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Taking connected mobile-health 
diagnostics of infectious diseases  
to the field
Christopher S. Wood1,2,3,4,11, Michael R. Thomas1,2,3,11, Jobie Budd5, Tivani P. Mashamba-Thompson6, Kobus Herbst7,  
Deenan Pillay7,8, Rosanna W. Peeling9, Anne M. Johnson10, Rachel A. McKendry5 & Molly M. Stevens1,2,3,4*

Mobile health, or ‘mHealth’, is the application of mobile devices, their components and related technologies to healthcare. 
It is already improving patients’ access to treatment and advice. Now, in combination with internet-connected diagnostic 
devices, it offers novel ways to diagnose, track and control infectious diseases and to improve the efficiency of the health 
system. Here we examine the promise of these technologies and discuss the challenges in realizing their potential to 
increase patients’ access to testing, aid in their treatment and improve the capability of public health authorities to 
monitor outbreaks, implement response strategies and assess the impact of interventions across the world.

R apid advances in portable communications 
technologies and digital computing have 
improved the speed and efficiency with which 

data can be processed and exchanged. In particular,  
the arrival of the smartphone and the networks 
needed to support it are rapidly reducing the costs of data acquisition 
and transfer worldwide. As of 2016, global smartphone adoption (the 
percentage of all mobile phone connections that come from a smart-
phone) has reached 51%1 and by 2020 in sub-Saharan Africa it is forecast 
to reach 55%2 (Fig. 1). This powerful pocket computer with built-in sen-
sors and wireless connectivity provides researchers and health systems 
with new opportunities to capture and handle data3. The adoption and 
capabilities of smartphones and their related technologies in resource-
rich settings and resource-limited settings are continually growing, with 
low-cost smartphones reducing the affordability barrier4 while offering 
sensing and processing capabilities similar to those of more costly ‘high-
end’ devices (Fig. 1).

The ways in which we detect and respond to disease are also con-
tinually improving. Step changes in the development of sensitive and  
specific immunological and molecular-based diagnostics as well as genetic 
sequencing have enabled the detection and staging of an increasing  
number of diseases. This has had a large influence on our ability to under-
stand the burden and transmission dynamics of infectious agents as well 
as to guide clinical decision making and control—no better illustrated 
than in the field of infectious diseases5–7. Recent advances in nano-
technology, microfluidics and microarray-based systems have brought 
closer than ever the realization of simple, yet highly sensitive and specific 
devices that can be used outside the laboratory. These areas of use are 
often described as at or near the ‘point of care’, which may be the patient’s 
own home, a primary care setting or at the patient’s bedside in a hospital. 
In pursuit of this, nucleic acid tests have been developed that require 
less than five minutes of hands-on time8 and deep sequencing is now 
possible on a small hand-held device9. These advances, combined with 

changing consumer attitudes towards self-testing, 
and an increased appetite for wearable biosensors, 
are enticing healthcare providers to shift towards the 
paradigm of ‘P4’ medicine: predictive, pre-emptive, 
personalized and participatory10.

These developments have occurred alongside the emergence of 
the field of mobile health (or ‘mHealth’, defined by the World Health 
Organisation as medical and public health practice supported by mobile 
devices11) and this has spurred the co-development of diagnostics and 
mobile devices to create connected diagnostics. mHealth interventions 
have been used to address a range of challenges in areas such as disease  
surveillance, health systems and health education12,13. The combina-
tion of these interventions (see below) with connected diagnostics will 
impact all areas of healthcare, including those related to infectious 
diseases.

Potential for infectious disease response
Diagnosis and monitoring of disease are key to clinical management. 
The control of infectious diseases represents a unique challenge 
because infections can be transmitted to others and thus require a 
focus on early detection and treatment, surveillance and outbreak  
control. Diagnostic and monitoring tools must therefore be integrated 
with effective surveillance and control measures to limit the spread of 
infection. mHealth approaches (Table 1) could improve the efficiency, 
speed and interconnectedness of an integrated clinical and public 
health response via two major mechanisms: (i) increased access to 
healthcare outside care settings (for example, by improved self-testing) 
and (ii) the real-time or nearly real-time reporting of diagnostic results 
to patients and healthcare professionals to elicit rapid and appropriate 
clinical and public health responses to both endemic infections and 
outbreaks of epidemic potential. So far, most mHealth interventions 
(see Box 1) have focused on the use of established mobile technologies 
(such as text messages and calls) to connect healthcare workers and 
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patients to each other and to test results14. Combining this with port-
able diagnostic devices that connect and report results automatically 
has the potential to streamline this process.

The global risk of antimicrobial-resistant infections is potentially 
catastrophic, demanding improved diagnostics to guide antimicrobial 
therapy15. Connected diagnostics that can simultaneously detect a path-
ogen and identify antimicrobial sensitivity and resistance can enable 
the selection of appropriate therapies while reporting the required data 
to surveillance centres. Likewise, for infections leading to chronicity, 
particularly those requiring long-term therapy, mHealth provides 
major opportunities for home- or community-based monitoring. In 
resource-limited settings, where health services may already be over-
whelmed, these approaches are particularly useful. Taking diagnostics 
outside formal health facilities and linking the output of testing into 
pathways of clinical and preventative care that can be delivered in the 
community could yield more cost-effective and user-friendly health-
care. In principle, these interventions will increase patient access to 
precision medicine, and in resource-rich settings connected health-
care systems (see Box 2) are beginning to be used to stratify individual 
patients into remote-treatment and response-monitoring programmes.

mHealth can also increase system efficiency, by reducing work-
load and errors associated with paper reporting and preventing 
stock-outs, through the increased automation of inventory and sup-
ply-chain management systems16. Additionally, phone-based decision 
trees can assist less-well-trained users in decision making and can be  
helpful in diagnosis, monitoring or for data-gathering more generally17. 
Furthermore, in disease surveillance, there is an urgent requirement to 
detect and intervene more rapidly in emerging epidemics (for example, 
Ebola or Zika), as well as for increased sentinel surveillance for existing 
ones18. The use of connected diagnostics and symptom-reporting apps, 
combined with standardized electronic collection of epidemiological 
and clinical data, has great potential to enhance the efficiency and speed 
of management of both epidemic and endemic infections, including the 
management of contacts where appropriate19. The real-time reporting  
of diagnostic test results can enable this surveillance through the  
geospatial mapping of infections via geotagged test results20 or social  
network and internet search analysis, providing new tools for assimi-
lation into outbreak control21,22.

As an example, the burden of HIV in sub-Saharan Africa remains 
unacceptably high. In areas such as KwaZulu-Natal in South Africa, 
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Fig. 1 | The growing power of low-cost smartphones. Smartphone 
adoption (the percentage of global (red) or sub-Saharan Africa (blue) 
mobile phone connections that come from a smartphone), processor 
speed (CPU clock frequency) and camera resolution (primary camera 
megapixels) of the flagship models of popular smartphone manufacturers. 
The stated processor speed takes into account multiple processor cores 
at a parallelization of 50%. ‘High-end’ models retail for €610–€1,000, 

whereas ‘low-cost’ models retail for €60–€160. In order to plot this 
figure we obtained smartphone adoption data from https://www.
gsma.com/mobileeconomy and all smartphone specifications from 
http://gsmarena.com/. For details on how we generated the graph 
see Supplementary Information section A. Raw and intermediate data can 
be found in Supplementary Tables 1 and 2 and at http://doi.org/10.5281/
zenodo.1320937.

Table 1 | mHealth opportunities in infectious disease diagnosis, treatment and control
Area Function mHealth opportunities

Outbreak identification Novel outbreak monitoring Electronic collection of epidemiological and clinical data

Diagnosis Community or self-testing Early detection, automated result capture and analysis

Disease characterization Portable genetic sequencing of samples (for example, to identify emerging drug  
resistance)

Syndromic surveillance Multi-source data capture and passive reporting (for example, activity levels and  
location history)

Treatment and patient management Linkage to clinical care Mobile connection to clinical care (decision trees, electronic prescribing)

More efficient and effective use 
of stakeholder time

Automated report generation and supply chain management, fewer transcription errors 
in reporting

Chronic infection monitoring 
and response to therapy

Long-term biomarker reporting and analysis to guide community-based medication  
and care

Disease control and elimination Cluster ‘hot spot’ identification Rapid geospatial and phylogenetic mapping

Outbreak response Real-time reporting to public health agencies to implement control strategies via  
connected clinical and public health systems

Epidemic control Social media queries capture and mapping during outbreaks

Electronic implementation of control measures

Data visualization for epidemiological and clinical mapping, contact management and 
monitoring the effectiveness of interventions

Targeted information dissemination
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HIV prevalence in the population reaches over 30% overall, and is 
higher in women23. This is despite a public health approach to HIV 
testing and anti-retroviral treatment for all. Reasons for the continu-
ing high rate of new infections are manifold. The high level of associ-
ated stigma leads to poor rates of testing, as well as poor attendance at  
treatment clinics. High population mobility impedes chronic disease 
care, as well as being a risk for infection. In this context, there is a 
need for a precision public health approach to HIV care24. mHealth  
provides the ideal framework in which to achieve this through targeted  
behavioural change (via interactive apps), care roadmaps (whether 
community-based or in the clinic) and connected diagnostic  
monitoring (HIV testing and viral load monitoring). Some examples of 
this are emerging. The HIVSmart! app25 has been developed from the 
internet-based form described in Box 1 to work with HIV rapid diag-
nostic tests (RDTs) to support patient linkage to care and retention in 
care worldwide. Now further work is needed to fully develop these and 
other such interventions and to overcome the challenges of integrating 
connected diagnostics with them.

Challenges of delivery
Despite the potential benefits and numerous connectable diagnostic 
devices being reported, as far as we are aware, an mHealth intervention  
featuring a connected diagnostic linked to a clinical care pathway and/
or surveillance system for an infectious disease has yet to be deployed. 
To fully implement such an intervention, systems must be in place for 
the secure transfer, analysis (either in situ or remotely) and storage  
of the data generated. Once analysed, any relevant decisions or  
conclusions derived from the data must be reported to and acted upon 
by either the patient, healthcare professional or relevant institution 
along with linkage to a suitable care pathway (Fig. 2). These stages and 
their challenges will be discussed further below, but all have a bearing 
on how such a device and intervention is developed, regulated and 
deployed. Moreover, the potential for the misuse of confidential health 
and personal data requires that, to be acceptable and effective, mHealth 
approaches must be underpinned by the highest level of community 
and patient confidence and by well-regulated clinical pathways.

Target identification and sample acquisition
The identification of relevant diagnostic targets for infectious diseases 
and development of testing technologies aimed at distinguishing the 

pathogen or host response to the pathogen from commensal infections 
or non-specific immune responses is a well-established field26. Targets 
should be selected both by their capacity for disease identification 
and their suitability for use at the point of care. This requires careful 
consideration of what the true requirements and limitations are in each 
setting. What is needed for self-testing at home often differs from what 
is needed within a clinical setting. The challenges of sample acquisition 
and processing that are met with ease in a primary care facility are con-
siderably harder to meet in the field or at home. For example, sampling 
using a venous draw requires more specialized equipment and expertise 
for effective and safe acquisition than a finger-prick blood sample, urine 
or a swab (although these too can be challenging for untrained users)27. 
Some assay systems based on plasma will require a blood centrifugation 
step before testing and swabs or urine samples require pre-processing. 
Ensuring the simplicity of sample processing in the test is key. The 
development of paper-based centrifugation systems is promising in this 
respect28 and controlling the tests via a mobile phone has the potential 
to help further by reducing the training needed to perform and inter-
pret the test. This can be achieved by displaying step-by-step guides or 
via automated steps previously performed by the user.

Connected point-of-care diagnostic technologies
The World Health Organization’s ASSURED29 criteria defines the para-
digm of an ideal point-of-care diagnostic and key design principles are 
extensively discussed elsewhere27,30. A connected device has an addi-
tional requirement whereby the signal generated must be transduced 
into digital information ready for transmission. Systems for this have 
been developed31 and these technologies are increasingly being used to 
create connected point-of-care diagnostics, with a number of excellent 
recent reviews on the subject32–34. These systems either capitalize on 
the sensors already built into the phone or use sensors external to the 
phone and exploit its computational and connective power to create a 
connected diagnostic (Fig. 3).

In principle, a mobile phone camera can take the place of advanced 
laboratory-based spectrometers and match their quantitation and  
multiplexing capability35–37 via innovative engineering. These efforts 
are acting to democratize access to otherwise costly laboratory equip-
ment and to reduce the training needed to interpret test results, for 
example, via automated RDT measurements (Box 3). This approach 
capitalizes on mobile phone imaging38 or video capture39 to enable the 
quantitative40 assessment of results with the potential for geotagging41 
and rapid transmission of results to healthcare systems42. Similarly,  

Box 1 
An mHealth approach to HIV 
self-testing
Studies are increasingly demonstrating the feasibility of self-
testing at large scale in resource-limited settings. Choko et al.94 
demonstrated that HIV self-testing is safe, accurate and acceptable 
to over 76.5% of the 16,600 residents contacted from 14 urban 
neighbourhoods in Malawi. However, as they94 and others95 
mention, linkage to care remains an issue. mHealth can address 
this. Pai et al.96 have conducted a small-scale study estimating the 
feasibility of HIV self-testing and remote follow-up in South Africa, 
in which participants performed an HIV RDT themselves and were 
then linked to counselling and treatment. Although the test was 
not connected, mobile phone calls, internet and text messages 
enabled post-test linkage to care. Results for the 251 healthcare 
workers at the Groote Schuur hospital in Cape Town showed a high 
completion rate of 99.2% with a 100% acceptance rate of post-test 
counselling and referral by mobile phone for those identified as 
sero-positive (9 patients). This linkage to counselling and advice for 
patients testing positive was substantially higher than the 56.3% 
reported in Malawi. However, larger-scale and longer-term studies 
that demonstrate cost-effective integration into a healthcare 
system are needed84.

Box 2 
eSexual Health Clinic
The eSexual Health Clinic97 demonstrates the viability and 
acceptability of online clinical and public health interventions for 
infectious disease. In this UK study, the first demonstrating a fully 
developed online diagnosis, care and prevention programme, 
patients with chlamydia were diagnosed and medically managed 
via an online clinical consultation. 2,340 patients were texted a 
link to access their results online along with, if applicable, links 
that led to antibiotic collection from a pharmacy. Discreet partner 
notification, health promotion and automated surveillance data 
capture were also integrated into the system to aid prevention for 
this infection, which is asymptomatic, sexually transmitted and 
potentially stigmatized. Although this study relied on a self-swab or 
urine sample which was posted to a central laboratory for testing 
or attendance at a genitourinary medicine clinic, there is clearly 
potential for this to be replaced by a connected diagnostic test that 
automatically links to results. This would act to improve ease of 
use, time to results and to facilitate remote testing and acquisition 
of treatment, advice and follow-up outside of conventional 
healthcare systems.
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mobile-phone-based microscopy43 is now gaining traction in the detec-
tion of microscopic parasitic infections44, and is rapidly approaching 
the standard of laboratory-based microscopes with a substantially 
reduced upfront cost. Mobile-phone-based microscopy is even yielding  
portable, handheld routes towards fluorescent imaging of viruses45 and 
DNA molecules46.

Other sensors found in mobile phones have also been explored in a 
broader context, including the accelerometer for monitoring the body’s 
motion, which correlates with certain diseases such as Parkinson’s47, 
and the microphone, which can be used to monitor lung function48. 
Ecological mapping of mosquitoes is possible using the microphone49, 
highlighting the broader potential of smartphones to aid disease  
prevention. Mobile phones and smart watches are now actively embrac-
ing mHealth, with purpose-driven sensors such as heart-rate sensors 
being built into the back of the device50. Manufacturers continue to 
add new sensors and imaging functionalities into the latest handsets.  
The potential diagnostic applications made possible by these remains 
to be seen; however, three-dimensional sensors such as the infrared 
depth sensor system found in the iPhone X may assist remote visual 
diagnosis.

External sensors can be engineered around any suitable biosensor 
or signal transduction system and connected to share data via mobile 
networks. Importantly, this can avoid the problem of interoperability 
between different phones and operating systems and reduces device 
or component heterogeneity, which could otherwise hamper approval 
by regulators. For example, dedicated photodiodes or CMOS chips 
built into an external device along with a defined excitation source 
can yield controlled light environments for microscopy51,52 and 
sensing53.

Once these external sensors are built into a device, they must then 
transfer the data generated. Many manufacturers have begun to 
integrate internet connectivity directly into their laboratory-based 
diagnostic equipment, giving users faster access to results and facile 
integration into laboratory information management systems. As these 
connected instruments decrease in size, such devices are increasingly 
being deployed at or near to the point of care and have recently been 
deployed in response to the recent Ebola54 epidemics.

For more portable systems, other sensors can also be used. Biosensors 
that incorporate electrochemical transduction55 are eminently suited 
to digital interpretation and connection and many connected electro-
chemical biosensors have been developed56. Such sensors can offer 
less invasive sample acquisition methods, with some incorporated 
into wearable sensors held near the skin57,58 or used to analyse volatile 

organic compounds in a patient’s breath59. Other signal transduction 
methods including micro-cantilevers and surface acoustic wave detec-
tion60 offer the potential of ultra-rapid testing within ten seconds61.

The advent of nanopore-based sequencing62 has allowed devices 
that can sequence DNA to be miniaturized to the size of a USB stick, 
offering the possibility of full genomic disease profiling in a handheld 
device9. However, this technology is still limited for use as a point-
of-care diagnostic, in part by the need to perform multistep sample 
preparations unsuited to the untrained user, and because methods for 
securely handling, analysing and interpreting the data generated are 
still in their infancy63. This problem is common to all connected diag-
nostics, but it is especially acute for the large amounts of genomic data 
generated by sequencing devices.

Data analysis on-phone and on-cloud
Automated result analysis has the potential to reduce both trained and 
untrained user error when interpreting, recording and transmitting 
results of diagnostic tests. There are a number of methods to automate 
the visual interpretation of images and their suitability depends on 
the type of data captured, as well as the resources available in a given 
setting.

Mobile
network

Mobile health ‘mHealth’Connected diagnostics

Data storage
and retrieval

Public health system
• Targeted information dissemination
• Data visualization and clinical mapping

 

Sample
• Step-by-step guides and

automated sample acquisition

Diagnostic device
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Fig. 2 | Deploying an mHealth connected diagnostic. The stages, stakeholders and possible outcomes of deploying an effective mHealth intervention 
that uses a connected diagnostic device.
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Fig. 3 | Diagnosis by device. A connected diagnostic test can be used to 
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either built into or external to the phone.
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Cloud-based methods are most appropriate for more computation-
ally expensive analysis, such as high-resolution image or video data, 
in settings where there is sufficient connectivity. Where connectivity 
is low, on-phone feature extraction that reduces the size of the images 
before their transmission and cloud-based interpretation can mitigate 
this problem64. Cloud-based systems enable connectivity to databases 
and allow algorithms to be updated centrally. They also remove the 
processing burden from mobile devices, increasing the range of com-
patible devices. Systems have been developed that enable hands-free 
automated analysis of HIV RDTs using Google Glass, which can send 
image data to a remote server65. In that case, a machine-learning algo-
rithm qualitatively classified the RDT before the result was sent back 
and displayed to the user.

On-phone analysis is more appropriate where less complex analysis is 
required or in remote settings with limited mobile network connectivity 
and bandwidth. On-phone image and video analysis has been used to 
detect the fluorescent products of microfluidic nucleic acid amplifica-
tion66 and in cell67 and parasite68 counting. This can reduce the amount 
of data that needs to be transmitted and can aid its asynchronous trans-
mission where the results are stored on-phone and uploaded once in 
range of mobile networks. On-phone storage, however, poses its own 
security risks, such as the loss or malfunction of the device. On-phone 
analysis is further enabled by the growing capability of mobile pro-
cessing hardware (Fig. 1). The introduction of dedicated neural- 
processing units and software frameworks for on-phone machine  
learning allow increasingly efficient and nuanced image classification69 
and may improve automated inference when using defective equip-
ment, or in poor lighting conditions70.

Data connectivity to health systems
Optimally used mHealth applications have the potential to become the 
largest source of health data, for use in research and health improve-
ment interventions71,72. However, unlike clinic-based services, where 
health information from diagnostic testing is currently acquired and 
stored in laboratory systems that are secure, the data collected from 

individual mHealth devices may not be securely stored or easily shared 
across multiple mHealth applications and connected to electronic 
health records73. Data sharing has been associated with contextual74 
and ethical75 challenges including a lack of standardized data security 
to ensure privacy. Ways to improve health data sharing and connectivity  
and to develop a consensus on data governance are needed76. Broad 
regulations such as the EU’s General Data Protection Regulation 
(GDPR) are beginning to address this, but more tailored approaches 
such as the voluntary code of conduct on privacy for mHealth apps77 
are needed. Moreover, recent ethics studies78 have highlighted the need 
for users to understand and consent to all aspects of how their data 
will be used.

Modular platforms to share information, to standardize and coordi-
nate data collection, and to improve mHealth device connectivity are 
currently under development73. However, these platforms, such as the 
Fast Healthcare Interoperability Resources (FHIR)79, will still require 
stakeholder collaboration and substantial standardization of the inter-
faces between the hardware and software components in an mHealth 
system if they are to be put in place.

Challenges in mHealth diagnostic adoption
Regulation
In the past decade, regulatory development has not kept pace with tech-
nological innovation. Regulatory authorities, such as the US Food and 
Drug Administration and the UK Medicines and Healthcare Products 
Regulatory Agency, have taken a cautious risk-based approach to the 
regulation of mobile medical applications. Both these institutions are 
watching closely while exercising their ‘enforcement discretion’ towards 
the approval of medical devices (such as smart watches that include 
heart-rate monitors) that pose a minimal risk to patients and consumers.  
This rapidly evolving field, however, requires both the development of 
regulatory frameworks that consider the wide array of medical apps 
that are emerging and regulatory harmonization among different  
regulatory authorities to avoid the development of regulations that 
become barriers or disincentives to innovation.

Other challenges arise from the hardware itself. If the test is designed 
to be used with a range of mobile phones, then their variability in both 
hardware and software presents challenges for assessing risk in the 
regulatory review process. This uncertainty is pushing companies to 
either develop standalone devices with defined components or ship 
a standardized mobile phone with the diagnostic test while carefully 
controlling the software environment—a limitation as both approaches 
increase cost.

Finally, the clinical governance of mHealth-based care pathways 
must be considered. Here a patient may not see a clinician face-to-face  
and clinical records may be collected remotely via standardized 
questionnaire. Electronic clinical pathways can include a range of 
linked practitioners including doctors, nurses, pharmacists and 
other healthcare workers, and the pathway must allow escalation to  
face-to-face care and referral when needed. To ensure this happens 
when necessary, appropriate quality assurance of the clinical decision 
trees, care pathways and remote prescribing decisions is required, as 
well as the development of a secure and user-friendly interface for 
remote use80.

Cost and clinical effectiveness
The decision to use an mHealth-connected diagnostic and how best 
to integrate it into an existing health system requires evidence of its 
clinical effectiveness and resulting cost effectiveness, with particular 
scrutiny on the context in which it is to be used81 and how its imple-
mentation would function at scale. The cost and clinical effectiveness 
of point-of-care diagnostics82 and some mHealth strategies83,84 in  
infectious disease control have been assessed. However, a connected 
diagnostic and its associated mHealth intervention have yet to be  
analysed.

The difficulty of such an analysis lies in the complexity of the  
system: an intervention and its connected diagnostic may involve a 

Box 3 
Mobile-phone-based rapid  
diagnostic test readers
Dell et al.98 have developed GSID99, an open-source mobile-phone-
based system for the capture, transmission and on-device analysis 
of images of RDTs. Comprising a reader, an app and a central, 
web-accessible database, GSID has been applied to the rapid 
diagnosis of malaria in five hospitals and clinics in Zimbabwe. User 
feedback was positive, with the healthcare workers even suggesting 
extending the range of data that could be input into the app to 
reduce the burden of reporting case notes. An analysis of the 
frequency and delay in test data transmission revealed that  
on-device analysis and asynchronous data transfer is needed in 
areas with poor infrastructure.

Going beyond the capture and transmission of results, the 
performance of RDT readers is such that they can be used to 
support and even improve the training of healthcare workers, as 
shown recently by Laktabai et al.100 for the diagnosis of malaria 
in Kenya. Furthermore, Brangel et al.41 have recently developed 
a smartphone app and RDTs to detect patients’ antibodies to 
different Ebola subtypes in serum. The app analysed and geotagged 
captured images of the RDT’s test line(s) and could generate a 
map of test results indicating the survivors’ serological state. This 
prototype has been evaluated in laboratory settings only but has 
the potential to help with survivor identification in clinics and the 
epidemiological study of neglected tropical disease, and it may 
enable faster and cheaper evaluation of vaccine effectiveness under 
outbreak conditions, especially in remote areas.
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set of mutually dependent interactions. For a full assessment of such 
a connected ecosystem many aspects must be considered. Health 
economic analyses are warranted85 to demonstrate value from the 
increased connectivity made possible through the connected diag-
nostics (which may not necessarily be cheaper) and how these can be 
used as part of broader mHealth interventions. These evaluations need 
to account for the benefit and potential risk to patients, healthcare 
professionals and systems in terms of clinical and social outcomes 
(for example, time saved or speed of access). Only once all of this has 
been demonstrated can larger-scale studies assess the impact of the 
associated increased testing and data generated on national healthcare 
systems.

Digital divide
mHealth technologies have the potential to widen access to testing for 
many health conditions, and it is important to ensure that no one is 
left behind. Although trends are narrowing, today 35% of the world’s 
population do not have access to mobile communications. This is  
predominantly because of lack of access in low- and middle-income 
countries1, although those of lower socio-economic status in resource-
rich settings are also affected. Moreover, while the developed world 
awaits the roll-out of high-speed 5G networks, many of the least- 
developed countries in the world rely on 2G, and many of the remote 
and poor regions have no mobile phone coverage at all. To illustrate 
this, we have mapped network coverage and distance to healthcare facil-
ities in Uganda, which is one of the three sub-Saharan African nations 
with publicly available datasets for these factors. We have collated  
data on healthcare facility location and cell tower location, range and 
generation, and correlated these to population density (Fig. 4). Here 
22% of the population do not live within 5 km of a healthcare facility 
(a target set by the Ugandan government86). Of this remote 22%, 45% 
live in range of 3G cell towers, 23% live in range of 2G cell towers, 
but 32% are outside the range of cellular networks. Moreover, being 
in range of a cell tower does not necessarily indicate a good signal, 
and other factors, such as power supply interruption, may affect con-
nectivity. Asynchronous data transfer may overcome this problem 
when reporting results, but further mHealth interventions, such as 
linkage to care, could be severely restricted. Compounding this are the 
considerable variations in digital literacy related to socio-economic 
position and education, which mean that disadvantaged groups in 
the greatest need of a service are the most likely to be excluded from 
obtaining it.

In this digital era, age and gender gaps are of concern—it has been 
estimated that 200 million fewer women than men own a mobile phone 
in low- and middle-income countries and that even when they do, 
they are less likely to use it for services, such as mobile internet, that 
could improve their health87. The Pew Research Centre has shown huge 
age disparities in smartphone ownership: for example 94% of Chinese  
people aged between 18 and 35 own a smartphone, compared to 30% of 
people aged 50 and over88. Trend analysis suggests that these gaps are 
narrowing, but more needs to be done to ensure that mHealth devices 
are made available to all, especially considering the unmet health needs 
in women and the elderly.

Conclusion and perspectives
The convergence of infectious disease diagnostics with mobile-phone-
based connectivity provides opportunities to deliver potentially disrup-
tive technologies to drive the development of health systems. These 
should increase access to testing, diagnosis and treatment of infectious 
diseases, while improving outbreak detection, disease surveillance and 
guiding a precision public health response. With these technologies 
the potential for public participation is considerable, either through 
engagement in outbreak detection through crowd-sourced or ‘citizen 
science’ initiatives or via targeted prevention messaging so that individ-
uals and communities can access digital care pathways for an integrated 
clinical and public health system of detection, care and disease control.

To realize these benefits, the development of connected diagnostics 
must be undertaken with an understanding of the context in which they 
are to be used so that they feed seamlessly into their associated mHealth 
systems. Those introduced in a resource-rich setting may be different 
and need a different surrounding technical ecosystem from those to be 
used in a resource-limited setting. Consumer demand in resource-rich 
settings may drive the commercial development of these devices in the 
near term, but they have the potential to transform care in all economic 
settings if appropriately tailored to local needs. To do this, investment 
needs to be directed towards the development of appropriate devices 
and systems in all socio-economic settings and towards addressing the 
digital divide.

In addition to this, if we are to harness the promise of mHealth 
interventions that use a connected diagnostic, the intervention must 
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Fig. 4 | The digital and healthcare divide in Uganda. Map of healthcare 
facilities (in 2012)90 and the population density (in 2015)91 living more 
than 5 km from healthcare facilities. Areas and healthcare facilities are 
coloured according to the generation (2G to 4G) of the cellular network 
in range, where the range is calculated from cell tower location and the 
distance of the furthest measured signal92 within the Uganda national 
boundary93. The white circles around the health facilities indicate the 
5-km-radius threshold. This figure is a remapping of publicly available 
data using the open source geographical information system application 
QGIS (https://www.qgis.org). We chose Uganda as an example 
country owing to the availability of the required data. We downloaded 
healthcare facility locations and ranges from http://maps.data.ug/layers/
geonode%3Ahealth_centres_ubos_and_others_merged, cell tower 
location from https://opencellid.org/ (OpenCelliD Project is licensed 
under a Creative Commons Attribution-ShareAlike 4.0 International 
License), and population data from http://www.worldpop.org.uk/data/
summary/?doi=10.5258/SOTON/WP00283 (WorldPop datasets are 
available under the Creative Commons Attribution 4.0 International 
License). For details on how we generated this graph see Supplementary 
Information section B. Raw and intermediate data can be found in 
Supplementary Table 3 and at http://doi.org/10.5281/zenodo.1320937.
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be designed with a patient-centred focus that improves access and early 
intervention while reducing the burden on patient time and resources. 
This must be achieved while ensuring that overstretched health systems 
benefit, by driving more effective and efficient care and linked public 
health responses.

Automated or mobile-assisted self-testing with connected, efficient 
linkage to care is an exciting goal and the studies highlighted in Boxes 1 
to 3 describe the elements of such systems. However, they have not 
yet been fully integrated and deployed, nor has their effectiveness 
been assessed at scale. For this to occur, the regulation and governance  
of mHealth devices, interventions and applications must address  
the challenges of testing, digital access, data security and clinical  
governance. Without this, user and institutional adoption and public 
confidence will be limited by a lack of trust.

The future of diagnostics is likely to be increasingly digital and 
connected, accelerating changes in the way healthcare is provided. 
Researchers and policy makers now have an exciting and challenging  
opportunity to use them to transform and improve healthcare 
systems89.

Data availability
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