Accord51. This established that all the DNA sequence 
information from large-scale human genomic projects should be freely 
available and in the public domain. With increasing exploration of new 
research areas that cross disciplines—for example, chemical biology 
or proteomics—it is becoming common for very different traditions 
towards data sharing to coexist in the same laboratory52. In the field of 
organic synthesis the intensity of the work, the amount of capital allo-
cation required and the degree of specialization in data rather than ‘art’ 
will lead to the creation of a new kind of chemist—one whose principal 

objective is the generation of high-quality datasets. These datasets will 
go on to be the foundation for a new partnership of hypothesis-driven 
and hypothesis-free discovery based on big data in chemistry53. This 
distinction exists today in biology as the number of data-generating 
projects advances, in which medical breakthroughs such as CRISPR 
often emerge from unpredictable origins. The field has adapted, and 
enables academic data-generating researchers to continue obtaining 
grant funding for their work as well as advancing their careers through 
publication and peer recognition. Governmental agencies and large 
independent global charities can clearly influence the funding of the 
new data-generation projects, science policy, intellectual property and 
regulation.

Synthetic chemistry has emerged relatively unscathed from the nar-
rative of poor reproducibility in science and has not yet faced a crisis 
of confidence54. There have been important calls regarding reproduci-
bility55 and the discussion will remain contemporary as it essential that 
the quality, reproducibility and traceability of the raw data and models. 
As in several of the machine-learning examples discussed above32,40, 
the availability of reliable data and the code enables others to verify and 
retest alternative hypotheses. This helps to demonstrate the effect of 
data that is findable, accessible, interoperable and reusuable (FAIR)56. 
For example, the Cronin group was able to rapidly model the data for 
the Suzuki–Miyaura reaction presented from the Pfizer flow platform40. 
As we report more complete datasets that include reactions that fail to 
give products in expected yield or quality, we need to be cautious. A 
failure may not represent a true reflection of the reactivity profile of a 
current method, and we need to ensure that it does not limit explora-
tion or utilization of a newly developed reaction. In the future, machine 
learning will therefore need to become a partner in order to elucidate 
reaction concepts, elusive high-value transformations and problems 
of which chemists are not currently aware (unknown unknowns), 
as well as to rapidly identify unanticipated observations or spare  
events.

It is exciting to consider the potential societal impact of innovations 
similar to AlphaGo Zero in the chemical space. Commercial software 
packages are emerging and, although it is clear that these approaches 
will advance in sophistication, it is not necessary for the end user to 
understand the underlying complexity as long as the answers satisfy 
their needs. Unlike in closed systems such as chess or Go, there are no 
clearly defined rules for winning, and explainable artificial intelligence 
will be an ongoing issue57,58. It remains to be seen whether the machines 
can become experts or merely expert tools.

Future advances in the digitization of chemistry will not come at an 
equal pace, and some areas of organic synthesis will be affected much 
sooner than others. Computing power is no longer a limitation, and 
there are much more sophisticated algorithms that can handle fuzzy 
datasets developing in fields that have more direct monetization. 
Although the technology is not yet reliable enough, it is clear that the 
field of synthesis and optimization in applications such as medicinal 
and process chemistry will become a more evidence-led practice. Some 
organic chemists will ignore the signals of this transformation, some 
will improve and make incremental progress, and some will be the 
innovators, embracing these tools to augment their scientific intuition 
and creativity.

Online content
Any methods, additional references, Nature Research reporting summaries, source 
data, statements of data availability and associated accession codes are available at 
https://doi.org/10.1038/s41586-019-1288-y.
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