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Ash trees (genus Fraxinus, family Oleaceae) are widespread 
throughout the Northern Hemisphere, but are being devastated 
in Europe by the fungus Hymenoscyphus fraxineus, causing ash 
dieback, and in North America by the herbivorous beetle Agrilus 
planipennis1,2. Here we sequence the genome of a low-heterozygosity 
Fraxinus excelsior tree from Gloucestershire, UK, annotating 38,852 
protein-coding genes of which 25% appear ash specific when 
compared with the genomes of ten other plant species. Analyses of 
paralogous genes suggest a whole-genome duplication shared with 
olive (Olea europaea, Oleaceae). We also re-sequence 37 F. excelsior 
trees from Europe, finding evidence for apparent long-term decline 
in effective population size. Using our reference sequence, we re-
analyse association transcriptomic data3, yielding improved markers 
for reduced susceptibility to ash dieback. Surveys of these markers 
in British populations suggest that reduced susceptibility to ash 
dieback may be more widespread in Great Britain than in Denmark. 
We also present evidence that susceptibility of trees to H. fraxineus is 
associated with their iridoid glycoside levels. This rapid, integrated, 
multidisciplinary research response to an emerging health threat in 
a non-model organism opens the way for mitigation of the epidemic.

We sequenced a European ash (F. excelsior) tree generated from 
self-pollination of a woodland tree in Gloucestershire, UK. The 
sequenced tree (Earth Trust accession number 2451S) appeared free 
of ash dieback (ADB) when sampled in 2013 and 2014, but showed 
symptoms in February 2016. The haploid genome size was measured by 
flow cytometry as 877.24 ±​ 1.41 megabase pairs (Mbp). Total genomic 
DNA was sequenced to 192×​ coverage (see Supplementary Table 1). 
We assembled the genome into 89,514 nuclear scaffolds with an N50 
(the length at which scaffolds include half the bases of the assembly) 
of 104 kilobase pairs (kbp), 26 mitochondrial scaffolds, and one  
plastid chromosome (Supplementary Tables 2 and 3), where the non-N 
assembly constitutes 80.5% of the predicted genome size. RepeatMasker 
estimated 35.90% of the assembly to be repetitive elements, with long 
terminal repeat retrotransposons predominating (Supplementary  
Table 4). Compared with other eudicot genomes of similar size4,5 
this repeat content is low. The 17% of the assembly composed of 
undetermined bases probably contains additional repeats; 27% of reads 
that do not map to the assembly align to ash repeats (Supplementary 
Table 5). We generated approximately 160 million RNA sequencing 
(RNA-seq) read pairs from tree 2451S leaf tissue and from leaf, 
cambium, root and flower tissue of its parent tree (Supplementary 

Table 6); low expression of repetitive elements was found in all tissues 
(Supplementary Table 7).

We annotated the genome using an evidence-based workflow incor-
porating protein and RNA-seq data, predicting 38,852 protein-coding 
genes and 50,743 transcripts (Supplementary Table 4). This gene count 
is within 12% that of tomato (version of genome (v)2.3)4, potato (v3.4)6 
and hot pepper (v1.5)7 but higher than monkey flower (v2.0; 26,718 
genes)8. Evidence for completeness and coherence of our models is 
shown in Extended Data Fig. 1. Of 38,852 predicted genes, 97.67% (and 
98.18% of transcripts) were supported by ash RNA-seq data, 81.80% 
showed high similarity to plant proteins (>​50% high-scoring segment 
pair coverage) (Supplementary Table 8), 97.05% had matches in the 
non-redundant databases (excluding hits to ash), 82.74% generated 
hits to InterPro signatures and 78.09% were assigned Gene Ontology 
terms. We also identified 107 microRNA (miRNA), 792 transfer RNA 
(tRNA) and 51 ribosomal RNA (rRNA) genes.

Past whole-genome duplication events are commonly inferred from 
the distributions of pairwise synonymous site divergence (Ks) within 
paralogous gene groups9. We plotted these for ash and six other plant 
species (Fig. 1a and Supplementary Table 9). Ash and olive shared a 
peak near Ks =​ 0.25, suggesting an Oleaceae-specific whole-genome 
duplication. A peak near Ks =​ 0.6 shared by ash, olive, monkey flower 
and tomato but not by bladderwort, coffee and grape does not fit a 
common origin hypothesis, unless bladderwort has an accelerated 
substitution rate and the tomato peak is not restricted to the Solanales 
as evidenced previously4. Synteny analysis between ash and monkey 
flower did not provide conclusive evidence for shared whole-genome 
duplication (Extended Data Fig. 2). Duplicated genes in the ash genome 
that were not locally duplicated (that is, within ten genes of each other 
in our assembly) show no significantly enriched Gene Ontology 
terms at a false discovery rate level of 0.05. By contrast 1,005 locally 
duplicated genes showed significant enrichment of terms relating to 
oxidoreductase, catalytic and monooxygenase activity compared with 
all other genes, suggesting evolution of secondary metabolism by local 
duplications.

We analysed gene families shared between ash and 10 other species 
(Supplementary Table 10). In total, 279,603 proteins (77.14% of the 
input sequences) clustered into 27,222 groups, of which 4,292 contained 
sequences from all species, 3,266 were angiosperm-specific and 462 
Eudicot-specific. Patterns of gene-family sharing among asterids and 
among woody species are shown in Fig. 1b, c. For 38,852 ash proteins, 
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30,802 clustered into 14,099 groups, of which 643 were ash-specific, 
containing 1,554 proteins. There were also 8,050 singleton proteins 
unique to ash. Of the 9,604 ash-specific proteins, 6,405 matched at 
least one InterPro signature. The 20 largest groups in ash are listed in 
Extended Data Table 1: several are putatively associated with disease 
resistance.

To investigate genomic diversity in F. excelsior, we sequenced 
37 ash trees from central, northern and western Europe (Fig. 2 and 
Supplementary Table 11), to an average of 8.4×​ genome coverage by 
trimmed and filtered reads. Together with reads from Danish ‘Tree35’ 
(http://oadb.tsl.ac.uk/), these were mapped to the reference genome.  
We found 12.48 million polymorphic sites with a variant of high 
confidence in at least one individual (quality >​ 300 using freebayes10): 
we refer to these as the ‘genome-wide SNP set’ in the ‘European Diversity 
Panel’. Of these, 6.85 million (54.88%) occur inside or within 5 kbp of 
genes (Supplementary Table 12). We found 259,946 amino-acid substi-
tutions and 71,513 variants that affect stop or start codons, or splice sites.  
We selected 23 amino-acid variants, and 26 non-coding variants from 
the ‘genome-wide SNP set’ with a range of call qualities for validation 
using KASP: individual genotype calls with quality greater than 300 
have a false-positive rate of 6% and those with quality greater than 
1,000 have a false-positive rate of zero (Supplementary Table 13).  
We ran a more stringent variant calling restricted to regions of the 
genome with between 5×​ and 30×​ coverage in all 38 samples. These 
totalled 20.6 Mbp (2.3% of the genome), within which 529,812 variants 
were called with CLC Genomics Workbench. Of these, 394,885 were 
bi-allelic single nucleotide polymorphisms (SNPs) with minimum 
allele frequency above 0.05, which we refer to as the ‘reduced SNP set’. 
We also found about 31,300 singleton simple sequence repeat (SSR) 
loci in the ash genome, and designed primers for 664 (Supplementary 
Data 1). In a sample of 366 of these, 48% were polymorphic in the 
European Diversity Panel sequences. We PCR tested 48 of these in 
multiplexes with European Diversity Panel genomic DNA and found 
that 41 amplified successfully (Supplementary Data 1).

We analysed population structure of the European Diversity Panel 
using a plastid haplotype network; STRUCTURE11 runs on genomic 
SNPs and principal component analysis (PCA) of the ‘reduced SNP 
set’ (Fig. 2a–d and Extended Data Fig. 3). Clearest differentiation was 
found in the plastid network, with four distinct haplotype groups each 
separated from each other by at least 20 substitutions. One group was 
more frequent in Great Britain than on the continental Europe. The 
second and third principal components of the PCA corresponded 
with the plastid data somewhat (Fig. 2c). Previous analyses of SSRs 
in plastids identified variants unique to the British Isles and Iberia12. 
Linkage disequilibrium in the European Diversity Panel decayed 
logarithmically, with an average r2 of 0.15 at 100 bp between SNPs, 
reaching an r2 of 0.05 at ~​40 kbp (Fig. 2e). This is similar to long-
range linkage disequilibrium estimates found in Populus tremuloides13.  
An apparent long-term effective population size decline of F. excelsior in 
Europe was shown by analyses based on heterozygosity in the reference 
genome (using pairwise sequentially Markovian coalescent (PSMC)14, 
Fig. 2f). Such patterns may also reflect a complex history of population 
subdivision in ash15.

We used associative transcriptomics to predict ADB damage in Great 
Britain. We used the full coding DNA sequence (CDS) models from 
our genome annotation as a mapping reference for previously gener-
ated3 RNA-seq reads from 182 Danish ash accessions (‘Danish Scored 
Panel’) that have been exposed to H. fraxineus, and scored for damage 
(Supplementary Data 2). This yielded 40,133 gene expression markers 
(GEMs; Supplementary Data 3) and 394,006 SNPs (Supplementary 
Data 4). Twenty GEMs were associated with ADB damage scores, 
including eight MADS-box proteins, and two cinnamoyl-CoA reduc-
tase 2 genes that may be involved in the hypersensitive response 
(Supplementary Data 5). Four assays representing the top five GEMs 
were applied to 58 Danish accessions (‘Danish Test Panel’) to validate 
the top markers. Results were combined into a single predicted damage 
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Figure 1 | Gene sharing within and among plant genomes.  
a, Distribution of Ks values between paralogous gene pairs within the 
genomes of ash (F. excelsior), tomato (Solanum lycopersicum), coffee 
(Coffea canephora), bladderwort (Utricularia gibba), grape (Vitis vinifera) 
and monkey flower (Mimulus guttatus), and transcriptome of olive  
(O. europaea). b, Venn diagram of gene sharing by five asterid species. 
c, Venn diagram of gene sharing by six woody species. Numbers in 
parentheses are the total number of OrthoMCL groups found for that 
species; numbers in intersections show the total number of groups shared 
between given combinations of taxa.
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score for each tree (Supplementary Data 6), which was compared with 
the observed damage scores (Fig. 3; r2 =​ 0.25, P =​ 6.9 ×​ 10−5): predic-
tions of damage less than 50% consistently detected trees with very 
low observed damage scores. The same assays were also applied to 
130 accessions from across the British range of F. excelsior (‘British 
Screening Panel’; Supplementary Data 6). Strikingly, this provided 
lower predictions for ADB damage in the British Screening Panel: 25% 
were predicted to have <​25% canopy damage compared with 9% of 
the Danish Test Panel. Trees with low predicted damage are scattered 
throughout Britain (Fig. 3).

We also examined expression of the top five GEM loci using reads 
per kilobase pair per million aligned reads (RPKM) values from our 

shotgun Illumina read data for the reference tree (Extended Data  
Fig. 4), comparing these with RPKM values from the Danish Scoring 
Panel. Expression patterns in the reference tree were highly correlated 
with those of the most susceptible Danish quartile (r2 =​ 0.995, 
P <​ 0.001), but not the least susceptible (P =​ 0.24), consistent with 
observations that the reference tree is now succumbing to the disease. 
We correlated the expression of all 20 top GEM markers in leaf, flower, 
cambium and root transcriptomes of the parent of the reference tree. 
This revealed that leaf expression levels were positively correlated 
with those in the cambium (r2 =​ 0.65, P <​ 0.001) and flower (r2 =​ 0.38, 
P =​ 0.0041), but not with the root (P =​ 0.3594).

We identified putative orthologues of the five GEM loci using our 
OrthoMCL results (Supplementary Data 5) and BLAST searches of 
GenBank, and conducted maximum likelihood and Bayesian analyses 
of relevant hits (Extended Data Fig. 5). FRAEX38873_v2_000173540.4, 
FRAEX38873_v2_000048340.1 and FRAEX38873_v2_000048360.1 
clustered into the SVP/StMADS11 group16 of type II MADS-box genes. 
FRAEX38873_v2_000261470.1 and FRAEX38873_v2_000199610.1 
clustered into the SOC1/TM3 group of type II MADS-box proteins16,17. 
Both groups have roles in flower development18–21, and appear to be 
involved in stress response in Brassica rapa22. Many genes involved in 
regulation of flowering time in Arabidopsis thaliana are involved in 
controlling phenology in perennial trees species23, and genes belonging 
to the SVP/StMADS11 clade have potential roles in growth cessation, 
bud set and dormancy23. In A. thaliana, AGL22/SVP may be required 
for age-related resistance24.

One mechanism by which transcriptional cascades, such as those 
involving MADS box genes, might be involved in tolerance or resistance 
to pathogens is via modulation of secondary metabolite concentrations. 
For five high-susceptibility and five low-susceptibility Danish trees, we 
profiled methanol-extracted leaf samples by liquid chromatography/
mass spectrometry on a quadrupole time-of-flight mass spectrometer. 
Partial least squares discriminant analysis (PLS-DA) clearly 
discriminated high- and low-susceptibility trees (Fig. 4a). By using 
accurate mass to identify the chemical nature of discriminant features, 
we found greater abundance (Fig. 4b) of iridoid glycosides (for details 
see Extended Data Figs 6–9 and Supplementary Data 9) in genotypes 
with high susceptibility to ADB than in low-susceptibility genotypes.  
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Figure 2 | Genome diversity of F. excelsior in Europe. a, Map showing 
the distribution of plastid haplotypes (n =​ 37), on the basis of a median-
joining plastid haplotype network for the European Diversity Panel 
(inset). b, Map showing diversity structure of genomic SNPs, on the 
basis of average Q value for each individual (inset), from three runs of 
STRUCTURE with different sets of 8,955 SNPs and k =​ 3. c, PCA of 
34,607 nuclear SNPs in the European Diversity Panel, PC2 plotted against 
PC3, with points coloured by plastid haplotype. d, From the same PCA, 
PC1 plotted against PC2, with points coloured by groupings found by 
STRUCTURE using genomic SNPs. e, Linkage disequilibrium decay 
between SNPs in the European Diversity Panel. f, Effective population size 
(ne) history estimated using the PSMC method on the reference genome, 
with 100 bootstraps (shown in light blue).
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Figure 3 | Predicted ADB damage scores in Great Britain and Denmark. 
Map points are scaled by hue (high predicted damage scores in brown, low 
in green) and plotted according to the geographical origin of the parent 
trees of the British Screening Panel (n =​ 130) and the Danish Test Panel 
(n =​ 58). Single leaf samples taken from grafts of each individual tree 
were used for predicting damage scores. Inset: damage predictions for the 
Danish Test Panel (n =​ 58) correlated with log(mean observed damage 
scores) from 2013 to 2014 (r2 =​ 0.25, P =​ 6.9 ×​ 10−5).
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A tandem mass spectrometry (MS/MS) fragmentation network 
identified several product ions expected from fragmentation of iridoid 
glycosides (Fig. 4c). Iridoid glycosides are a well-known anti-herbivore  
defence mechanism in the Oleaceae25–27. They can also enhance 
fungal growth in vitro28, although their aglycone hydrolysis product 
formed following tissue damage can also mediate fungal resistance29. 
Our data suggest there may be a trade-off between ADB susceptibility  
and herbivore susceptibility. This is of particular concern given the 
threat of A. planipennis to ash in both North America1 and Europe30 
and may hamper efforts to breed trees with low susceptibility to both 
threats.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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Methods
No statistical methods were used to predetermine sample size. The experiments 
were not randomized. The investigators were not blinded to allocation during 
experiments and outcome assessment.
Tree material. Reference tree. In 2013 twig material was collected from tree 2451S 
growing at Paradise Wood, Earth Trust, Oxfordshire, UK. This tree was produced 
via self-pollination of a hermaphroditic F. excelsior tree growing in woodland in 
Gloucestershire (latitude 52.020592, longitude −​1.832804), UK, in 2002 as part 
of the FRAXIGEN project31. The parent tree was one of 19 trees that produced 
seed from self-pollination, and had lower heterozygosity at four microsatellite loci 
than the other 18 trees (D.B., unpublished observations). DNA was extracted from 
bud, cambial and wood tissues using CTAB32 and Qiagen DNeasy protocols. RNA 
was extracted using the Qiagen RNeasy protocol from leaf tissue of tree 2451S and 
from leaf, cambium, root, and flower tissue of its parent tree in Gloucestershire.

European Diversity Panel. In 2014, twig material was collected from 37 trees 
representing 37 European provenances in a trial of F. excelsior established in 2004 
at Paradise Wood, Earth Trust, Oxfordshire, UK, as part of the Realizing Ash’s 
Potential project. DNA was extracted from cambial tissue of the twigs using a 
CTAB protocol.

British Screening Panel. In 2015, freshly flushed leaf material was collected 
from a clonal seed orchard of F. excelsior growing at Paradise Wood, Earth Trust, 
Oxfordshire, UK, for RNA extraction and complementary DNA (cDNA) synthesis 
as in ref. 3. Single whole leaves were harvested from four ramets of each of 130 ash 
trees selected from phenotypically superior parents throughout Britain, which had 
been cloned by grafting.
2451S DNA sequencing and genome assembly. The genome size of 2451S was 
estimated by flow cytometry with propidium iodide staining of nuclei, using 
leaf tissue co-chopped with an internal standard using a razor blade. Three 
preparations were made: two with Petroselinum crispum ‘Curled Moss’ parsley as 
standard (2C genome size =​ 4.50 pg)33 and one with S. lycopersicum ‘Stupicke polnı 
rane’ (2C =​ 1.96 pg)34 as standard. The Partec CyStain Absolut P protocol was used 
(Partec, Germany). Each preparation was measured six times, with the relative 
fluorescence of over 5,000 particles per replicate recorded on a Partec Cyflow SL3 
(Partec, Germany) flow cytometer fitted with a 100-mW green solid state laser 
(Cobolt Samba; Cobolt, Sweden). The resulting histograms were analysed with 
the Flow-Max software (version 2.4, Partec). The measurement with the tomato 
internal standard was used as the best estimate of genome size, because the tomato 
genome size is closest to that of 2451S, yielding a more accurate result.

Genomic DNA of 2451S was sequenced using the following methods: (1) HiSeq 
2000 (Illumina, San Diego, California, USA) at Eurofins, Ebersberg, Germany, 
with 100 bp reads and shotgun libraries with fragment sizes of 200 bp, 300 bp and 
500 bp, and long jumping distance libraries with 3 kbp, 8 kbp, 20 kbp and 40 kbp 
insert sizes, generating 188×​ genome coverage; (2) 454 FLX+​ (Roche, Switzerland) 
at Eurofins with shotgun libraries and maximum read length of 1,763 bp and mean 
length of 642 bp giving 4.3×​ genome coverage; and (3) MiSeq (Illumina, San Diego, 
California) at the Earlham Institute, Norwich, UK, with 300 bp paired-end reads 
from a Nextera library with ~​5 kbp insert size, giving 16×​ genome coverage (see 
Supplementary Table 1). We assembled and released five genome assembly versions 
over the course of 3 years, details of which can be found in Supplementary Table 3.  
The most recent version assembled first into 235,463 contigs with a total size of 
663 Mbp and an N50 of 5.7 kbp (Supplementary Table 2), and after scaffolding and 
removing organellar scaffolds, the assembly comprised 89,487 scaffolds totalling 
867 Mbp (17% ‘N’) with an N50 of 104 kbp (Supplementary Table 2). The plastid 
genome was assembled separately into one circular contig of 155,498 bp, including 
an inverted repeat region of approximately 25,700 bp. The mitochondrial genome 
initially assembled into 296 contigs totalling 232 kbp. After several rounds of contig 
extension using overlaps of mapped 454 reads, the final assembly consisted of 26 
contigs totalling 581 kbp with an N50 of 60.6 kbp.

All Illumina reads from 2451S were trimmed using CLC Genomics Workbench 
(QIAGEN Aarhus, Denmark) versions 6–8 (depending on when the data were 
received) to a minimum quality score of 0.01 (equivalent to Phred quality score of 20),  
a minimum length of 50 bp, and were trimmed of any adaptor and repetitive 
telomere sequences. The MiSeq Nextera reads were also run through FLASH35 to 
merge overlapping paired reads, and NextClip36 to remove adaptor sequences, both 
used with default parameters. Roche 454 reads were trimmed to a minimum Phred 
score of 0.05, and minimum length of 50 bp. De novo assembly was performed with 
the CLC Genomics Workbench, using the 200 bp, 300 bp, 500 bp and 5 kbp insert 
size Illumina library reads to build the De Bruijn graphs. The remaining Illumina 
reads and the 454 reads were used as ‘guidance only reads’ to help select the most 
supported path through the De Bruijn graphs. A word size (k-mer, a substring of 
length k in DNA sequence data) of 50 and maximum bubble size of 5,000 were 
used to assemble the reads into contigs with a minimum length of 500 bp. Contigs 
were then scaffolded with the stand-alone tool SSPACE37 Basic version 2.0 using 

all paired Illumina reads, with the ‘-k’ parameter (number of mapped paired 
reads required to join contigs) set to 7. Gaps in the scaffolds were closed using the 
GapCloser version 1.12 program using all paired reads (except for long jumping 
distance libraries), with pair_num_cutoff parameter set at 7. Four hundred and 
fifty-four reads were mapped to the assembly and used to join overlapping scaffolds 
using the Jelly.py script from PBSuite38 version 14.7.14 with the following blasr 
parameters: -minMatch 11 -minPctIdentity 70 -bestn 1 -nCandidates 10 -maxScore 
-500 -noSplitSubreads. Contig57544 was removed from the assembly because it 
aligned fully to the PhiX bacteriophage genome, indicating it derived from the 
PhiX control library added to Illumina sequencing runs.

To assemble the plastid and mitochondrial genomes, high read depth 50 bp 
k-mers were extracted from the 200, 300 and 500 bp read libraries. Jellyfish39 
version 2.1.1 was used to count the depth for each k-mer, and these values were 
plotted in a scatterplot to identify peaks that could correspond to the organellar 
genomes. Every k-mer over 600×​ coverage was used in a BLAST search against 
the NCBI non-redundant (nr) database with a filter allowing only plant sequences; 
k-mers were then extracted on the basis of whether their first hit contained a 
‘mitochondrion’ or ‘plastid/chloroplast’ related description. Reads from the 200, 
300 and 500 bp libraries were then filtered against the k-mer sets, and were kept if 
the first and last 50 bp matched k-mers from the extracted sets (reads were at most 
90 bp long). Each set of reads (mitochondrial and plastid) were then assembled 
de novo using the CLC Genomics Workbench. The plastid genome assembled 
initially into two contigs, which were joined using an alignment to the O. europaea 
plastid genome (GenBank accession number NC_015401.1), with the inverted 
repeat region being identified also. Reads from the 454 library were mapped to 
the assembly to check the sequence and especially the join region. The mitochon-
drial genome assembled first into 296 contigs. To fill in gaps and join the contigs 
together, 454 reads were mapped against the assembly and contig ends were 
extended using the Extend Contigs tool in the CLC Genome Finishing Module. 
The Join Contigs tool was then used to join overlapping ends together, and 454 
reads were mapped to the resulting assembly to check any joined regions. Using 
this method of ‘Map-Extend-Join’ iteratively (approximately ten times in total),  
a more contiguous assembly of 26 contigs was obtained.
RNA sequencing. The five RNA samples (see ‘Tree Material’ above) were 
sequenced paired-end on Illumina HiSeq 2000 with 200 bp insert sizes, and a 
read length of 100 bp, at the QMUL Genome Centre, London, UK. Reads were 
trimmed using CLC Genomics Workbench to a minimum quality score of 0.01 
(equivalent to Phred score of 20) and minimum length of 50 bp, and adaptors were 
also removed (Supplementary Table 6).
Analysis of repetitive DNA. The repetitive element (transposable elements and 
tandem repeats) content of the ash genome was analysed via two approaches:  
(1) de novo identification of the most abundant repeat families from unassembled 
454 and Illumina reads; (2) de novo and similarity-based identification of repeats 
from the ash genome assembly.
De novo identification of repeat families from unassembled reads. Individual 
454 reads and Illumina read pairs from the 500 bp insert library (after adaptor 
trimming, but before any further quality control or filtering: see above) were 
used for de novo repeat identification. Reads were quality filtered and trimmed 
using the FASTX-Toolkit version 0.0.13 (http://hannonlab.cshl.edu/fastx_
toolkit/index.html). Using fastx_trimmer, the first 10 bp of all reads (454 and 
Illumina) were removed (owing to skewed base composition). The 454 reads were 
clipped to a maximum of 250 bp and Illumina reads to a maximum of 90 bp; all 
shorter reads were removed using a custom Perl script. Reads were then quality  
filtered with the fastq_quality_filter tool to retain only those where 90% of bases 
had a Phred score of at least 20. Exact duplicates (which are probably artefacts 
from the emulsion PCR40) were removed from the 454 reads using the fastx_ 
collapser tool.

The complete set of quality filtered and trimmed 454 reads (3,330,483) was used 
as input for the RepeatExplorer pipeline on Galaxy41, with a minimum of 138 bp 
overlap for clustering and a minimum of 100 bp overlap for assembly. All clusters 
containing at least 0.01% of the input reads were examined manually to identify 
clusters that required merging (that is, where there was evidence that a single 
repeat family had been split over multiple clusters). Clusters were merged if they 
met the following three criteria: (1) they shared a significant number of similarity 
hits (for example, in a pair of clusters, 10% of the reads in the smaller cluster 
had BLAST hits to reads in the larger cluster); (2) they were the same repeat type  
(for example, LINEs); (3) they could be merged in a logical position (for example, 
for repetitive elements containing conserved domains these domains would be 
joined in the correct order). The re-clustering pipeline was run with a minimum 
of 100 bp overlap for assembly; merged clusters were examined manually to verify 
that all domains were in the correct orientation.

Quality filtered and trimmed Illumina reads were paired using the FASTA 
interlacer tool (version 1.0.0) in RepeatExplorer, resulting in 111,230,011 pairs; 
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unpaired reads were discarded. An initial run of RepeatExplorer with a sample of 
100,000 read pairs was performed to obtain an estimate of the maximum number 
of reads that could be handled by the pipeline. A random sample of 3.5 million 
read pairs was then taken using the sequence sampling tool (version 1.0.0) 
in RepeatExplorer and used as input for the clustering pipeline, which further 
randomly subsampled the reads down to 3,370,186 pairs. The pipeline was run 
with a minimum of 50 bp overlap for clustering and a minimum of 36 bp overlap 
for assembly. Clusters containing at least 0.01% of the input reads were merged if 
kx,y passed the 0.2 cut-off (for clusters x and y, kx,y is defined as k1,2 =​ 2W/(n1 + n2) 
where W is the number of read pairs shared between clusters x and y and nx is the 
number of reads in cluster x which does not include the other read from its pair 
within the same cluster); clusters that passed this threshold but which had no 
similarity hits to each other were not merged. The re-clustering pipeline was run 
with a minimum of 36 bp overlap for assembly.

Repeat families identified by RepeatExplorer were annotated according to 
the results of BLAST searches to the Viridiplantae RepeatMasker library, to a 
database of conserved protein coding domains from transposable elements and 
to a custom RepeatMasker library comprising all Fraxinus sequences (excluding 
shotgun sequences), all mitochondrial genome sequences from asterids and 
all plastid genome sequences from Oleaceae available from NCBI (down-
loaded on 13 February 2014); these BLAST searches were performed as part 
of the RepeatExplorer pipeline. For repeat families that were not annotated in 
RepeatExplorer (that is, no significant BLAST hits), or where only very few reads 
(<​2%) had a BLAST hit or separate reads matched different repeat types (that is, 
inconsistent BLAST hits), contigs were also searched against the nr/nt database 
in GenBank using BLASTN with an E value cut-off42 of 1 ×​ 10−10, against the 
non-redundant database using BLASTX with an E value cut-off of 1 ×​ 10−5, and 
submitted to Tandem Repeat Finder version 4.07b with default parameters43. 
Annotation of repeat families from the clustering of the 454 and Illumina data 
was cross-validated by BLAST searching the contigs from each analysis against 
each other using the BLASTN program in the BLAST+​ package (version 2.2.28+) 
with an E value cut-off of 1 ×​ 10−10 and the DUST filter switched off. Any repeat 
families annotated as plastid or mitochondrial DNA were removed before down-
stream analyses (see below).
Identification of repeats from the genome assembly. De novo identification of 
repetitive elements from the assembled ash genome sequence was conducted with 
RepeatModeler version 1.0.7 (http://www.repeatmasker.org/RepeatModeler.html) 
using RMBlast as the search engine. All unannotated (‘unknown’) repeat families 
from the RepeatModeler library were searched against a custom BLAST database of 
organellar genomes (see above) using BLASTN with an E value cutoff of 1 ×​ 10−10 
in the BLAST+​ package (version 2.2.28+​ (ref. 44)). Any repeat families matching 
plastid or mitochondrial DNA were removed.

To prevent any captured gene fragments within repetitive element families 
causing the masking of protein coding genes within the ash assembly, the custom 
repeat libraries were pre-masked using the TAIR10 CDS data set45 (TAIR10_
cds_20101214_updated; downloaded from http://www.arabidopsis.org). First, 
transposonPSI version 2 (http://transposonpsi.sourceforge.net) was run with the 
‘nuc’ option to identify any transposable-element-related genes within the TAIR10 
CDS data set. Sequences with a significant hit to transposable-element-related 
sequences (E value cut-off of 1 ×​ 10−5) were removed from the TAIR10 CDS file 
(n =​ 308); a further 19 sequences that included the term ‘transposon’ in their 
annotation, but which did not have a hit using transposonPSI, were also removed. 
The filtered TAIR10 CDS data set was used to hard mask the RepeatModeler 
library, the RepeatExplorer libraries (454 and Illumina) and the library from 
RepeatMasker using RepeatMasker version 4.0.5 (http://www.repeatmasker.org) 
with RMblast as the search engine and the following parameter settings: -s –no_is – 
nolow. The four pre-masked libraries were combined into a single custom repeat 
library; any repeat families annotated as ‘rRNA’, ‘low-complexity’ or ‘simple’ were 
removed before combining the libraries. The combined library was then used 
to identify repetitive elements in the ash genome assembly with RepeatMasker 
version 4.0.5, using the same parameter settings as above. RepeatMasker results 
were summarized using ProcessRepeats with the species set to ‘eudicotyledons’ 
and using the ‘nolow’ option.

In addition to the analysis with the combined custom ash repeat library, repeats 
within the assembly were also annotated by running RepeatMasker separately with 
each of the four individual repeat libraries with parameter settings as described 
above. The results were saved in gff format and combined into a single gff file that 
was then used to inform the process of annotating protein coding genes (see below, 
‘Gene annotation’).

Although the ash genome assembly covers about 99% of the expected genome 
size based on flow cytometry, about 17% is composed of Ns. Therefore, the 
repeat content of the genome assembly may be an underestimate of the actual 
amount of repetitive DNA within the genome. To test whether the about 18% of 

missing sequence includes additional repetitive elements we analysed the repeat 
content of individual Illumina reads that do not map to the genome assembly. 
Quality-trimmed and length-filtered reads from the Illumina short insert libraries 
(Supplementary Table 1) were mapped to the assembly using the ‘Map Reads to 
Reference’ tool in the CLC Genomics Workbench, with both similarity match and 
length match parameters set to 0.90. Unmapped reads from the 200 bp, 300 bp and 
500 bp insert libraries (equating to about 4.8% of all reads from these libraries; see 
Supplementary Table 1) were searched against the custom library of ash repeats 
using BLASTN (see Supplementary Table 5) with an E value cut-off of 1 ×​ 10−10 and 
the DUST filter switched off in the BLAST+​ package (version 2.2.29+​ (ref. 44)).

To test for evidence of the expression of transposable elements, trimmed RNA 
sequencing reads from five different tissue types (see Supplementary Table 7) were 
searched against the custom library of ash repeats using BLASTN as described 
above for the unmapped DNA sequencing reads.
Gene annotation. Protein coding genes were predicted using an evidence-based 
annotation workflow incorporating protein, cDNA and RNA-seq alignments. 
Protein sequences from nine species (Amborella trichopoda, A. thaliana, Fraxinus 
pennsylvanica, M. guttatus, Populus trichocarpa, S. lycopersicum, Solanum 
tuberosum, V. vinifera and Pinus taeda; Supplementary Table 8) were soft masked 
for low complexity (segmasker-blast-2.2.30) and aligned to the softmasked (for 
repeats) final 2451S assembly with exonerate46 protein2genome version 2.2.0; 
alignments were filtered at a minimum 60% identity and 60% coverage, except 
for F. pennsylvanica, which were filtered at a minimum of 80% identity and 60% 
coverage. Publicly available F. excelsior expressed sequence tags (12,083 from 
GenBank) were aligned with GMAP (r20141229)47 and filtered at a minimum 
95% identity and 80% coverage.

RNA-seq reads from the five sequenced RNA samples were filtered for 
adaptors and quality trimmed, rRNA reads were identified and removed48 (trim_
galore-0.3.3 http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/: -q  
20–stringency 5–length 60; sortmerna-1.9: -r 0.25–paired-out). RNA-seq 
reads were aligned using TopHat (version 2.0.13/Bowtie 2.2.3)49 and transcript 
assemblies were generated using three alternative methods: Cufflinks (version 
2.2.1)50, StringTie (version 1.04)51 and Trinity (genome-guided assembly)52. 
Assembled Trinity transcripts were mapped to the F. excelsior assembly using 
GMAP (r20141229) at 80% coverage and 95% identity. A comprehensive 
transcriptome assembly was created using Mikado (version 0.8.5, https://github.
com/lucventurini/mikado, L. Venturini, manuscript in preparation) on the basis 
of the GMAP Trinity alignments, Cufflinks and StringTie transcript assemblies. 
Mikado leverages transcript assemblies generated by multiple methods to improve 
transcript reconstruction. Loci are first defined across all input assemblies with 
each assembled transcript scored on the basis of metrics relating to open reading 
frame and cDNA size, relative position of the open reading frame within the 
transcript, untranslated region length and presence of multiple open reading 
frames. The best scoring transcript assembly is then returned along with additional 
transcripts (splice variants) compatible with the representative transcript.

Protein coding genes were predicted using AUGUSTUS53 by means of a generalized  
hidden markov model that took both intrinsic and extrinsic information into 
account. An AUGUSTUS ab initio model was generated on the basis of a subset 
of cufflinks assembled transcripts identified by similarity support as containing 
full-length open reading frames. Gene models were predicted using the trained  
ab initio model with the nine sets of cross species protein alignments, RNA-seq 
junctions (defining introns), and Mikado transcripts as evidence hints. RNA-seq 
read density was provided as exon hints and repeat information (interspersed 
repeats) as nonexonpart hints. We generated two alternative AUGUSTUS models 
by either including or excluding the RNA-seq read depth information. A set of 
integrated gene models was derived from the two AUGUSTUS runs along with 
the transcriptome and protein alignments via EVidenceModeller:r20120625 
(EVM)54. Weights of evidence were manually set following an initial testing and 
review process as AUGUSTUS predictions with RNA-seq read depth hint, weight 2;  
AUGUSTUS predictions without RNA-seq read depth hint, weight 1; protein 
alignment high confidence (greater than 90% coverage, 60% identity) weight 5;  
protein alignment low confidence (lower than 90% coverage, 60% identity) 
weight 1; cufflinks transcripts, weight 1; Mikado transcripts, weight 10; RNA-seq 
splice junctions, weight 1. We identified examples of EVM errors resulting from 
incomplete genes in the AUGUSTUS gene predictions or non-canonical splicing; 
to rectify these problems we substituted the EVM model for the overlapping 
AUGUSTUS model (with RNA-seq read depth hints). To add untranslated region 
features and alternative splice variants we ran PASA55 with Mikado transcript 
assemblies and available F. excelsior expressed sequence tags using the corrected 
EVM models as the reference annotation.

The PASA updated EVM models were further refined by removing gene 
models that showed no expression support (using all available RNA-seq libraries) 
or had no support from cross species protein alignments or no BLAST similarity  
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support with a Viridiplantae (without F. excelsior) protein database (<​50% 
BLAST high-scoring segment pair coverage) or where the CDS length was less 
than 100 bp (retaining those transcripts with ≥​50% BLAST high-scoring segment 
pair coverage). Gene models were also excluded if they aligned with at least 30% 
similarity and 40% coverage to the TransposonPSI (version 08222010) library 
(http://transposonpsi.sourceforge.net/) and had at least 40% coverage by the 
RepeatModeler/RepeatMasker derived interspersed repeats. In addition, gene 
models that had at least 30% similarity and 60% coverage to the TransposonPSI 
library or had at least 60% coverage by the RepeatModeler/RepeatMasker derived 
interspersed repeats were also excluded. The functional annotation of protein 
coding genes was generated using an in-house pipeline, AnnotF-1.01, which 
executes and integrates the results from InterProSCAN (version 5) and Blast2GO 
(version 2.5.0). Completeness of transcript models was classified by Full-lengther 
Next56 and coherence in gene length examined by comparison with single copy 
gene BLAST hits in monkey flower (Extended Data Fig. 1).

Transfer RNA genes were predicted by tRNAscanSE-1.3.1 with eukaryote 
parameters57 and rRNAs using RNAmmer-1.2 (ref. 58). miRNA was predicted 
by BLASTN searches with precursor miRNAs from miRBase59 21.0 against the 
reference genome sequence (BLAST 2.2.30, E value 1 ×​ 10−6) and miRCat60 
using the mature miRNAs from miRBase with default plant parameters, except 
modifying the flanking window to 200 bp. Putative miRNA precursors from 
these methods were combined and were folded using RNAfold61 and mature 
miRNAs from miRBase were aligned to precursor hairpins using PatMaN62. These 
predictions were checked manually for RNA secondary structure.

Organellar genes were annotated manually using the BLAST tool within the 
CLC Genomics Workbench version 7.5. Mitochondrial genes were identified using 
CDS from M. guttatus, Nicotiana tabacum and A. thaliana (all downloaded from 
NCBI). Plastid genes were identified using CDS from O. europaea and N. tabacum 
(both downloaded from NCBI). An E value cut-off of 1 ×​ 10−4 was used. Gene and 
CDS annotations were added manually to the F. excelsior organellar scaffolds using 
the sequence editing tools available within the CLC Genomics Workbench. In the 
plastid genome, we annotated 72 protein-coding, 7 putative coding (ycf), rRNA 
and tRNA genes. On the mitochondrial scaffolds, we annotated 37 protein-coding, 
rRNA and tRNA genes.
Analysis of whole-genome duplications. To examine evidence for past whole-
genome duplication, CDS and protein sequences (one transcript per gene) were 
taken from our ash genome annotation, and downloaded from Phytozome 
version 10.3 for tomato (S. lycopersicum), monkey flower (M. guttatus)  
and grape (V. vinifera), the CoGe database for bladderwort (U. gibba) and  
http://coffee-genome.org for coffee (C. canephora). For olive (O. europaea) we 
predicted open reading frames from transcriptome data63 using Transdecoder52 
with all parameters set to defaults (version 2.01, http://transdecoder.github.io). 
Olive63 is in the same family as ash (Oleaceae); monkey flower8 and bladderwort64 
are in the same order as ash (Lamiales); tomato4 and coffee65 are in different orders 
(Solanales and Gentianales, respectively), but like ash in the asterids; and grape66 
is a rosid. An all-against-all comparison using protein sequences was performed 
on each species separately using BLASTP version 2.2.29, with an E value cut-off 
of 1 ×​ 10−5. BLAST alignments were further filtered to retain pairs for which the 
shorter sequence was at least 50% of the longer sequence, and the alignment was at 
least 50% of the shorter sequence. If one sequence had multiple matches meeting 
the length and E value thresholds, these were grouped into a paralogue group, 
including any other genes that were associated with the matches (for example, 
if gene A matches gene B and gene C, and gene C also matches gene D, then one 
group of A, B, C and D would be formed).

Next, all possible pairs of protein sequences within each group were aligned 
using muscle version 3.8.31 with default parameters67. A nucleotide alignment 
was generated from the protein alignment using a Python script. Synonymous 
substitutions were estimated using the codeml program from PAML version 4.8 
(ref. 68). The Ks scores within each group were then corrected to remove redundant 
values; only those representing duplication events within the group were retained 
(in a group of n genes, there are n −​ 1 possible duplication events) using the method 
described in refs 9 and 69. These steps are implemented in a Python script available 
online: http://github.com/EndymionCooper/KSPlotting.

To examine patterns of conserved synteny, we constructed syntenic dotplots 
using the SynMap70 with default parameters (Extended Data Fig. 2). The default 
uses LAST71 to perform similarity searches, and DAGchainer72 to find syntenic 
regions. By default DAGchainer requires a minimum of 5 aligned gene pairs with 
no more than 20 genes between neighbouring pairs.

Pairs of genes were categorized as ‘local’ duplications if they were located on 
the same chromosome or scaffold and resided within ten genes of each other, and 
as ‘tandem’ duplications if they reside directly next to each other. Gene Ontology 
term enrichment was performed on ash proteins using the BLAST2GO plugin 
suite of tools within the CLC Genomics Workbench version 8.5. Three separate 

BLAST searches were run against the RefSeq protein database: first using CDS 
from all genes as queries, second using CDS from genes involved in whole-
genome duplication (excluding locally duplicated genes), and third using CDS 
from locally duplicated genes (genes located within ten genes of each other). The 
E value cut-off for all BLAST runs was 1 ×​ 10−5. BLAST results were annotated 
with Gene Ontology terms using the ‘Mapping’ and ‘Annotation’ tools within the 
BLAST2GO plugin, using default parameters except for Annotation Cutoff =​ 55 
and high-scoring segment pair-hit coverage cutoff =​ 40. Significantly enriched 
Gene Ontology terms were identified using the Fisher’s exact test tool within the 
plugin, where the reference set was the Gene Ontology terms for all genes, and a 
false discovery rate of 0.05 was used.
Analysis of gene families. The OrthoMCL pipeline (version 2.0.9)73 was used to 
identify clusters of orthologous and paralogous genes from F. excelsior and the 
following: Amborella74, Arabidopsis75, barrel medic76, bladderwort64, coffee65, 
grape66, loblolly pine77, monkey flower8, poplar78 and tomato4 (Supplementary 
Table 10). Input proteomes contained a single transcript per gene and were filtered 
with orthomclFilterFasta to remove any sequences of fewer than ten amino acids 
in length and/or >​20% stop codons. Similar sequences were identified via an all 
versus all BLASTP search for the 362,741 proteins remaining after filtering. The 
BLAST search was performed in the BLAST+​ package44 (version 2.2.29+​), using 
an E value cut-off of 1 ×​ 10−5. BLAST results were filtered with orthomclPairs 
to retain protein pairs that match across at least 50% of the length of the shorter 
sequence in the pair. Clustering of sequences was performed with mcl79 (version 
14.137) using a setting of 1.5 for the inflation parameter. The output from 
OrthoMCL was summarized using a custom Perl script to obtain counts of the 
number of sequences from each species belonging to each group. Venn diagrams 
for selected taxa were generated using InteractiVenn80.
European Diversity Panel sequencing. DNA from the 37 European Diversity 
Panel trees was sequenced at the Earlham Institute on Illumina HiSeq, using 
paired-end insert sizes between 100 and 700 bp, and a read length of 150 bp. This 
generated an average of 63.6 million 150 bp reads (10.9×​ genome coverage) per 
tree. Filtering and trimming steps reduced this average to 55.3 million reads. An 
average of 85.8% of these reads per tree mapped to our reference genome. In 
addition, DNA reads from Danish Tree35 library ‘3077’ were downloaded from 
the Open Ash Dieback website (http://oadb.tsl.ac.uk); these were 250 bp paired-
end reads with an insert size between 200 and 400 bp. Tree35 is given the sample 
number ‘38’ in all further population analysis.
European Diversity Panel genome-wide SNP calling. The raw reads from the 37 
trees in the European Diversity Panel (Supplementary Table 11) were aligned to 
the reference genome using Bowtie 2.2.5 (ref. 81). The alignments were converted  
to BAM format and duplicated reads were removed with samtools 1.2  
(ref. 82). To assign each read to its corresponding tree, the flag ‘rg’ was added to 
each BAM file with picard tools 1.119 (http://broadinstitute.github.io/picard/). 
SNPs were called with freebayes 1.0.2 (ref. 10) to produce a VCF file. The SNPs 
with quality less than 300 were filtered with bio-samtools 2.1 (ref. 83). SnpEff 4.1g 
(ref. 84) was used to predict the effect of the putative SNPs (see Supplementary 
Table 12). Genic regions were within 5 kbp from a gene model. Amino-acid changes 
were labelled as missense_variant.
SNP call validation using the KASP platform. To test the reliability of SNP calls in 
the genome-wide SNP calling, we designed KASP assays for 53 SNPs, which ranged 
in their level of confidence (see Supplementary Table 13). None of the SNP calls 
tested by KASP were present in the reduced SNP set used for population genetic 
analyses. Primers were designed with a modified version of PolyMarker85 including  
FAM or HEX tails (FAM tail: 5′​-GAAGGTGACCAAGTTCATGCT-3′​; HEX  
tail: 5′​-GAAGGTCGGAGTCAACGGATT-3′​). The primer mix was prepared as 
recommended by the manufacturer (46 μ​l distilled H2O, 30 μ​l common primer 
(100 μM) and 12 μ​l of each tailed primer (100 μM)) (http://www.lgcgroup.com/
services/genotyping). The assays were run on 37 individuals from the European 
Diversity Panel, in 384-well plates as 4 μ​l reactions (2-μ​l template (10–20 ng of 
DNA), 1.944 μ​l of V4 2×​ Kaspar mix and 0.056 μ​l primer mix). PCR was done with 
the following protocol: hotstart at 95 °C for 15 min, followed by ten touchdown 
cycles (95 °C for 20 s; touchdown 65 °C, −​1 °C per cycle, 25 s) then followed by 30 
cycles of amplification (95 °C for 10 s; 57 °C for 60 s). Fluorescence was detected on 
a Tecan Safire at ambient temperature. Genotypes were called using Klustercaller 
software (version 2.22.0.5; LGC Hoddesdon, UK). Four of the individuals did 
not amplify and were discarded from the analysis. The results of the calls are in 
Supplementary Data 7.
European Diversity Panel population genetics and history using a reduced set of 
SNPs. For population structure analyses and effective population size estimation, 
variants were only called at SNP sites in the genome where all 38 samples had 
between 5×​ and 30×​ coverage. We refer to this as the ‘reduced SNP set’.

First, all reads were trimmed in the CLC Genomics Workbench to a minimum 
quality score of 0.01 (equivalent to Phred quality score of 20), a minimum length 
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of 50 bp, and were also trimmed of any adaptor and repetitive telomere sequences. 
Filtered reads were mapped to the reference assembly using the ‘Map Reads to 
Reference’ tool in the CLC Genomics Workbench, setting both similarity match 
and length match parameters to 0.95. Regions with coverage of between 5 and 30 
reads in all samples were extracted using the ‘Create Mapping Graph’, ‘Identify 
Graph Threshold Areas’ and ‘Calculus Track’ tools. These extracted regions totalled 
20.6 Mbp (2.3% of the genome).

Variant calling was performed on a read mapping pooled from all samples, 
using the ‘Low Frequency Variant Caller’ tool in the CLC Genomics Workbench, 
with the coverage-restricted regions from the previous step used as a track of 
target regions. This prevented variants being called where some samples did not 
have read coverage, and in the organellar scaffolds where the read coverage was 
very high. The following parameters were changed from default: Ignore positions 
with coverage above =​ 1,000, Ignore broken pairs =​ no, Ignore non-specific 
matches =​ Reads, Minimum Coverage =​ 190 (38 samples with at least 5 reads 
each should have a combined total coverage of >​189), Minimum Count =​ 10, 
Minimum Frequency =​ 5%, Base Quality Filter =​ Yes, Neighbourhood radius =​ 5, 
Minimum Central Quality =​ 20, Minimum neighbourhood quality =​ 15, Read 
Direction Filter =​ yes, Direction Frequency =​ 5%. As a result, 529,812 variants were 
called, comprising 468,237 SNPs, 14,850 equal replacements (where >​1 nucleotide 
is replaced by an equal number of nucleotides), 26,043 deletions, 19,085 insertions 
and 1,597 unequal replacements (where at least one SNP lies directly beside an 
indel). The average quality of all reads at these variant positions was 36.2.

To genotype each sample individually at the variant loci called in the previous 
steps, the ‘Identify Known Mutations from sample mappings’ tool within the CLC 
Biomedical Genomics workbench was used. The workflow takes a track of known 
variants as input (such as those called from the pooled read mapping) and reports 
the presence, absence, coverage, count and other statistics of each variant locus in 
the read mapping of another sample (in this case, the read mapping from each of 
the 38 trees). The ‘Identify Candidate Variants’ tool was then used to filter variants 
with a minimum coverage of 5, minimum count of 3 and minimum frequency of 
20%. VCF files for each tree were exported from the CLC Workbench and merged 
into one file using the vcf-merge tool from VCFtools86. The merged VCF file was 
then filtered using vcftools, to remove indels, multi-allelic loci, and loci with a 
minimum allele frequency <​ 0.05, with 394,885 SNP loci remaining. This set of 
high-quality SNPs with comprehensive knowledge of the genotype of every sample 
was referred to as the ‘reduced SNP set’ and used for further population analyses.

To visualize similarities and differences among the genomes of the European 
Diversity Panel, PCA was performed using the SNPRelate version 1.4.2 (ref. 87) 
package in R version 3.1.2. The filtered VCF file was converted into gds using 
the snpgdsVCF2GDS command, and was filtered on a linkage disequilibrium 
value of 0.1 using the snpgdsLDpruning command, leaving 34,607 SNPs. PCA 
was performed on the pruned set of SNPs using the snpgdsPCA command with 
default options, and the results of the first three PCs were plotted in R.

To analyse population structure in the European Diversity Panel, scaffolds were 
selected that contained 10 or more SNPs in the filtered VCF file (8,955 nuclear 
scaffolds in total). Three different SNPs were selected at random from each of 
these scaffolds, and placed into three different files in STRUCTURE input format 
(26,865 SNPs in total, 8,955 in each set). STRUCTURE version 2.3.4 (ref. 88) was 
run with admixture from k =​ 1 to k =​ 20 for each of the three sets of SNPs, with 
both BURNIN and NUMREPS set to 100,000. All output results were run through 
Structure Harvester Web version 0.6.94 (ref. 89), which found k =​ 3 to have the 
largest Δ​k value of 32.91 (Extended Data Fig. 3). Next, the three runs of k =​ 3 were 
used as input into CLUMPP version 1.1.2 (ref. 90) to align the clusters, and samples 
within each cluster. Aligned results were imported back into STRUCTURE version 
2.3.4 to generate Q value bar plots. Average Q values from the three runs were 
used to generate a map with pie charts, using Tableau version 9.3 (Tableau, Seattle, 
USA) with Tableau base-map country outlines. Each section of the pie represented 
the average Q value of the individual belonging to the coloured cluster (Fig. 2b).

To analyse relationships among plastid sequences in plastid haplotype networks, 
a consensus sequence of the large single copy plastid region was extracted for each 
of the 38 samples. The sequences were then aligned using the Create Alignment 
tool in the CLC Genomics Workbench, and the alignment was exported in Phylip 
format. The alignment was imported into PopArt version 1.7 (http://popart.otago.
ac.nz), where a Median Joining network was generated. Results were visualized on 
a map using Tableau version 9.3 (Fig. 2a) with Tableau base-map country outlines.

We estimated the effective population size history of F. excelsior using two 
complementary methods: the PSMC14 model estimated the history in the non-
recent past, whereas by using linkage disequilibrium, we could estimate the 
population size more recently. The PSMC model calculated the effective population 
size using a time to most recent common ancestor approach. The effective 
population size history was then estimated from the number of recombination 
events separating segments of constant time to most recent common ancestor. The 

program PSMC 0.6.5 (ref. 14) took only a diploid consensus sequence as input.  
To estimate past effective population size, PSMC analysis was used on the reference 
tree. DNA reads from the 2451S 200, 300 and 500 bp libraries were mapped to 
the 2451S reference sequence using CLC Genomics Workbench ‘Map Reads to 
Reference’ tool (length fraction =​ 0.95 and similarity fraction =​ 0.9). The mapping 
was exported in BAM format, and a consensus sequence was obtained following 
PSMC recommendations, by using samtools version 0.1.18 ‘mpileup’ command 
with options -C 50 -A -Q 20 -u, bcftools version 1.1 to convert the BCF file to VCF 
format, and finally using vcfutils.pl to convert the VCF file to a consensus sequence 
where the coverage was between 5 and 200. The PSMC program was then run with 
default parameters except for -p ‘4+​25*​2+​4+​6’, with 100 bootstraps. To scale the 
results, the psmc_plot.pl script was used with default parameters except for the 
following: -u 7.5e-09 -g 15 -N 0.25 (the mutation rate of F. excelsior was unknown, 
so the substitution rate of 7.5 ×​ 10−9 was taken from a study on A. thaliana91). 
Effective population size estimates were then plotted in R version 3.1.2 (Fig. 2f).

Effective population size estimation by linkage disequilibrium in the European 
Diversity Panel was performed using the program SNeP version 1.1 (ref. 92), which 
takes genome-wide polymorphism data from several individuals in a population as 
input. The European Diversity Panel filtered VCF file with the reduced SNP set of 
38 trees (the same as used in PCA and STRUCTURE analysis) was converted into 
Map and Ped files. The third column in the Map file (linkage distance in morgans) 
was set to zero for all SNPs, as these values were unknown and SNeP calculates 
this value from each SNP’s physical distance. SNeP was then run with a minimum 
distance between SNPs of 10,000 bp and a maximum of 400,000 bp, with Sved’s 
modifier for recombination rate, and with 50 bins. Estimated effective population 
sizes were plotted in R (Extended Data Fig. 3c), as well as linkage disequilibrium 
decay over distance between 100 and 300,000 bp (Fig. 2e).
Simple-sequence repeat analysis. To develop accessible population genetic 
markers, the repeat masked version 0.4 2451S genome was mined for simple 
sequence repeat (SSR) sequences (a repeat motif of 2–5 bp in length repeated a 
minimum of five times) using the QDD version 3.1 pipeline93. Downstream QDD 
version 3.1 pipes screened SSR loci (inclusive of the SSR repeat motif and 200 bp 
forward and reverse flanking regions) for singleton sequences in an all-against-
all BLAST (-task blastn -evalue 1e-40 -lcase_masking -soft_masking true) and 
designed primer pairs within 200 bp flanking regions using PRIMER3 software94.
The approximately 31,300 singleton SSR loci identified in the ash genome were 
screened using RepeatMasker Open-4.0 (http://www.repeatmasker.org) in QDD 
version 3.1 to eliminate loci that hit known transposable elements in the RepBase 
Viridiplantae repeat library (http://www.girinst.org), leaving about 28,800 SSR 
loci. The final primer table output by the QDD version 3.1 pipeline allows selection 
of the best primer pair design for each SSR loci. To select candidate markers for 
further development, these primer pairs were filtered according to parameters 
provided by QDD version 3.1. The selected SSR loci had a: maximum primer 
alignment score of 5; minimum 20 bp forward and reverse flanking region between 
SSR and primer sequences; high-quality primer design (defined by QDD pipeline 
as an absence of homopolymer, nanosatellite and microsatellite sequence in primer 
and flanking sequences); and minimum number of 7 motif repeats within the SSR 
sequence. This filtering gave a set of 837 SSR loci, which was screened against 
the combined custom ash repeat library for v0.5 of the 2451S genome assembly  
(see above: ‘Analysis of repetitive DNA’) via a BLASTN search with an E value of 
1 ×​ 10−10 in the BLAST+​ package (version 2.2.31+​). Elimination of all sequences 
with a hit to known repetitive elements left 681 candidate loci. These were 
compared with the v0.5 assembly via a BLASTN search with an E value cut-off of 
1 ×​ 10−10. This returned a set of 664 loci with a unique match to the v0.5 assembly 
for use as population genetic markers (see Supplementary Data 1).

In silico analysis of allelic diversity (that is, locus polymorphism) of these SSR 
loci was performed by screening a subset of loci (366) against a variance table 
composed of insertions and deletions recorded for the European Diversity Panel. 
Approximately half (48%) of the loci tested were variable among 37 of the re-
sequenced genomes (sample 38 not included). Twenty candidate SSR loci with 
the greatest in silico allelic diversity were selected for wet laboratory testing on 
seven individuals from the European Diversity Panel. Primer pairs with a fluo-
rescent tag on the 5′​ end of the forward primer (FAM, HEX or TAM) were used. 
For singleplex PCR, primer aliquots were used at a concentration of 10 pmol/μ​l. 
PCR amplification of target regions was performed in singleplex reactions with a 
final reaction volume of 10 μ​l, containing 1 μ​l genomic DNA, 0.2 μ​l of each primer 
(10 pmol/μ​l), 3.6 μ​l of RNase free water, and 5 μ​l of Qiagen Type-it Multiplex PCR 
Master Mix, in a G-Storm GS2 Multi Block Thermal Cycler. The amplification 
conditions were as follows: 5 min at 95 °C; 18 cycles of 30 s at 95 °C, 90 s at 62 °C 
with a 0.5 °C reduction per cycle, 30 s at 72 °C; 20 cycles of 30 s at 95 °C, 1 min 30 s 
at 51 °C, 30 s at 72 °C; a final extension step of 30 min at 60 °C. PCR samples were 
diluted to 1:10 with distilled H2O and run (on an Applied Biosystems 3730xl 96 
capillary sequencing instrument with Applied Biosystems GeneScan 400HD Rox 
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dye size standard). Negative control samples were included for each primer pair 
PCR reaction mix. Allele calling was performed using GeneMarker version 2.6.4 
(http://www.softgenetics.com).

Primer pairs that produced interpretable allele peaks from capillary sequencing 
of singleplex reactions were arranged into four multiplex primer mixes (containing 
five primer pairs each) according to PCR product size and fluorescent tag. Multiplex 
primer mixes were tested on DNA extractions for a further 14 of the 37 trees  
from the European Diversity Panel. For each multiplex, primer pair mixes were  
prepared at a final concentration of 10 pmol/μ​l and amplified via PCR in 10 μ​l  
reaction volumes (1 μ​l genomic DNA, 1 μ​l primer mix, 3 μ​l of RNase free water, 
and 5 μ​l of Qiagen Type-it Multiplex PCR Master Mix) under the amplification 
conditions described above. PCR product size range, allele counts, primer design 
and successful multiplex panels for the 20 wet laboratory tested candidate SSR 
markers developed for European ash are described in Supplementary Data 1.

Further multiplex primer mixes were tested on 7 trees from the European 
Diversity Panel for amplification of the longest SSR loci (14 or more repeated 
motifs). Primer pair mixes were prepared at a final concentration of 10 pmol/μl  
and amplified via PCR in 8 μ​l reaction volumes (1 μ​l genomic DNA from a 1:10 
dilution with nuclease free water, 1 μ​l primer mix, 2 μ​l of RNase free water, and 4 μ​l of 
Qiagen Type-it Multiplex PCR Master Mix.). The amplification conditions were as 
follows: 5 min at 95 °C; 32 cycles of 30 s at 95 °C, 90 s at 62 °C with a 0.35 °C reduction 
per cycle, 30 s at 72 °C; a final extension step of 30 min at 60 °C. Amplification was 
performed in a G-Storm GS2 Multi Block Thermal Cycler. Size fraction analysis  
of PCR products was performed for two samples of each tested primer multiplex 
using a 12 sample DNA1000/7500 chip in an Agilent 2100 Bioanalyzer  
(http://www.genomics.agilent.com). Of the 28 primer pairs tested, 22 successfully 
amplified across the six primer multiplexes tested (Supplementary Data 1).
Association of transcriptomic markers with reduced susceptibility to ADB 
in Denmark. Sequence reads for the ‘Danish Scored Panel’ of 182 Danish ash 
accessions (as described in ref. 3; sequence reads are available in the European 
Nucleotide Archive under the study accession number PRJEB10202) were 
mapped to a reference composed of the complete set of CDS models (including 
229 genes identified as possible transposable elements; see above: ‘Gene 
annotation’). This provided transcript abundance estimates for 40,133 CDS 
models (Supplementary Data 2). Transcript abundance was quantified and 
normalized as reads per kilobase pairs per million aligned reads (RPKM). 
After filtering out models exhibiting negligible expression (mean RPKM value 
of below 0.4), 33,204 CDS models were analysed as potential gene expression 
markers (GEMs; Supplementary Data 3). SNPs were called by the meta-
analysis of alignments (as described in ref. 95) of mRNA-seq reads obtained 
from each of the 182 accessions. SNP positions were excluded if they did 
not have a read depth in excess of 20, a base call quality above Q20, missing 
data below 0.25, and three alleles or fewer. An additional noise threshold  
was used to reduce the effect of sequencing errors, whereby ambiguous bases were 
only allowed to be called if both bases were present at 0.15 or above. This resulted 
in a final set of 394,006 SNPs (Supplementary Data 4) of which 234,519 had minor 
allele frequencies in excess of 0.05, and all of which were within the CDS models 
constituting the GEM panel.

The SNP data set for the 182 accessions was entered into the program PSIKO96 
to produce a Q matrix, which was composed of two population clusters. The SNP 
genotypes, Q matrix and ADB damage scores for these trees3 were incorporated 
into a compressed mixed linear model97 implemented in the GAPIT R package98, 
with missing data imputed to the major allele. The kinship matrix used in this 
analysis was also generated by GAPIT.

GEM associations were calculated by a fixed effect linear model in R with 
RPKM values and the Q matrix inferred by PSIKO as the explanatory variables 
and damage score the response variable. Coefficients of correlation (r2), regression 
coefficients, constants and significance values were outputted for each regression.

Twenty GEMs were associated with damage scores (Supplementary Data 3).  
A previous analysis of the gene expression data, based on a simple mRNA 
transcript reference, identified only 13 GEMs associated with ADB dam-
age in ash3, with the strongest associations exhibiting higher P values than the 
present study (best P values 5.31 ×​ 10−12 and 9.83 ×​ 10−13, respectively). The 
CDS models for the top three GEMs identified in the present study had very 
high BLAST similarity to the transcripts for two of the GEMs identified in the 
previous study. FRAEX38873_v2_000173540.4 (P =​ 1.95 ×​ 10−10) corresponded 
with Gene_23247_Predicted_mRNA_scaffold3380 from the previous study, but 
Gene_19216_Predicted_mRNA_scaffold2427 resolved into two distinct CDS 
models in the present study (FRAEX38873_v2_000261470.1, P =​ 9.83 ×​ 10−13 
and FRAEX38873_v2_000199610.1, P =​ 6.01 ×​ 10−12). The qRT–PCR primers 
designed for the previous analysis3 were adequate for assaying FRAEX38873_
v2_000173540.4 and FRAEX38873_v2_000261470.1 and new primers were 
designed for FRAEX38873_v2_000199610.1.

Two of the 20 significantly associated GEMs in the present study, FRAEX38873_
v2_000048360.1 (P =​ 1.77 ×​ 10−9) and FRAEX38873_v2_000048340.1 
(P =​ 3.48 ×​ 10−7), did not have high BLAST similarity to GEMS found in the 
previous study. However, these GEMs were highly similar to a cDNA transcript 
containing a predictive A/G SNP (termed a cSNP) identified previously, where 
presence of a G allele was associated with low damage scores. Both of these GEMS 
contained the ‘less susceptible’ G variant. A third paralogous gene in this family 
with the A variant was also found (FRAEX38873_v2_000184430.1), and was not 
identified as a GEM associated with damage score (P =​ 0.02). The present study 
therefore resolves this cSNP marker into three paralogous genes, two fixed for a 
‘less susceptible’ G nucleotide, and one a ‘susceptible’ A nucleotide.

These five GEMs were applied using qRT–PCR, and, in the case of 
FRAEX38873_v2_000048360.1 and FRAEX38873_v2_000048340.1 RT–PCR, 
to a small test panel of 58 Danish accessions (henceforth ‘Danish Test Panel’) to 
assess their predictive capabilities in a similar way as in ref. 3. Unlike this previous 
study, however, ratios between the bases of the FRAEX38873_v2_000048360.1 and 
FRAEX38873_v2_000048340.1 were scored by eye (instead of simply scoring the 
presence or absence of the ‘less susceptible’ nucleotide), to estimate levels of gene 
expression for the ‘less susceptible’ paralogue, while maintaining the simplicity of 
the assay. These ratios and the qRT–PCR assays for the other three GEMs were 
combined into a single predicted damage score for each of the Danish Test Panel, 
which could then be compared with the observed damage scores for these trees. 
The combined prediction was correlated with the log mean damage scores for 
2013–2014 (r2 =​ 0.25, P =​ 6.9 ×​ 10−5) which gave a small improvement in predic-
tive power from the previous analysis (r2 =​ 0.24, P <​ 8.4 ×​ 10−5).
Screening of UK F. excelsior accessions for markers of reduced susceptibility 
to ADB. Four markers were selected for predictive marker assays on the basis of 
this analysis and previous work on the Danish Test Panel of 58 trees3. The three 
GEM markers most highly associated with disease damage were assayed by qRT–
PCR using the following primer combinations: FRAEX38873_v2_000261470.1 
(GTCGAGGAGGATGGTCAGTCAT, AATCTTGCGGAGGACCTATCG), 
FRAEX38873_v2_000199610.1 (GGTGAGAGGAAAGGTTCAAATGA, 
TGCGTTTTGAGAAGGAAACCA), FRAEX38873_v2_000173540.4 
(AGGGCAAGGCTTGGAAACAT, TAGGCTTTTTTCTAGCTGCTTGTCA) and 
GAPDH reference (CTGGGATCGCTCTTAGCAAGA, CGATCAAATCAATC 
ACACGAGAA).

Using RNA extracted from the British Screening Panel, qRT–PCR reactions 
were performed with SYBR Green fluorescence detection in a qPCR thermal cycler 
(ViiATM 7, Applied Biosystems, San Francisco, California) using optical grade 384-
well plates, allowing all reactions to be performed simultaneously for each target  
gene. Each reaction was prepared using 3 μ​l from a 2 ng/μ​l dilution of cDNA 
derived from the RT reaction, 5 μ​l of SYBR Green PCR Master Mix (Applied 
Biosystems), 200 nM forward and reverse primers, in a total volume of 10 μ​l. The 
cycling conditions were 2 min at 50 °C, 10 min at 95 °C, followed by 40 cycles of 
95 °C for 15 s and 60 °C for 1 min with the final dissociation at 95 °C for 15 s, 60 °C 
for 1 min and 95 °C for 15 s. Three technical replicates were used for quantification  
analysis. Melting curve analysis was performed to evaluate the presence of 
non-specific PCR products and primer dimers. The specificity and uniqueness 
of the primers and the amplicons were verified by amplicon sequencing (GATC 
Biotech LIGHTrun). The results were exported as raw data, and the LinRegPCR99 
software was used for baseline correction. The resulting means of triplicate NO  
values, representing initial concentrations of a target and reference gene, were used 
to analyse gene expression. For each marker, the set of qRT–PCR quantifications 
were standardized and rescaled to better emulate the range of RPKM values 
observed in the original association panel, and then predicted damage scores 
generated using the regression coefficient and constant from the GEM associations.

An additional GEM marker was assayed as a cSNP by PCR using 1 μ​l  
undiluted cDNA, 11.5 μ​l Thermo Scientific Fermentas PCR Master Mix (2×​), 
200 nM forward (GGTTTCTCTTCTGCAGCGAG) and reverse (TCCATGA 
TCATCTTGCTGAG) primers in a total volume of 25 μ​l. The touchdown PCR 
was performed in using a BIORAD Tetrad PCR machine with the following 
cycling conditions: 5 min at 94 °C, followed by 15 cycles of 94 °C for 30 s, 63 °C for  
30 s −1 °C per cycle, 72 °C for 1 min, and 30 cycles of 94 °C for 30 s, 53 °C for 30 s, 
72 °C for 1 min and a final elongation step at 72 °C for 7 min.

Sanger sequences obtained using the forward primer co-amplify GEM 
FRAEX38873_v2_000048360.1, which is highly associated with ADB disease 
damage, and another member of the gene family that is not. Owing to a polymor-
phism between the two (at position 203 of the CDS model mentioned above), the 
relative abundance of the G nucleotide found in the highly associated GEM could 
be scored by eye relative to the A nucleotide found in the other paralogue as a cSNP. 
Previously3, this marker was scored in the Danish Test Panel as the presence or 
absence of a G nucleotide at this position, but predictions using this method did 
not incorporate the dynamic range of the gene expression observed. So, for this 
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analysis, G:A peak height ratios were approximated directly from the sequence 
chromatograms using Softgenetics Mutation Surveyor software for the British 
Screening Panel and the Danish Test Panel. These ratios were then standardized 
and rescaled to the RPKM values for FRAEX38873_v2_000048360.1 to predict 
damage scores as before.

Combined predictions were made by ranking and standardizing the individual 
predictions for all four markers, and then calculating the mean rank score for each 
individual tree (Supplementary Data 6). Combined predictions were calculated 
for the Danish Test Panel and compared with the observed ADB damage scores to 
ensure that the assay was predictive (Fig. 3).

The four assays were applied in the same way to analyse a panel of 130 accessions 
originating from across the UK range of F. excelsior (‘British Screening Panel’). 
Strikingly, when assayed by RT–PCR, expression of the ‘G’ variant paralogues 
was seen at much higher frequency in the British Screening Panel than in the 
Danish panels and the mean G:A ratio across the British Screening Panel was 0.67 
compared with a mean of 0.03 observed in the Danish Test Panel. Likewise, the 
gene expression estimates for the British Screening Panel exhibited wider ranges 
and were more favourable in terms of their expected effect on damage scores. 
The qRT–PCR results for the GEMs negatively correlated with disease damage 
(FRAEX38873_v2_000261470.1 and FRAEX38873_v2_000199610.1) exhibited 
higher mean expression in the UK (0.1 ±​ 0.11 and 0.12 ±​ 0.14) versus the Danish 
Test Panel (0.09 ±​ 0.08, 0.12 ±​ 0.11), and the positively correlated FRAEX38873_
v2_000173540.4 was on average expressed at a lower level in the British Screening 
Panel (0.48 ±​ 0.26) than the Danish Test Panel (0.59 ±​ 0.17). As expected, this 
translated to lower combined predictions for ADB damage in the British Screening 
Panel. Only 9% of the Danish Test Panel accessions were predicted to have a low 
damage score (defined as 25% canopy damage or less) compared with 25% of the 
British Screening Panel (Fig. 3).
Analysis of predictive genes. To predict the susceptibility of the reference tree 
2451S to ADB, we calculated RPKM values for the five GEM marker CDS models 
(FRAEX38873_v2_000173540.4, FRAEX38873_v2_000048340.1, FRAEX38873_
v2_000048360.1, FRAEX38873_v2_000261470.1 and FRAEX38873_
v2_000199610.1) from leaf transcriptome read data. We also did this for each of the 
trees in the Danish Scoring Panel, and the average of these predictions was taken to 
provide combined predictions. The top and bottom quartiles from the distribution 
of predicted scores, which represent the trees with the most susceptible and least 
susceptible gene expression patterns at these five loci, were then correlated with 
the RPKM values for the genome sequenced tree 2451S (Extended Data Fig. 4).

RPKM data were also generated for four tissue types: leaf, flower, cambium 
and root, of the parent of sequenced tree 2451S by mapping raw reads to the CDS 
reference as before. RPKM data for the 20 CDS models found to be significantly 
associated with susceptibility to ADB in the GEM analysis were selected and 
compared for the four tissue types.

The five CDS models represented in the ADB susceptibility predictions 
were translated using the standard codon usage table and were searched 
against the non-redundant database in GenBank using BLASTP with default 
settings to identify top hits to protein sequences in A. thaliana: FRAEX38873_
v2_000199610.1 and FRAEX38873_v2_000261470.1 show high similarity 
to AGAMOUS-LIKE 42/FOREVER YOUNG FLOWER (AGL42/FYF; 
AT5G62165); FRAEX38873_v2_000173540.4, FRAEX38873_v2_000048340.1 and 
FRAEX38873_v2_000048360.1 have top hits to SHORT VEGETATIVE PHASE/
AGAMOUS-LIKE 22 (SVP/AGL22; AT2G22540). Both AGL42/FYF and SVP/
AGL22 are encoded by type II MADS-box genes16. To find potential orthologues 
from other species, we examined the results of the OrthoMCL analysis for clusters 
containing AGL42/FYF and SVP/AGL22; all sequences from these clusters were 
extracted and added to the appropriate F. excelsior sequences to create two data 
sets, one of AGL42/FYF-like sequences and one of SVP/AGL22-like sequences. 
To ensure adequate representation of putative orthologues, we further expanded 
these data sets to include sequences from the OrthoMCL clusters containing  
A. thaliana proteins from closely related MADS lineages, as identified by previous 
phylogenetic analyses of type II MADS-box sequences16,17.

Preliminary phylogenetic analysis of these data sets revealed that, despite 
showing high sequence similarity in BLAST searches, FRAEX38873_
v2_000048340.1 and FRAEX38873_v2_000048360.1 do not fall within the clade 
containing SVP/AGL22 and similar A. thaliana sequences. Therefore, to identify 
potentially more closely related sequences we performed a BLASTP search of 
FRAEX38873_v2_000048340.1 and FRAEX38873_v2_000048360.1 against 
the complete set of 362,741 protein sequences used for the OrthoMCL analysis  
(see Supplementary Table 10), using the BLAST+​ package44 (version 2.2.31+​) with 
an E value cut-off of 1 ×​ 10−5 (FRAEX38873_v2_000048340.1 and FRAEX38873_
v2_000048360.1 were not included in the OrthoMCL analysis because they were 
flagged as putative transposable-element-related genes during annotation). This 
identified several highly similar sequences from other species with better ranking 

BLAST hits than those to the A. thaliana proteins. These sequences belong to a 
single OrthoMCL cluster, and include a tomato (S. lycopersicum) sequence from the 
apparent orthologue of the potato (S. tuberosum) StMADS11 gene; all sequences 
from this cluster were added to the SVP/AGL22-like data set, along with the potato 
StMADS11 protein (GenBank accession number ACH53556.1).

Sequences for both data sets were aligned using M-Coffee100, via the T-Coffee 
web server (http://www.tcoffee.org; last accessed 7 December 2016) with the 
following parameter settings: Mpcma_msa Mmafft_msa Mclustalw_msa 
Mdialigntx_msa Mpoa_msa Mmuscle_msa Mprobcons_msa Mt_coffee_
msa -output =​ score_html clustalw_aln fasta_aln score_ascii phylip -tree 
-maxnseq =​ 150 -maxlen =​ 2500 -case =​ upper -seqnos =​ on -outorder =​ input 
-run_name =​ result -multi_core =​ 4 -quiet =​ stdout. Positions in the alignments 
with consensus scores of <​6 from M-Coffee were removed; filtered alignments 
were then run through the TCS tool101 via the T-Coffee web server and any 
positions with a reliability score of <​6 were removed. Recombination was tested for 
in the filtered alignments using GARD102. Analyses were run via the Datamonkey 
server (http://www.datamonkey.org; last accessed 1 June 2016) under the best-fit 
model of evolution (selected with the corrected Akaike’s information criterion103) 
with β–Γ rate variation and three rate classes. No breakpoints with significant 
topological incongruence at P ≤​ 0.05 were detected for either data set. Phylogenetic 
analysis of each data set was conducted using Bayesian inference in MrBayes and 
maximum likelihood in RAxML; input alignments are provided in Supplementary 
Data 8. MrBayes (version 3.2.5 (ref. 104)) was run using the mixed amino acid 
model, to allow models of protein sequence evolution to be fit automatically 
across the alignments; the following parameter settings were used for each data 
set: prset aamodellpr =​ mixed, mcmc nruns =​ 2, nchains =​ 4, ngen =​ 1000000, 
samplefreq =​ 1000. Parameter values from both runs for each data set were viewed 
in TRACER version 1.6 (http://beast.bio.ed.ac.uk/Tracer) to confirm that effective 
sample sizes of >​200 had been obtained for each parameter and stationarity 
reached. Trees sampled during the first 100,000 generations of each run were 
discarded as the burn-in; trees and parameter values were summarized in MrBayes 
using the sumt and sump commands. RAxML (version 8.2.8 (ref. 105)) was run 
using the option to automatically determine the best protein substitution model, 
with 1,000 replicates of the rapid bootstrap algorithm; parameter settings were 
as follows: raxmlHPC -f a -x 13102 -p 29503 -# 1000 -m PROTGAMMAAUTO.

The phylogenetic analysis suggested that FRAEX38873_v2_000173540.4 
is a likely orthologue of the A. thaliana SVP/AGL22 gene, or possibly AGL24, 
whereas FRAEX38873_v2_000048340.1 and FRAEX38873_v2_000048360.1 
appear orthologous to the potato StMADS11 gene (Extended Data Fig. 5). These all 
belong to the SVP/StMADS11 group16 of type II MADS-box genes. FRAEX38873_
v2_000261470.1 and FRAEX38873_v2_000199610.1 cluster with the A. thaliana 
SUPPRESSOR of OVEREXPRESSION of CONSTANS 1(SOC1)-like proteins 
AGL42, AGL71 and AGL72 (Extended Data Fig. 5). The two other major clades 
within the phylogenetic tree include the AGL20/SOC1 protein and the AG14 and 
AGL19 proteins (Extended Data Fig. 5); together, the AGL42/AGL71/AGL72-, 
AL20- and AGL14/AGL19-containing clades are known as the SOC1/TM3 group 
of type II MADS-box proteins16,17.

In A. thaliana, AGL42, AGL71 and AGL72 have redundant functions in 
controlling flowering time and appear to be regulated by AGL20/SOC1 (ref. 20). In 
turn, AGL20/SOC1 is regulated by both AGL22/SVP and AGL24 (refs 18, 19), which 
are floral meristem identity genes with redundant functions during early stages 
of flower development21. The StMADS11 gene does not appear to have a direct 
orthologue in A. thaliana, but in potato (S. tuberosum) StMADS11 is expressed 
in vegetative tissues106. Despite their well-known roles in floral regulation, 
SVP/StMADS11 and SOC1/TM3 proteins are likely to have wider functions.  
In A. thaliana, it is suggested that AGL22/SVP is also required for age-related 
resistance, which gives older tissues of plants enhanced pathogen tolerance or 
resistance24. The B. rapa BrMADS44 gene, which appears orthologous to AGL42, 
shows differential expression in response to cold and drought stress; some B. rapa 
genes belonging to the SVP/StMADS11 clade are also differentially expressed 
in response to these stresses, indicating a potential role in stress resistance22. 
Furthermore, many genes involved in regulation of flowering time in A. thaliana 
are involved in controlling phenology in perennial trees species and genes 
belonging to the SVP/StMADS11 clade have potential roles in growth cessation, 
bud set and dormancy23.
Metabolomic profiling. To understand whether trees with low and high susceptibility 
vary in their metabolite profiles as well as their transcriptomes, we undertook 
untargeted metabolite profiling on a subset of the Danish Test Panel. Untargeted 
metabolomics has not previously been applied to natural populations but has the 
potential to identify small molecules (or small-molecule associations) that directly 
contribute to tolerance or resistance. We compared triplicate samples from five 
low-susceptibility Danish trees (R-14164C, R-14184A, R-14193A, R-14198B, R-14181) 
and five high-susceptibility trees (R-14169, R-14127, R-14156 R-14120, 25UTaps).
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Three leaflets from each triplicate sample were freeze dried and gently crushed 
to mix tissue. Approximately 100–150 mg was ground to a fine powder using a 
TissueLyser (Qiagen), and 10 mg was extracted in 400 μ​l 80% MeOH containing 
d5-IAA internal standard at 2.5 ng/ml ([2H5]indole-3-acetic acid; OlChemIm, 
Czech Republic), centrifuged (10,000 g, 4 °C, 10 min) and the pellet re-extracted 
in 80% MeOH. The pooled supernatants were filtered through a 0.2 μ​m syringe 
filter (Phenomenex, UK).

These leaf extracts (5 μ​l) were analysed using a Polaris C18 1.8 μ​m, 
2.1 mm ×​ 250 mm reverse-phase analytical column (Agilent Technologies, Palo 
Alto, California, USA) and samples resolved on an Agilent 1200 series Rapid 
Resolution HPLC system coupled to a quadrupole time-of-flight QToF 6520 
mass spectrometer (Agilent Technologies, Palo Alto, California, USA). Buffers 
were as follows: positive ion mode; mobile phase A (5% acetonitrile, 0.1% formic 
acid), mobile phase B (95% acetonitrile with 0.1% formic acid); negative ion 
mode; mobile phase A (5% acetonitrile with 1 mM ammonium fluoride), mobile 
phase B (95% acetonitrile). The following gradient was used: 0–10 min, 0% B; 
10–30 min, 0–100% B; 30–40 min, 100% B. The flow rate was 0.25 ml/min and 
the column temperature was held at 35 °C throughout. The source conditions for 
electrospray ionization were as follows: gas temperature was 325 °C with a drying 
gas flow rate of 9 l/min and a nebulizer pressure of 35 pounds per square inch 
gauge. The capillary voltage was 3.5 kV in both positive and negative ion mode. The 
fragmentor voltage was 115 V and skimmer 70 V. Scanning was performed using 
the autoMS/MS function at four scans per second for precursor ion surveying and 
three scans per second for MS/MS with a sloped collision energy of 3.5 V per 100 
Da with an offset of 5 V.

Positive and negative ion data were converted into mzData using the export 
option in Agilent MassHunter. Peak identification and alignment was performed 
using the Bioconductor R package xcms107 and features were detected using the 
centWave method108 for high-resolution liquid chromatography/mass spectrometry  
data in centroid mode at 30 p.p.m. Changes from the default parameters were 
mzdiff =​ 0.01, peakwidth =​ 10-80, noise =​ 1000, prefilter =​ 3,500. Peaks were 
matched across samples using the density method with a bw =​ 5 and mzwid =​ 0.025 
and retention time correlated using the obiwarp algorithm with profStep =​ 0.5. 
Missing peak data were filled in the peaklists generated from the ADB low-
susceptibility ash leaf samples compared with the peaklists generated from the ADB 
susceptible leaves. The resulting peaklists were annotated using the Bioconductor 
R package, CAMERA109. The peaks were grouped using 0.05% of the width of 
the full width at half maximum, and groups correlated using a P value of 0.05 
and calculating correlation inside and across samples. Isotopes and adducts were 
annotated using a 10 p.p.m. error.

Statistical analysis and modelling was performed using MetaboAnalyst version 
3.0 with the following parameters. Missing values were replaced using a KNN 
missing value estimation. Data were filtered (40%) to remove non-informative 
variables using the interquartile range. Samples were normalized using the internal 
standard d5-IAA (POS: M181T1448; NEG: M179T1382). Data were auto-scaled.

Peaks from the three replicates were aligned with xcms for both positive and 
negative mode and features tested for practical significance to determine the 
differences between the tolerant and susceptible genotypes. In addition, PLS-DA 
was performed using MetaboAnalyst, allowing the discrimination of tolerant and 
susceptible genotypes on the basis of their metabolic profiles (Fig. 4a).

The individual features (putative metabolites) that contributed to the separation 
between the different classes were further characterized. We first applied a range 
of univariate and multivariate statistical tests to determine the importance of 
these features. This included variable influence on the projection (VIP) values 
derived from PLS-DA scores, practical significance, t-test, P value, Benjamini and 
Hochberg false discovery rate P value, effect size and Random Forest analysis, 
and MS/MS fragmentation network analysis. For example, using Random Forest, 
significant features were ranked by mean decrease in classification accuracy with 
14 out of 15 susceptible samples (out-of-bag error: 0.033; class error 0.07) and  
15 out of 15 tolerant samples correctly classified.

For all further analyses we chose to use statistical and practical significance 
(Response Screening, JMP version 12) to identify features with a practical 
significance for identification. A combination of k-means clustering was used to 
group features by patterns of abundance and by retention time. This enabled the 
clustering of base peaks with their associated isotopes and adducts. Product ions 
were identified using MS/MS data in Agilent MassHunter Qualitative Analysis 
version 4.

Identification was not possible for those features with no fragmentation, or 
lacking significant supporting adducts. Many features of interest were identified 
but require further work to provide confident attributions, while some features 
did not provide fragmentation patterns. We thus restricted further identification 
and characterization to a highly discriminatory class of compounds of the iridoid 
glycosides and predominantly compounds previously recorded in Oleaceae, 

summarized in Extended Data Figs 6–9 and Supplementary Data 9. We validated 
these identifications using three methods: MS/MS fragmentation networking  
(Fig. 4c), MS/MS mirror plot (Extended Data Fig. 6) and accurate mass MS/MS  
product ion structure correlation (Extended Data Fig. 7). The MS/MS 
fragmentation network was generated after extracting the m/z values of the MS/MS  
product ions from the discriminatory features using MassHunter Qualitative 
Analysis Version 4 and visualized using Cytoscape, indicating product ion masses 
that had been previously reported from fragmentation of iridoid glycosides110. 
Further validation was performed through a mirror plot comparing the MS/MS 
spectra of four features (N2–N5) detected in negative mode with an electrospray 
ionization-time of flight/ion trap-mass spectrometry (ESI-TOF/IT-MS) spectrum 
of elenolic acid glucoside taken from the literature111. Finally, the accurate masses 
of MS/MS product ions from four discriminatory features identified in negative 
mode (N1–N4) were correlated with the structure of the putatively identified 
compound using MassHunter Molecular Structure Correlator (Agilent).

A timeline for the project may be found in Supplementary Table 14.
URL. Genome website: http://www.ashgenome.org.
Data availability. The reference tree is growing at Earth Trust with accession 
number 2451S. Trimmed DNA and RNA reads and the final assembly for the 2451S 
genome sequence, as well as RNA reads for parent tree and raw reads and consensus 
read mappings of the European diversity panel trees, have been deposited 
in European Nucleotide Archive under project accession code PRJEB4958  
(http://www.ebi.ac.uk/ena/data/view/PRJEB4958). Metabolomic data that support 
the findings of this study have been deposited in MetaboLights under accession 
code MTBLS372 (http://www.ebi.ac.uk/metabolights/MTBLS372). All other data 
are available from the corresponding author upon reasonable request.
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Extended Data Figure 1 | Completeness and coherence of annotation 
models. a, Assessment of transcript completeness for the F. excelsior  
gene set. Transcripts were classified as full-length, 5′​- end, 3′​-end,  
internal, coding (open reading frame predicted but no BLAST support), 
unknown (no BLAST support), mis-assembled and putative ncRNA using  
Full-lengtherNEXT (version 0.0.8); 76.43% of transcript models were 

identified as complete. b, Coherence in gene length between F. excelsior 
and M. guttatus proteins. BLAST analysis (1 ×​ 10−5) identified 2,576 proteins  
that had reciprocal best hits to 2,605 M. guttatus proteins identified as 
single copy in M. guttatus, S. lycopersicum, S. tuberosum and V. vinifera 
(Phytozome). A high coherence in gene length was found between  
F. excelsior and M. guttatus: r >​ 0.917.
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Extended Data Figure 2 | Synteny between ash and monkey flower. Syntenic dotplot between ash (vertical axis) and monkey flower (horizontal axis) 
showing regions of multiple synteny. Scaffolds equal to approximately 75% of the ash genome assembly for which syntenic blocks were not detected are 
not shown. For clarity, small scaffold names are omitted.
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Extended Data Figure 3 | Population structure of F. excelsior in Europe. 
a, Results from STRUCTURE; three replicates were run for k =​ 3, with 
each replicate using a different set of 8,955 SNPs as input. Numbers 
refer to samples, whose locations are given in Supplementary Table 11. 

b, Δk values for three runs of STRUCTURE of each value of k between 
k =​ 2 and k =​ 19; k =​ 3 has the highest Δ​k value of 32.91. c, Effective 
population size history estimated using the SNeP program, with genotype 
information from all 38 diversity panel samples at 394,885 SNP loci.
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Extended Data Figure 4 | Prediction of susceptibility of reference tree. RPKM values for leaf material from the low heterozygosity reference tree 2451S 
for five CDS models predictive for ADB. These are shown next to expression profiles for the Danish Scoring Panel with the least susceptible and most 
susceptible expression patterns according to the GEM analysis.
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Extended Data Figure 5 | Investigation of the function of GEMs for 
low susceptibility to ADB. Unrooted maximum likelihood trees from 
the RAxML analyses. a, Best scoring maximum likelihood tree from the 
phylogenetic analysis of SVP/AGL22 and StMADS11-like sequences. 
b, Best scoring maximum likelihood tree for the SOC1-like sequences. 
Nodes with bootstrap support values of at least 70 from the maximum 
likelihood analysis and posterior probabilities of at least 0.95 from the 
Bayesian analysis are indicated with asterisks. F. excelsior sequences are 

shown in blue; A. thaliana sequences in red. Four-letter taxon codes at the 
start of sequence names, where present, follow those in Extended Data 
Table 1. Sequence names are those from the original data files used for the 
orthoMCL analysis (see Supplementary Table 10), with the exception of 
the StMADS11 protein from potato, where the GenBank accession number 
is given. Common names for selected genes/proteins are annotated on the 
trees. Scale bars indicate the mean number of substitutions per site.
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Extended Data Figure 6 | MS/MS mirror plot of elenolic acid glucoside 
(ESI-TOF/IT-MS) compared with four negative mode features (N2, N3, 
N4 and N5). The spectra share four product ions in common: m/z 179, 223, 
371 and 403 (elenolic acid glucoside molecular ion). These product ions 

correspond to a loss of a methyl and hydroxyl group (403–371), loss of 
hexose (403–223), which is followed by a loss of CO2 (223–179). Elenolic 
acid corresponds to the secoiridoid part of oleuropein-related compounds, 
suggesting that these four compounds are secoiridoids112.
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Extended Data Figure 7 | Identification of MS/MS product ions for four iridoid-glycoside-related features observed in negative mode. Predicted 
structure for key m/z peaks using Molecular Structure Correlator (Agilent) and the structure of putative identities. Bonds and atoms in black are present 
in that product ion, whereas grey indicates loss.
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Extended Data Figure 8 | Identification of iridoid-glycoside-related metabolites in positive mode. Box-plots showing abundance (log2 transformed) 
of features in positive mode discriminating between five different genotypes of high- (TOL) and low- (SUS) susceptibility ash trees.
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Extended Data Figure 9 | Identification of metabolites. MS/MS fragmentation product ion data of features discriminating between five different 
genotypes of high- (TOL) and low- (SUS) susceptibility ash trees in positive mode. Corresponding box-plots are presented in Extended Data Fig. 8.
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Extended Data Table 1 | The 20 largest clusters in F. excelsior from the OrthoMCL analysis of 11 species showing  
the number of sequences from each species belonging to the clusters

Clusters containing at least five more sequences from F. excelsior than for the other asterid species (underlined) are shown in bold. FEXC, F. excelsior; ATHA, A. thaliana;  
ATRI, A. trichopoda; CCAN, C. canephora; MGUT, M. guttatus; MTRU, Medicago truncatula; PITA, P. taeda; PTRI, P. trichocarpa; SLYC, S. lycopersicum; UGIB, U. gibba; VVIN,  
V. vinifera. Details of gene families in column two are inferred from the gene family membership/function of A. thaliana genes (according to The Arabidopsis Information  
Resource; http://www.arabidopsis.org) belonging to these clusters. It should be noted that OrthoMCL clusters are not necessarily equivalent to gene families as a single  
gene family may be split over multiple clusters and multiple gene families may be grouped into a single cluster.

OrthoMCL 
cluster 
name

Putative gene family name(s)/ function(s) FEXC ATHA ATRI CCAN MGUT MTRU PITA PTRI SLYC UGIB VVIN

OG_00001 Pentatricopeptide repeat (PPR) superfamily, 
Tetratricopeptide repeat (TPR)-like superfamily

102 91 35 101 103 107 212 105 93 73 118

OG_00003 Leucine-rich repeat receptor-like protein kinase family, 
CLAVATA1-related receptor kinase-like proteins/ 

protein serine/threonine kinase activity, kinase activity, 
ATP binding.

81 40 34 112 52 112 121 114 50 24 63

OG_00005 Subtilase family, Subtilisin-like serine endopeptidase 
family protein/ identical protein binding, serine-type 

endopeptidase activity.

63 46 42 50 95 88 40 67 71 21 65

OG_00006 S-locus lectin protein kinase family, Putative 
receptor-like serine/ threonine protein kinases/

protein amino acid phosphorylation, recognition 
of pollen.

58 32 7 42 43 125 9 183 53 1 52

OG_00007 Leucine-rich repeat protein kinase family, HIT-type 
Zinc finger family protein/ protein serine/threonine 
kinase activity, kinase activity, ATP binding protein 

55 8 7 161 64 77 59 47 41 12 26

OG_00012 Laccase family /lignin biosynthesis, cell wall 
biosynthesis.

43 18 14 23 20 23 54 54 27 8 43

OG_00019 Calcium dependent protein kinase family/ putative 
calcium sensors.

40 31 11 16 23 25 9 28 28 24 16

OG_00039 Wall-associated kinase family/ kinase activity, 
protein amino acid phosphorylation.

40 19 3 8 34 20 0 46 9 0 10

OG_00010 Major facilitator superfamily/ transporter activity. 39 22 20 25 28 49 54 40 22 20 25
OG_00015 P-glycoprotein family/ ATPase activity, coupled to 

transmembrane movement of substances.
37 22 14 25 23 39 38 36 22 10 20

OG_00021 n/a 34 0 0 167 18 1 0 0 23 3 0
OG_00037 Cellulose synthase family (CESA), Cellulose 

synthase-like proteins/ cell wall biosynthesis.
31 16 14 12 14 21 10 28 17 19 16

OG_00004 LRR and NB-ARC, and NB-ARC domain-containing 
disease resistance proteins/ ATP binding, protein 

binding.

30 2 0 264 44 206 3 115 15 2 81

OG_00028 Cytochrome P450, family 71, subfamily B 29 28 13 35 17 47 0 26 21 0 5
OG_00026 FAD-binding Berberine family/ electron carrier activity, 

oxidoreductase activity, FAD binding, catalytic activity.
28 27 4 27 26 28 1 63 19 5 4

OG_00022 Putative ligand-gated ion channel subunit family/ 
uncharacterized functions.

28 20 24 18 37 8 24 43 11 11 21

OG_00025 Malectin/receptor-like protein kinase family, Protein 
kinase superfamily protein/ kinase activity, protein 

amino acid phosphorylation.

27 17 9 25 31 43 1 41 19 12 9

OG_00016 Pleiotropic drug resistance family, ABC-2 and Plant 
PDR ABC-type transporter family/ nucleoside-

triphosphatase activity, ATPase activity, nucleotide 
binding, ATP binding.

27 16 15 23 20 33 43 29 25 13 33

OG_00059 Leucine-rich repeat protein kinase family, Plasma 
membrane LRR receptor-like serine threonine 

kinase proteins, Somatic embryogenesis receptor-
like kinase proteins/ protein serine/threonine 
kinase activity, kinase activity, ATP binding.

26 14 7 8 14 15 7 20 13 11 11

OG_00085 Raffinose synthase family/ carbohydrate, 
biosynthesis,  metabolism and catabolism.

26 5 12 9 13 12 9 13 6 12 10
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