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Embedding magnetic moments into semiconductor
heterostructures offers a tuneable access to various forms of
magnetic ordering and phase transitions in low-dimensional
electron systems. In general, the moments are introduced
artificially, by either doping with ferromagnetic atoms, or
electrostatically confining odd-electron quantum dots1–4. Here,
we report experimental evidence of an independent, and
intrinsic, source of localized spins in high-mobility GaAs/AlGaAs
heterostructures with large setback distance (≈80 nm) in
modulation doping. Measurements reveal a quasi-regular
distribution of the spins in the delocalized Fermi sea, and a
mutual interaction via the Ruderman–Kittel–Kasuya–Yosida
(RKKY) indirect exchange below 100 mK. We show that a simple
model on the basis of the fluctuations in background potential
on the host two-dimensional electron system can explain the
observed results quantitatively, which suggests a ‘disorder-
templated’ microscopic origin of the localized moments.

Local fluctuations in the conduction band often lead to
localization of single-electron states in a dilute metallic system.
These ‘impurity’ states are physically separated from the
surrounding delocalized Fermi sea by a tunnel barrier, and can
become magnetic for large on-site Coulomb interaction U > −ε,
where ε (<0) is the energy of the localized states relative to the
surrounding Fermi level. In the limit of small valency fluctuations,
that is, −ε/Γ � 1, where Γ is the level broadening due to finite
tunnelling, the Kondo representation of the Anderson impurity
model5 allows the impurity spin to form a spin singlet with the local
spin cloud of conduction electrons as the system is cooled below the
characteristic Kondo temperature TK ≈ EF exp[πε(ε + U )/2Γ U],
where EF is the Fermi energy of the conduction electrons.

Because the Kondo effect contributes one additional state at
each impurity site within a small bandwidth of TK around EF,
spectroscopic techniques based on tunnelling6 or non-equilibrium
transport1–4,7–9 reveal a resonance in the low-energy density of states
(DOS) at zero source–drain bias (VSD). This is known as the zero-
bias anomaly (ZBA) (see Fig. 1). In the case of multiple mutually
interacting impurities, the DOS is more complex and depends on
a competition between TK and a pairwise inter-impurity exchange
interaction J12 (refs 10,11). For |J12| � kBT , where T is the
temperature, the Kondo resonance is suppressed at energy scales

∼< |J12| (Fig. 1), resulting in a split ZBA at zero external magnetic
field, which acts as an indicator of spontaneous spin polarization
and static magnetic phases within the system12–14.
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Figure 1 Kondo resonance in the density of states (DOS) of a multiple-spin
systemwith zero and non-zero inter-impurity exchange interaction J12. J12 is
negative for ferromagnetic and positive for antiferromagnetic exchange. In either
case, magnetic order sets in when |J12| � kBT, which suppresses the
single-impurity Kondo resonance at the energy scale (defined by the Kondo
temperature, TK) ∼< |J12|, leading to a gap at the Fermi energy, EF.

Along with the magnetic effects, the embedded localized states
also act as scattering centres for conduction electrons, leading to
back-scattering and interference effects when the phase coherence
length of the electrons exceeds the inter-impurity distance (R). A
completely random spatial distribution of the impurities gives rise
to weak localization phenomena at low T , which are manifest as a
universal aperiodic fluctuation in the linear magnetoconductance
as a function of either EF or a weak transverse magnetic field
(B⊥) (ref. 15). However, when the impurities are arranged in a
quasi-regular manner, the transport takes place through multiple,
connected Aharonov–Bohm rings encircling a discrete number
of impurities. As a function of B⊥, the magnetoconductance at
low T breaks into quasi-periodic phase-coherent oscillations with
periodicity given by

�B⊥ ≈ h/πeR2
C, (1)

where RC is the radius of a stable ring16,17.
Observation of Kondo resonance in unconfined mesoscopic

one-dimensional7 or two-dimensional8,9 devices from high-
mobility semiconductor heterostructures indicates unexpected
localized spin states, whose microscopic origin is not understood.
Most experimental evidence so far is extracted from the ZBA
in non-equilibrium transport, which remains inconclusive on the
spatial layout, or the mutual interaction of the states. Here, we
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Figure 2 Non-equilibrium characteristics. a, A set of two typical devices and electrical connections. The active area of a device is defined by the gate-covered region of the
etched mesa. The data shown here were obtained from device 1, with device 2 and other side gates kept grounded. b, Typical linear conductance, G, versus gate voltage VG

(and electron density n2D) for device 1 at 30 mK and zero external magnetic field. c, Surface plot of differential conductance dI/dV of device 1 in the VSD–VG plane. Each
dI/dV–VSD trace at a particular VG was vertically shifted for levelling. The insets illustrate ZBA-I- and ZBA-II-type resonances at points I and II in Fig. 1b, respectively.
d, Surface plot of ZBA-I in in-plane magnetic field (B||). The dashed arrows show a linear monotonic splitting with effective g-factor |g∗| ≈ 0.5, which confirms the role of
spin. e, Surface plot of ZBA-II in B||. The single-impurity Kondo behaviour dominates above B|| ∼Δ/g ∗ μB (the horizontal line), where Δ is the half-gap defined in the text
and μB is the Bohr magneton. f, Monotonic temperature (T ) suppression of ZBA-I. g, T dependence of dI/dV at ZBA-II. dI/dV is non-monotonic in T for |VSD| ∼< Δ.

have exploited both spin and orbital effects of localized states
by combining the investigation of non-equilibrium characteristics
and linear magnetotransport in the same mesoscopic device. The
results are not only consistent with the existence of local magnetic
moments in high-mobility heterostructures, but also, for the first
time, indicate the nature of mutual interaction, and a plausible
microscopic origin of these moments.

Our mesoscopic devices were fabricated from Si-modulation-
doped GaAs/AlGaAs heterostructures, where unintentional
magnetic impurities are expected to be absent, and a high
low-T mobility of ∼1−3 × 106 cm2 V−1 s−1 provides a long
as-grown elastic mean free path ∼6−8 μm. The lithographic
dimensions of our devices were kept smaller than this length
scale to ensure quasi-ballistic transport (Fig. 2a). Non-equilibrium
transport in these systems involves measuring the differential
conductance dI/dV as a function of VSD at fixed voltages (VG)
applied on the (non-magnetic) surface gate, which reflects the
low-energy DOS through the Landauer formalism. Experiments
were carried out at electron temperatures as low as ≈30 mK.

Below ∼100 mK, the zero-field dI/dV shows rich structures
in the VG–VSD plane (Fig. 2c). For most devices, the structures
are strongest in the electron-density range n2D ∼ 1–3 × 1010 cm−2

(Fig. 2b), and often visible up to G ∼> 10–15 × (e2/h),
where G = dI/dV at VSD = 0. In Fig. 2c, dI/dV consists
of a repetitive sequence of two types of resonance as
VG is increased. We denote the single-peak resonance as
ZBA-I, which splits intermittently to form a gap at EF, referred
to as ZBA-II. We define Δ as the half-width at half-depth of
ZBA-II. Similar non-equilibrium characteristics were observed
in over 50 mesoscopic devices from five different wafers, where
reducing the setback distance (ds) below ∼60–80 nm was generally
found to have a detrimental effect on the clarity of the resonance
structures, often leading to broadening or complete suppression of
both types of ZBA.

The ZBAs are logarithmically suppressed for T ∼> 300 mK
(Fig. 2f,g), and split linearly in an in-plane magnetic field when
Zeeman energy exceeds the corresponding Δ (Fig. 2d,e). These are
characteristic features of Kondo resonance9. (See Supplementary

Information for arguments against alternative explanation of the
ZBA.) Moreover, both linear and nonlinear transport at ZBA-II
indicate non-monotonicity at the scale of Δ (Fig. 2e,g), which can
be understood in a ‘two-impurity Kondo’ model that implies the
presence of multiple interacting spins9,13. Because Δ∼|J12| (Fig. 1),
the re-entrant splitting of ZBA in Fig. 2c thus indicates J12 to be
oscillatory in VG, where ZBA-I corresponds to |J12| � kBT .

Before exploring the microscopic origin of J12, we discuss the
linear low-transverse-field magnetoconductance measurements,
which provide information on the spatial layout of the scattering
centres. At the lowest T , mesoscopic devices that show clear
resonances in dI/dV also show reproducible quasi-periodic
oscillations in the linear magnetoconductance over a transverse
field range |B⊥| ∼< 0.1 T. These oscillations appear over the same
range of n2D as the ZBA, but, apart from being slightly smaller
in amplitude near a ZBA-II, they are mostly insensitive to the
details of the ZBA structure. In Fig. 3a, b this is illustrated with a
device of configuration similar to that shown in Fig. 2a. Discrete
peaks in the fast-Fourier power spectrum of these oscillations imply
their quasi-periodicity, thereby distinguishing them from universal
conductance fluctuations.

To analyse the magnetoconductance oscillations, we note that
the strong peak at 1/ΔB⊥ ≈ 105 T−1 (Fig. 3c) is common to all
traces and corresponds to the ‘unit cell’ in the scatterer array,
which is an Aharonov–Bohm ring encircling a single scattering
centre, with a radius of R/2 (orbit (ii)). From equation (1),
we get R ≈ 670 ± 30 nm, which was found to be weakly device
dependent, varying between 600 and 800 nm, but insensitive to
the lithographic dimensions of the devices. Often peaks at higher
frequency would also appear, consistent with Aharonov–Bohm
rings encircling larger numbers of scattering centres (see orbit (iii)
in Fig. 3c). The peak at lower frequency, which becomes stronger
at |B⊥| ∼> 0.08 T (fast-Fourier power spectrum denoted by empty
blue circles in Fig. 3c), represents orbit (i), which is inscribed by
the finite cross-section of the scattering centres.

Implicitly, the phase-coherent oscillations indicate a quasi-
regular distribution of the scattering centres. We independently
cross-checked this from commensurability of classical electron
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Figure 3 Quantum and classical magnetotransport in perpendicular magnetic field (B⊥). a,b, Typical linear magnetoconductance G oscillation at a single-peak
resonance (ZBA-I) (a) and a double-peak resonance (ZBA-II) (b). c, Power spectra of the magnetoconductance oscillations. The filled symbols (blue, ZBA-I; red, ZBA-II)
represent spectra obtained from the range |B⊥| ≤ 0.065 T, whereas the open (blue) symbols represent the spectrum (vertically scaled for clarity) from
0.065 T < B⊥ < 0.15 T. The orbits corresponding to the peaks are indicated in the inset schematic diagram. d, Four-probe linear magnetoresistance R4 at 1.4 K for five
electron densities from 1.22 (topmost trace) to 1.39×1010 cm−2 (bottom trace), where well-defined ZBAs appear at low temperatures. Inset: Magnetoresistance after
subtracting the parabolic background. The dashed lines, which denote various commensurate orbits, are computed using the average density of 1.31×1010 cm−2, and
radius R≈ 500 nm.

trajectories in a two-dimensional array of point scatterers at finite
B⊥ (ref. 18). In Fig. 3d, we show the four-probe magnetoresistance
of the same device at T 	 1.4 K, which consists of small
peaklike structures superposed on a parabolically increasing
background. On subtracting the background, the signature of
commensurable orbits at B⊥ ≈ 0.08, 0.05 and 0.03 T can be
observed, corresponding to the cyclotron radius of the electron
encircling one, two and four scattering centres respectively (inset).
This gives R ∼ 500 nm, consistent with the estimate obtained from
phase-coherent oscillations.

Assuming each scattering centre hosts a localized spin state, we
find that J12 can be naturally associated with RKKY-type indirect
exchange, which is expected in a system composed of itinerant
electrons and localized magnetic impurities. In this framework, the
oscillatory behaviour of J12 in VG arises from the range function
Ψ (2kFR) in the interaction magnitude, which reverses its sign with
a periodicity of π in 2kFR, kF =√

2πn2D being the Fermi wavevector
and R being fixed for a given device. Analytically,

Δ∼ |J12| ∼ EF(Γ /U )2|Ψ (2kFR)|. (2)

Figure 4a shows the direct confirmation of this, where we have
plotted Δ as a function of 2kFR for the device in Fig. 2c. The
clear periodicity of ≈π (within ±5%) in 2kFR can be immediately
recognized as the so-called ‘2kFR oscillations’ in the RKKY
interaction, establishing the multiple-localized-spin picture.

The absolute magnitude of J12, and hence Δ, for a two-
dimensional distribution of spins may differ widely from the
straightforward pairwise RKKY interaction, and would be affected
by frustrated magnetic ordering or spin-glass freezing19, as well
as deviation from perfect periodicity in the spin arrangements20.
Nevertheless, a framework for comparison of Δ in different
samples can be obtained from equation (2) by normalizing Δ with
EF. As shown in Fig. 4b, manually adjusting for the experimental
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Figure 4 RKKY indirect exchange and ‘2kFR oscillations’. a, 2Δ from Fig. 2c as
a function of 2kFR, where kF is the Fermi wavevector, and R is the inter-spin
distance obtained from magnetoconductance oscillations. b, 2Δ/EF as a function of
2kFR for four different devices. The solid line is proportional to the pairwise RKKY
range function (see the text). Local disorder governs the experimentally attainable
range of 2kFR within a given mesoscopic device.

uncertainty in kF and R, Δ/EF for four different devices with
various lithographic dimensions can be made to collapse onto the
solid line proportional to the modulus of the two-impurity RKKY
range function over a wide range of 2kFR (ref. 21).
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A plausible mechanism for local moment formation in
high-mobility GaAs/AlGaAs systems would thus require us to
simultaneously account for (1) the observed magnitude of R and
the quasi-regular impurity distribution and (2) Kondo coupling
of the localized spin to the conduction electrons. We show
below that background potential fluctuations arising from a
strongly correlated dopant layer can address both observations
quantitatively. In this scheme, which is similar to moment
formation at metal–semiconductor Schottky barriers6, depletion of
electrons at strong potential fluctuations leads to Mott transition
locally around the depletion region. Isolated localized states are
formed, which become magnetic when Γ /U is reduced below ∼0.1
(the Mott criterion) with decreasing n2D.

For heavily compensated donor layers of monolayer-doped
heterostructures, the density correlation function φ(q) is
commonly approximated as that of a non-ideal plasma22,23:

φ(q) = Nδq

q+ (2πNδe2/ε0εrkBT0)[1−exp(−2qds)] ,

which in the long-wavelength limit, q � 1/ds, leads to an effective
dopant concentration of

Neff = ε0εrkBT0/4πe2ds,

where ε0 is the vacuum permittivity, εr is the relative permittivity
and Nδ and T0 are the bare dopant density and freezing-out
temperature for electrons left in the dopant layer, respectively.
Strong Coulomb interaction can further lead to an ordering
in this effective donor distribution, with a sharp peak in the
correlation function at q = qmax ≈ √

Neff (ref. 24). Using known
system parameters T0 ≈ 80 K and ds = 80 nm, we find that strong
background potential fluctuations are expected at a length scale
of 1/qmax ∼ 0.4–0.5 μm, which agrees well with the observed
magnitude of R, as well as results of direct experimental imaging25.
We note that both phenomena will be observable as long as any
deviation (δR) from a perfect ordering satisfies δR � 2π/kF

for RKKY dynamics, or δ(R2) � (h/e)/ΔB⊥ for the phase-
coherent oscillations. These conditions impose δR/R � 0.4,
which is realistic, because following ref. 24 we obtain
δR/R ∼ δq/qmax ∼< 0.2.

To verify the Kondo coupling of localized moments
to surrounding itinerant electrons, we have calculated the
ratio ε/Γ for the localized states using the experimentally
observed half-width of the ZBA-I resonances, and equating it
to TK. From the trace shown in the lower inset of Fig. 2c,
TK ≈ 0.035 mV ∼ EF exp(πε/2Γ ) in the U →∞ limit, which gives
ε/Γ ≈−2.1, confirming the Kondo regime. (Here U ∼ e2/ξ � EF,
and ξ ∼ 150 nm is the localization length obtained experimentally
from the magnetoconductance oscillations corresponding to
orbit (i) in Fig. 3c.) Notably, formation of magnetic quantum
point contacts7,26,27 in a percolation-type representation of the
disorder landscape at low n2D (ref. 28) cannot explain the
commensurability effect or phase-coherent magnetoconductance
oscillations shown in Fig. 3, as they require extended and
uninterrupted electron orbits.

METHODS

WAFER AND DEVICE CHARACTERISTICS
Devices were fabricated from (100) molecular beam epitaxy-grown
GaAs/Al0.33Ga0.66As heterostructures, where the two-dimensional electron
layer was formed 300 nm below the surface. A setback distance of ds = 80 nm
was obtained by inserting an undoped layer of Al0.33Ga0.66As between the Si
δ-doped layer, with dopant density Nδ≈ 2.5×1012 cm−2, and the
heterointerface. This resulted in a heavily compensated dopant layer with a

filling factor f ≈ 0.9. The device width was determined by the width of the
wet-etched mesa, and fixed at ≈8 μm, and the length defined by the width of
the surface gate was varied between 2 and 7 μm (Fig. 2a).

MEASUREMENTS
Non-equilibrium measurements were carried out inside a dilution refrigerator
(base electron temperature ≈30 mK), with an ac+dc two-probe technique.
The ac modulation (∼2–5 μV at 90 Hz) was kept much less than kBT to avoid
heating or other nonlinearities. Before measurement all devices were subjected
to slow cooling cycles between room temperature and 4.2 K, with each cooling
lasting 5–10 h. See Supplementary Information for more details on the effect of
cooling and disorder.

Received 9 August 2006; accepted 11 January 2007; published 11 March 2007.

References
1. Goldhaber-Gordon, D. et al. Kondo effect in a single-electron transistor. Nature 391, 156–159 (1998).
2. Cronenwett, S. M., Oosterkamp, T. H. & Kouwenhoven, L. P. A tunable Kondo effect in quantum

dots. Science 281, 540–544 (1998).
3. Jeong, H., Chang, A. M. & Melloch, M. R. The Kondo effect in an artificial quantum dot molecule.

Science 293, 2221–2223 (2001).
4. Craig, N. J. et al. Tunable nonlocal spin control in a coupled-quantum dot system. Science 304,

565–567 (2004).
5. Schrieffer, J. R. & Wolff, P. A. Relation between the Anderson and Kondo hamiltonians. Phys. Rev.

149, 491–492 (1966).
6. Wolf, E. L. & Losee, D. L. Spectroscopy of Kondo and spin-flip scattering: High-field tunneling

studies of Schottky-Barrier junctions. Phys. Rev. B 2, 3660–3687 (1970).
7. Cronenwett, S. M. et al. Low-temperature fate of the 0.7 structure in a point contact: A Kondo-like

correlated state in an open system. Phys. Rev. Lett. 88, 226805 (2002).
8. Ghosh, A., Ford, C. J. B., Pepper, M., Beere, H. E. & Ritchie, D. A. Possible evidence of a spontaneous

spin polarization in mesoscopic two-dimensional electron systems. Phys. Rev. Lett. 92, 116601 (2004).
9. Ghosh, A. et al. Zero-bias anomaly and kondo-assisted quasiballistic 2D transport. Phys. Rev. Lett. 95,

066603 (2005).
10. Jayaprakash, C., Krishnamurthy, H. R. & Wilkins, J. W. Two-impurity Kondo problem. Phys. Rev.

Lett. 47, 737–740 (1981).
11. Affleck, I. & Ludwig, A. W. W. Exact critical theory of the two-impurity Kondo model. Phys. Rev. Lett.

68, 1046–1049 (1992).
12. Pasupathy, A. N. et al. The Kondo effect in the presence of ferromagnetism. Science 306, 86–89 (2004).
13. Heersche, H. B. et al. Kondo effect in the presence of magnetic impurities. Phys. Rev. Lett. 96,

017205 (2006).
14. Nygard, J., Cobden, D. H. & Lindelof, P. E. Kondo physics in carbon nanotubes. Nature 408,

342–346 (2000).
15. Thornton, T. J., Pepper, M., Ahmed, H., Davies, G. J. & Andrews, D. Universal conductance

fluctuations and electron coherence lengths in a narrow two-dimensional electron gas. Phys. Rev. B
36, 4514–4517 (1987).
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