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Determining the right dose for drugs used to treat neonates 
is critically important. Neonates have significant differences in 
physiology affecting drug absorption, distribution, metabo-
lism, and elimination that make extrapolating dosages from 
adults and older children inappropriate. In spite of recent 
legislative efforts requiring drug studies in this population, 
most drugs given to neonates remain insufficiently studied. 
Many ethical and logistical concerns make designing studies 
in this age group difficult. Fortunately, specialized analytical 
techniques, such as the use of dried blood spots, scavenged 
sampling, population pharmacokinetics analyses, and sparse 
sampling, have helped investigators better define doses that 
maximize efficacy and safety. Through the use of these meth-
ods, successful clinical trials have resulted in recent changes to 
drug dosing in this population.

A critical goal of drug development is getting the dose right. 
Under-dosing can result in a lack of efficacy, and overdos-

ing can result in adverse effects. Most drugs given to neonates 
have not been sufficiently studied in this population and are 
often dosed based on information extrapolated from adults or 
older children (1). This approach to drug dosing is subject to 
error. The neonatal period is a time of incredible physiological 
change leading to unpredictable responses to doses of drugs 
deemed safe and efficacious in adults (2). Rapid developmen-
tal changes in neonatal organ systems influence pharmaco-
logic safety and efficacy due to changes in the way drugs are 
absorbed, distributed, metabolized, and eliminated.

The need for determining the correct drug doses for chil-
dren is becoming increasingly recognized. In the United States, 
several legislative efforts have addressed the lack of pediatric 
drug studies, including the Food and Drug Administration 
Modernization Act (1997), Best Pharmaceuticals for Children 
Act (2002), Pediatric Research Equity Act (2003), the Food 
and Drug Administration Amendments Act (2007), and the 
Food and Drug Administration Safety and Innovation Act 
(2012) (3,4). While these efforts have greatly improved label-
ing of drugs in older children, neonates remain understud-
ied. Between 1997 and 2010, 406 labeling changes resulted 
from this legislation; however, only 24 (6%) labeling changes 

included neonates (5). Clinicians continue to lack access to 
data on neonatal drug safety, efficacy, and pharmacokinet-
ics. Almost all patients in the neonatal intensive care unit are 
exposed to at least 1 off-label, unapproved, or extemporane-
ously prepared drug (1).

Contributing to this problem is the fact that clinical trials are 
difficult to conduct in neonates. Challenges in designing neo-
natal studies range from the ethical to the logistical (3). Several 
research and analytical techniques have been developed to 
address the current barriers to conducting neonatal drug stud-
ies. Through use of these techniques, a number of antimicrobi-
als have been successfully studied, resulting in improvements 
in dosing in this population.

UNIQUE PHYSIOLOGY IN NEONATES
Compared with older children and adults, neonates have sig-
nificant differences in physiology affecting drug absorption, 
distribution, metabolism, and elimination. Disease, critical 
illness, specialized therapies, and developmental changes 
in the expression of organ-specific drug transporters may 
further contribute to these differences (6–8). Differences 
in neonatal physiology can also affect pharmacodynamics, 
resulting in differences in the expected potency, efficacy, or 
toxicity of drugs (9).

Drug Absorption
Drug absorption in neonates is largely affected by the matura-
tion process of organ systems. Characteristics of the neonatal 
gastrointestinal tract that affect absorption of orally adminis-
tered drugs include increased gastric pH, decreased intestinal 
motility, delayed gastric emptying time, and a reduction in bile 
acid synthesis (2,10–12).

Characteristics of neonatal skin that lead to increased 
absorption of drugs administered transdermally include a 
thinner stratum corneum, increased skin perfusion secondary 
to immature vasomotor control, increased water content, and 
higher body surface area-to-weight ratio (2,12,13). These dif-
ferences are most pronounced at the extreme of prematurity. 
In premature neonates, pharmacologic predictions based on 
the condition of the stratum corneum at birth may be inac-
curate by 1 wk of life due to rapid postnatal maturation (14).
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Characteristics that affect intramuscular absorption in 

neonates include decreased muscle mass, reduced overall 
muscular perfusion, and decreased contractility (2,10,12,15). 
Additionally, intramuscular drug absorption in neonates can 
vary depending on the physiochemical properties of the drug, 
such as pH, molecular weight, solubility, ester salt formulation, 
or dissolution rates (2,12). Reduction in muscle perfusion due 
to hypotension, sepsis, or decreased cardiac output can lead 
to reduced absorption and unpredictable pharmacokinetics of 
drugs administered intramuscularly (11). Decreased muscle 
contractility in neonates can result in slower rates of intramus-
cular drug absorption and lower peak serum concentrations 
(16). Water soluble drugs tend to have greater intramuscular 
absorption in neonates than children or adults due to higher 
muscular water content and increased density of skeletal mus-
cle capillaries in neonates (2,10,16).

Rectal absorption of drugs is generally increased in the neo-
nate compared with children and adults (10,15). However, vari-
ability in the depth of insertion or retention of drug in the rectal 
vault can lead to variability in absorption (13). Drugs absorbed 
deep inside the rectum undergo first-pass metabolism by 
accessing the liver through the superior rectal veins whereas 
drugs inserted more shallowly will enter the systemic circula-
tion directly through the inferior and middle rectal veins (17).

Drug Distribution
Compared with children and adults, neonates have higher vol-
umes of extracellular fluid and total body water, lower propor-
tions of adipose tissue, and decreased muscle mass (2,18,19). 
Premature neonates have lower fat and higher water content 
than term neonates (11,19). Initial resorption of fetal lung fluid 
can result in expansion of extracellular volume during the first 
few days of life with a robust diuresis and concomitant natri-
uresis occurring afterwards (20). The presence of a patent duc-
tus arteriosus, renal injury, or use of extracorporeal membrane 
oxygenation can result in increased volumes of distribution 
leading to lower peak serum drug concentrations (8,21).

Neonates have a decreased drug protein-binding affinity rel-
ative to children and adults. Only unbound drug travels across 
membranes, exerts biological effect, and is eliminated from 
the body. Theophylline exhibits decreased protein binding in 
premature neonates, so equivalent total plasma concentra-
tions will achieve higher unbound concentrations in neonates 
compared to adults (22). Consequently, efficacy and toxicity of 
theophylline can be achieved with lower total plasma concen-
trations in premature neonates.

Neonates have decreased plasma concentrations of albumin 
and α1-acid glycoprotein, resulting in increased plasma con-
centrations of unbound drug (2,10,11,19). At the time of birth, 
neonates have lower concentrations of α1-acid glycoprotein 
and albumin, which gradually increase to adult levels by 1 y of 
age (10,23). Elevated plasma levels of bilirubin can increase the 
concentration of unbound drug by displacing highly bound 
drugs from protein-binding sites (2).

Drug penetration into the neonatal central nervous system 
can also be different. Higher concentrations of drug in the brain 

are more likely in neonates than in children and adults due to 
decreased protein binding, a higher relative brain weight, and 
higher ratio of cerebral to systemic blood flow (24).

Blood is sequestered from the brain interstitial fluid and 
cerebrospinal fluid by the blood–brain and blood–cerebrospi-
nal fluid barriers, respectively (25). The blood–brain barrier is 
formed by the cerebral microvasculature endothelium, and the 
blood–cerebrospinal fluid barrier comprises the choroid plexus 
endothelium. These barriers are commonly believed to be 
immature and more permeable to drugs in neonates (2,10,18). 
However, intercellular tight junctions are fully functional at the 
age of viability and restrict passage of most compounds except 
for specific inorganic ions, solutes, and water (25,26).

The ontogeny of drug transporters at these interfaces can 
affect the distribution of drugs into the neonatal central ner-
vous system (27). In the blood–brain barrier of rats and 
nonhuman primates, the efflux transporter P-glycoprotein 
demonstrates increasing expression and activity with age, sug-
gesting that neonates may have higher brain drug concentra-
tions due to reduced outward drug transport (28).

Drug Metabolism and Elimination
Renal clearance of drugs increases with increasing gestational 
age, postnatal age, and body weight (7,18). Mechanisms of 
renal excretion affected by these factors are glomerular filtra-
tion (GFR), active tubular secretion, and tubular reabsorption.

GFR normalized to body surface area is lower in neonates 
compared with children and adults, with lowest values seen in 
the most premature neonates (10). Term neonates experience 
a rapid increase in GFR during the first 2 wk of life, followed by 
a steady rise to adult values by 6–12 mo of age (2). Premature 
infants demonstrate similar trends, with an initial rise in GFR 
that is less steep due to nephrogenesis not being complete until 
34 wk gestation (7,10,29). Reduced renal blood flow or renal 
damage from nephrotoxic drugs such as indomethacin or dis-
eases such as patent ductus arteriosus and perinatal asphyxia 
can result in lower GFR (7,8).

Active tubular secretion and tubular reabsorption are also 
immature at birth and are ~20–30% of adult values (10). 
Maturation of active tubular occurs gradually, reaching adult 
values by 7–12 mo of life (2,23). Maturation of tubular reab-
sorption continues slowly into adolescence, with the steep-
est rise occurring between 1 and 3 y of age (10). Elimination 
by these processes is dependent on renal blood flow, which 
increases over time with GFR (10). Reduced protein binding in 
neonates will increase the clearance of drugs by these renal pro-
cesses due to higher concentrations of unbound drug available.

The capacity for drug metabolism by the neonatal liver is 
affected by the ontogeny of many drug-metabolizing enzymes. 
Rates of hepatic drug metabolism generally correspond with 
the expression of these enzymes, which is typically low at birth 
and gradually increases over time (2,13,15,24,30–33). Neonates 
are often exposed to drugs affected by enzymes with these 
changes in expression (Table 1). Despite lower enzyme expres-
sion, reduced protein binding in neonates can sometimes lead 
to unexpectedly higher metabolic clearance of drugs such 
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as micafungin (34). Rates of change in the expression of an 
enzyme can vary significantly among individuals and do not 
always correlate with changes in other enzymes (31).

Diet and special therapies can also alter the metabolism of 
drugs given to the neonate. For example, formula-fed neo-
nates demonstrate quicker maturation and higher expression 
of CYP1A2 activity compared with breast-fed neonates (35). 
Neonates receiving therapeutic hypothermia for hypoxic–isch-
emic encephalopathy had decreased clearance and higher con-
centrations of morphine than normothermic neonates with 
hypoxic–ischemic encephalopathy, suggesting that lower body 
temperatures could impair enzyme activity (38).

Drug Transporters
Drug transporters are responsible for the cellular uptake and 
efflux of drugs within organ systems. Age-related differences 
in the expression of transporters have been demonstrated 
through in vitro and animal studies in the hepatic, intestinal, 
renal, and central nervous systems (6,28,39). However, data 
characterizing the impact of transporter ontogeny on human 
drug disposition are limited (7).

Developmental Pharmacodynamics
When at comparable drug exposures, neonates can respond 
differently than older populations due to immaturity of drug 
targets and receptors (9). Increased drug sensitivity and 
higher risk for toxicity may result. Because calcium stores in 
the neonatal heart are reduced compared with adults, neona-
tal cardiac contractility is more sensitive to administration 
of calcium (40). Calcium channel blocking agents are more 

likely to result in life-threatening bradycardia and hypoten-
sion in the neonate (40). Neonates may also be more sensitive 
to morphine than adults due to increased expression of the 
mu opioid receptor (9).

Immaturity of receptors can also result in decreased drug 
efficacy. Maturational changes in intestinal motilin receptors 
explain why erythromycin has minimal effect on intestinal 
motility in neonates <32 wk gestation (41). Organ immatu-
rity can also confer protection against toxicity. Observations 
in neonatal dogs and rats show decreased renal accumulation 
of gentamicin and reduced risk for nephrotoxicity than their 
adult counterparts (42). Tubular secretion of gentamicin is 
partly mediated by the organic cation transporter in the renal 
brush border, which does not fully mature in mice until 4 wk 
postnatal age (43,44).

CHALLENGES WITH NEONATAL DRUG STUDY DESIGN
Clinical trials in neonates, especially premature neonates, are 
difficult. Lack of expertise in neonatal pharmacology, difficulty 
in obtaining informed consent, concerns about exposing this 
vulnerable population to the risks associated with clinical tri-
als, low blood volumes, difficulty accurately measuring drug 
concentrations in small sample volumes, and lack of validated 
clinical end points are just a few examples of obstacles respon-
sible for the lack of clinical trials in this population (3,45).

One source of great difficulty in conducting neonatal phar-
macokinetic studies involves limitations on blood sampling. 
The World Health Organization recommends that a maximum 
limit of 3 ml/kg within 24 h be allowed for blood sampling in 
children involved in clinical research, with even lower limits 

Table 1.  Developmental expression of drug-metabolizing enzymes in the neonate

Enzyme (ref.) Example drugs Enzyme ontogeny

CYP1A1/2 (2,13,30,32,35) Caffeine Absent-to-low expression in the neonate; activity reaches 50% of adult values by 
1 y of age; formula-fed infants have faster maturation.

CYP2C19 (24,30) Phenobarbital, phenytoin, 
diazepam

Low expression from birth to 2 d of age with a rapid increase over 1 wk of age; adult 
levels reached by 2 y of age.

CYP2C9 (2,13,15,30) Phenobarbital, indomethacin, 
ibuprofen, phenytoin

Low activity through 2–4 wk of age; adult activity achieved by 1–6 mo of age; 
activity exceeds adult levels by 3–10 y and returns to adult levels by puberty.

CYP2D6 (13,15,30) Antiarrhythmic, β-antagonists Absent until 7 d of life and reaches 20% of adult levels at 1 mo of age; adult activity 
achieved by 3–5 y of age.

CYP2E1 (30,33) Acetaminophen Approximately 10% of adult activity in the newborn period; steadily increases to 
30% by 3–12 mo of age; reaches adult levels between 1–10 y of age.

CYP3A4 (13,15,30,32,35,36) Dexamethasone, diazepam, 
erythromycin, fentanyl, 
methadone, midazolam, 
nifedipine, sildenafil

Low expression at birth; increases to 30% adult levels by 1 mo of age; almost 
fivefold increase by 3 mo of age; full adult activity reached by 6 mo of age; formula-
fed infants may have faster maturation.

CYP3A7 (15,31,32) Retinoic acid Dominantly expressed enzyme in the CYP3A subfamily during the fetal period; 
activity begins to decrease after birth; disappears by 1–4 wk of age.

Flavin-containing 
monooxygenase 1 (30,31,37)

Voriconazole, ranitidine Highest levels during fetal period; suppression of expression can begin within 
days after birth; decrease in activity is not linked with increase in flavin-
containing monooxygenase 3; there may be a period with little flavin-containing 
monooxygenase activity.

Flavin-containing 
monooxygenase 3 (30,37)

Voriconazole, ranitidine Low or undetectable levels in neonates; detectable activity may not occur until 
1–2 y of age.

UGT2B7 (24,33) Morphine Present in fetal liver at 10–20% of adult levels; expression increases after birth; adult 
levels by 2–3 mo of age.
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advisable for critically ill subjects (46). For a 1,000 g neonate 
with a total blood volume of 90 ml, this equates to a maximum 
of 3 ml of blood allowed.

Other limitations include constraints around sampling tim-
ing and frequency. Acquisition of sample from central venous 
catheters used for drug administration is likely to result in 
inaccurate concentration measurements due to adherence of 
drug to the catheter, and repeated venipuncture and heel lanc-
ing are invasive and painful (47). Umbilical and peripheral 
arterial catheters can serve as an outstanding source of blood 
sampling in neonates who have them. However, prolonged 
use of these catheters places neonates at risk for complications 
such as infection, thromboembolism, and ischemic injury to 
distal appendages (48). Several strategies reducing the num-
ber of samples and the volume of blood needed per sample 
are currently being used to aid in the successful completion of 
pharmacokinetic studies in neonates.

Population Pharmacokinetics and Sparse Sampling
In traditional pharmacokinetic data analysis, individual phar-
macokinetic parameters are first estimated using concentra-
tion-time data obtained from each subject. These individual 
estimates are then used to calculate an average parameter esti-
mate for the entire population. Because this method depends 
on parameter estimates calculated for every subject, missing 
or limited data for each subject can lead to inaccurate overall 
pharmacokinetic estimates.

With population pharmacokinetic data analysis techniques, 
concentration–time data collected from every subject are 
combined and used to calculate a pharmacokinetic parameter 
estimate for the entire population in a single step. In neona-
tal studies, selecting a physiologically and developmentally 
homogenous population is important to avoid confounding 
and to reduce variability. Because this method treats the entire 
population as a single entity, this allows for the use of sparse 
sampling techniques. With sparse sampling, two to three sam-
ples are collected per subject, often with different collection 
times for each subject. Because all data points are combined 
and analyzed as a single unit, population pharmacokinetic 
data analysis avoids inaccurate pharmacokinetic characteriza-
tions associated with the use of limited data (3,49).

By reducing the number of samples collected per patient, 
sparse sampling schemes improve the feasibility of neonatal 
pharmacokinetic trials. Population pharmacokinetic data anal-
ysis offers several other advantages over traditional pharma-
cokinetic methods. Subjects in population pharmacokinetics 
studies often represent patients in the drug’s target population, 
whereas subjects in traditional pharmacokinetics studies are 
typically healthy volunteers. Population pharmacokinetics 
allow investigators to compare differences in drug responses 
among different subgroups, particularly among patients for 
whom the drug is intended (49).

Scavenged Sampling Techniques
Scavenged sampling is a novel strategy that uses surplus blood 
collected for laboratory tests done as part of standard of care 

that would otherwise be discarded. This strategy minimizes 
risk to the neonate by avoiding venous punctures and removal 
of blood volume solely for study purposes; further benefits 
include higher rates of parental consent and an increased num-
ber of samples per subject available for analysis (3). Scavenged 
sampling has been successfully used in population pharmaco-
kinetic studies of antimicrobials involving neonates (50–52). 
Potential problems with scavenged sampling include drug 
instability with improper sample storage, sample collection 
times that are not optimal for pharmacokinetic analyses, and 
inaccurate documentation of time of blood draw (3,50). With 
proper study planning, many of these disadvantages can be 
avoided.

Dried Blood Spot Sampling
Dried blood spot sampling is another recently developed tech-
nique that uses ultra-low volumes to evaluate drug levels. The 
obvious advantage is the reduced blood volumes needed. For 
each sample, 15–30 μl of whole blood is collected onto blot-
ting paper. Dried blood spot sampling techniques offer other 
benefits, as they require less training of research personnel, no 
additional sample processing, storage at room temperature, 
and simple bioanalytical analysis methods (3,53). This tech-
nique has been successfully used in pharmacokinetic studies 
of metronidazole and caffeine in premature neonates (53–55).

NEONATAL DRUG TRIALS
A number of recent studies describing the pharmacokinetics 
(Table 2) of antibiotics in neonates have incorporated several 
of the techniques described above and have highlighted the 
differences in dosing between neonates and older children and 
adults. These studies, while not an exhaustive list, highlight the 
importance of conducting neonatal drug trials through the 
following observations: (i) antimicrobials exhibit a wide range 
of differences in pharmacokinetics that cannot be predicted 
through extrapolation of similar studies in older populations; 
(ii) age-related changes in pharmacokinetics occur at different 
rates and extents for different drugs; and (iii) pharmacokinet-
ics of drugs not only differ between neonates and older chil-
dren and adults, but also among neonates of different ranges 
of maturity. Changes in dosing recommendations that resulted 
from some of these trials illustrate the possibilities that effi-
cacious doses in neonates can be less, similar, or more than 
the adult recommended dose (Table 3). Additionally, recent 
studies of two antifungal drugs described below have demon-
strated the importance of drug trials in getting the dose right 
in neonates.

Micafungin
Micafungin is a semisynthetic echinocandin antifungal agent 
that inhibits the synthesis of 1,3-β-D-glucan, an essential 
component of fungal cell walls. It exhibits concentration-
dependent fungicidal activity against most relevant species of 
Candida (70). Micafungin is currently labeled for use in adults 
and children ages 4 mo and older. It is highly protein-bound; 
extensively metabolized by CYP1A2, CYP2D6, CYP2C, and 
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CYP3A4; and primarily cleared by biliary excretion (34,71). 
Micafungin is dosed without adjustment in patients with renal 
impairment, suggesting only a minor contribution from renal 
clearance (34,72).

An initial single-dose pharmacokinetic study of intravenous 
micafungin in 18 premature neonates weighing <1,000 g dem-
onstrated total drug clearances that were 1.7-fold greater than 
those in children aged 2–8 y and 2.6-fold greater than those in 
children aged 9–17 y (71). Overall volumes of distribution were 
also greater in these premature neonates. This study was fol-
lowed by a multidose, open-label, pharmacokinetic and safety 
trial of 12 premature neonates with suspected systemic infec-
tions given micafungin at 15 mg/kg per dose (73). This study 

confirmed the previous findings that neonates demonstrated 
higher clearances and volumes of distribution compared with 
older children and adults. Due to these differences in pharma-
cokinetic parameters, neonates needed a threefold higher dose 
compared with adults (15 vs. 5 mg/kg) to achieve similar drug 
exposures (73). A subsequent, open-label study in 13 preterm 
infants found that doses of 7 and 10 mg/kg/day were well tol-
erated and provided exposure levels adequate for coverage of 
the central nervous system (70). Simulations based on popula-
tion pharmacokinetic data from 47 infants demonstrated that 
a dose of 10 mg/kg/day resulted in a target attainment rate of 
83% for the area under the concentration–time curve asso-
ciated with adequate central nervous system coverage (72). 

Table 2.  Neonatal antibiotic pharmacokinetic, safety, and efficacy trials

Drug
N  

(ref.) Study design
GA 

(weeks)
PNA 

(days) Notable findings

Metronidazole 33 (50) Population PK, scavenged 
sampling, sparse sampling

22–32 0–97 Two- to threefold lower CL compared with adults; CL increased linearly 
with weight and nonlinearly with PMA.

24 (53) Population PK, DBS 23–31 1–82 CL increases 100% during first 2 wk of life; CL 30–50% of adult CL.

Daptomycin 20 (56) Scavenged sampling 23–40 1–85 CL in neonates similar to CL in 2–6-y-old children and greater than CL seen 
in older children and adults; neonates may need higher doses to achieve 
comparable exposures.

Clindamycin 40 (57) 28–40 2–357 CL affected by PNA, GA, and weight; half-life prolonged in premature 
infants <4 wk; half-life in term infants comparable to adults.

12 (58) 26–39 1–24 CL lower in neonates than in older children and adults.

Piperacillin-
tazobactam

56 (52) Population PK, sparse 
sampling, scavenged 
sampling

22–32 1–77 CL increases with allometrically scaled body weight and decreases 
proportionally with serum creatinine.

71 (59) Population PK, sparse 
sampling,

26–41 1–56 CL in infants <2 mo is 66–75% of CL in infants 2–5 mo of age; CL positively 
correlated with birth weight and PNA.

32 (60) Population PK 23–40 1–60 CL increases 100% during first 2 wk of life; CL in infants <2 mo 60% lower 
than CL in older infants (term, 2–5 mo), >75% lower than children.

Meropenem 7 (61) 27–32 5–44 Longer half-life in premature infants; adequate exposure with 15 mg/kg 
twice daily dosing.

37 (62) Population PK, sparse 
sampling

23–41 1–61 CL positively correlated with PNA, birth GA, and PMA; CL negatively 
correlated with serum creatinine.

38 (63) Population PK 29–42 2–28 CL depended most on serum creatinine and weight; CL substantially higher 
in term infants compared with premature infants.

188 (64) Population PK 23–40 1–92 CL strongly associated with serum creatinine and PMA; infant CL about 
30–40% lower than adult values; PK parameters similar to prior studies; 
70% CSF penetration.

19 (65) Population PK ≤32 ≤56 Similar PK parameters with both short infusion (30 min) and prolonged 
infusion (4 h).

200 (66) Population PK, scavenged 
sampling, sparse sampling

23–40 1–92 Well tolerated in infants; no adverse events probably or definitely related to 
meropenem; 84% overall therapeutic success rate.

CL, clearance; CSF, cerebrospinal fluid; DBS, dried blood spot sampling; GA, gestational age; PK, pharmacokinetic; PMA, postmenstrual age; PNA, postnatal age.

Table 3.  Neonatal dosing relative to adult intravenous dosing regimens

Drug Age group (ref.) Interval dose

Adult interval dose 
normalized to 70 kg 

adult (ref.)

Neonatal 
total daily 

dose
Adult total 
daily dose

Fold change 
(neonate to 

adult)

Metronidazole <34 wk PMA (50,53) 7.5 mg/kg every 12 h 7.5 mg/kg every 6 h (67) 15 mg/kg 30 mg/kg 2

Piperacillin-tazobactam ≤30 wk PMA (60) 100 mg/kg every 8 h 65 mg/kg every 6 h (68) 300 mg/kg 260 mg/kg 0.87

Meropenem ≥32 wk GA, ≥14 days PNA (64) 30 mg/kg every 8 h 15 mg/kg every 8 h (69) 90 mg/kg 45 mg/kg 0.5

GA, gestational age; PMA, postmenstrual age; PNA, postnatal age.
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Currently, the dose recommended for neonates is 10 mg/kg/
day compared with the adult dose of 150 mg (~2 mg/kg/day for 
a 70 kg adult) (74).

The finding of increased micafungin clearance was surpris-
ing considering that the drug-metabolizing enzymes involved 
exhibit decreased expression in the neonatal period. A neonate 
who failed to achieve target plasma concentrations of micafun-
gin was noted to have lower levels of serum albumin at baseline 
and during treatment (70). Comparison among serum samples 
from six neonates and six adults demonstrated an increased 
fraction of unbound drug in the neonates (96.7% bound drug 
in neonates vs. 99.6% in adults) (34). There was no difference 
in the expression of hepatic transporter proteins between 
neonatal and adult liver tissue samples, suggesting that there 
was no difference in intrinsic hepatic clearance and that age-
dependent serum protein-binding had a significant role in the 
faster clearance of micafungin in neonates (34).

Fluconazole
Fluconazole is a triazole antifungal that inhibits lanosterol 
14-α-demethylase, an enzyme that is responsible for the for-
mation of compounds essential for fungal cell membrane 
integrity (75). It exhibits time-dependent fungicidal activ-
ity and is used in the prophylaxis and treatment of systemic 
neonatal candidiasis (75,76). Fluconazole exhibits low plasma 
protein-binding, demonstrates excellent cerebrospinal fluid 
penetration, and is predominantly eliminated through the 
renal system in unchanged form (75,76). Pediatric studies 
involving subjects aged 3 mo and older showed that children 
and adolescents had higher fluconazole clearance, with a drug 
half-life of 22 h compared with 30 h in adults (75,76). To ensure 
70% efficacy against fungal infections, a 24-h area under the 
curve (AUC)-to-minimum inhibitory concentration (MIC) 
ratio of >50 is needed (76). This equates to a minimum 24-h 
AUC of 400 mg*h/l for an MIC of <8 µg/ml.

Fifty-five neonates between 25 and 42 wk gestational age, 
<120 d postnatal age, and receiving fluconazole intravenously 
provided 357 samples used in a population pharmacokinet-
ics analysis (51). The final pharmacokinetic model developed 
found that drug clearance increased with increasing weight, 
birth gestational age, and postnatal age, and decreased with 
increasing serum creatinine levels. Bayesian estimates of 
pharmacokinetic parameters showed that fluconazole clear-
ance was much lower at the time of birth and nearly doubled 
over the first month of life. Neonates with serum creatinine 
levels >1.3 mg/dl had clearances 70% lower than neonates 
with preserved renal function. Monte Carlo simulations per-
formed using the final model predicted half-lives of 30 and 
50 h for neonates 23–29 and 30–40 wk birth gestational age, 
respectively. These simulations also showed that achievement 
of therapeutic steady-state concentrations would take 5–7 d, 
demonstrating the potential need for a loading dose in this 
population.

Using this model, the investigators performed Monte Carlo 
simulations to evaluate the exposure–dose responses of fluco-
nazole in neonates (77). Doses of 12 mg/kg/day during the first 

90 d of life were required to achieve a goal AUC >400 mg*h/l 
and AUC/MIC >50 in 90% of neonates <30 wk gestational 
age and 80% of neonates 30–40 wk gestational age. This dose 
achieved similar exposures provided by the recommended 
adult dose of 400 mg (~6 mg/kg/day for a 70 kg adult) (77). 
Furthermore, a loading dose of 25 mg/kg was necessary to 
achieve the target AUC by day 2 of treatment.

Following these simulations, an open-label, pharmacoki-
netic study was performed to evaluate the use of a loading dose 
in neonates and to confirm the results obtained from the prior 
modeling and simulation work (78). This study included 57 
plasma samples from eight neonates who were 35–38 wk birth 
gestational age with a median postnatal age of 16 d. All neo-
nates were given a loading dose of 25 mg/kg followed by main-
tenance doses of 12 mg/kg/day. Under this regimen, five out of 
eight neonates reached the target 24-h AUC of >400 mg*h/l 
within the first day of dosing. All neonates achieved the 24-h 
trough concentration goal of >8 µg/ml during the first 24 h of 
treatment. Results of this study agreed with the simulation 
data produced from the population pharmacokinetics model 
developed earlier. No drug-related adverse events occurred 
during this study.

Application of Novel Techniques for Future Studies
Dried blood spot and scavenged sampling techniques have 
been used to guide dosing for only a handful of antimicrobi-
als (50–54,60). These novel techniques will improve feasibility 
of neonatal studies where the relationship between pharmaco-
kinetics and pharmacodynamics is less clearly defined. When 
used to prevent bronchopulmonary dysplasia in infants, 
high-dose regimens of dexamethasone have been associated 
with increased mortality and long-term neurodevelopmental 
impairment (79). There remains insufficient data evaluating 
the use of lower doses of dexamethasone to prevent broncho-
pulmonary dysplasia (79). A dried blood spot assay has been 
validated for the quantification of dexamethasone and could 
be used to facilitate studies evaluating the pharmacokinetics, 
safety, and efficacy of a low-dose regimen (80).

Conclusion
Determining the right dose for drugs used to treat neonates 
still remains an immense challenge. Unique and rapidly chang-
ing physiological characteristics contribute to unpredictable 
dose-exposure responses in this population. For this reason, it 
is not always appropriate to make decisions on dosing through 
extrapolation from children and adult studies. Many ethical 
and logistical concerns make designing proper drug studies 
in this age group difficult. Fortunately, innovative analytical 
techniques such as the use of dried blood spots, scavenged 
sampling, population pharmacokinetics analyses, and sparse 
sampling have helped investigators better define doses that 
maximize efficacy and safety. Through the use of these meth-
ods, successful clinical trials have resulted in changes in stan-
dards of care. With many more neonatal drug trials underway, 
we continue to work toward our goal of improving care and 
outcomes in these vulnerable patients.
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