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Wave propagation through disordered media
without backscattering and intensity variations

Konstantinos G Makris1, Andre Brandstötter2, Philipp Ambichl2, Ziad H Musslimani3 and Stefan Rotter2

A fundamental manifestation of wave scattering in a disordered medium is the highly complex intensity pattern the waves

acquire due to multi-path interference. Here we show that these intensity variations can be entirely suppressed by adding

disorder-specific gain and loss components to the medium. The resulting constant-intensity waves in such non-Hermitian scatter-

ing landscapes are free of any backscattering and feature perfect transmission through the disorder. An experimental demonstra-

tion of these unique wave states is envisioned based on spatially modulated pump beams that can flexibly control the gain and

loss components in an active medium.
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INTRODUCTION

The scattering of waves through disordered media is a paradigmatic
phenomenon that has captured the interest of various communities
for quite some time now1–3. Among the many important physical
aspects of wave propagation that have been studied the phenomenon
of Anderson localisation has received particular attention4–12. While
much work has been invested into understanding the ‘statistical’
properties of the corresponding wave phenomena13 there has recently
been a surge of interest in controlling the scattering of waves through
‘individual’ systems for specific purposes such as detection, imaging,
and efficient transmission across disordered materials14,15. Remarkable
progress in these endeavours has recently been made in the optical
domain, largely due to the availability of spatial light modulators and
new concepts for how to apply them on turbid media16,17. In a first
generation of corresponding experiments the focus was laid on
shaping the input wave front impinging on an immutable disordered
sample such as to achieve a desired output, like a spatial or temporal
focus behind the medium18–21. More recent studies focused instead on
controlling the medium itself, for example, through the material
fabrication process22 or through a spatially modulated pumping23,
leading, for example, to a versatile control of random and micro-cavity
lasers24–28.
Largely in parallel to these efforts on disordered media, it was

recently realised that materials and devices can get entirely new
functionalities when adding to them a suitably arranged combination
of gain and loss. In particular, structures with a so-called parity time
(PT) symmetry29,30, were recently introduced theoretically31–33 and
experimentally34,35 in the context of paraxial waveguide optics. On the
basis of a delicate balance between gain and loss, these synthetic
structures exhibit rich and unconventional behaviour, holding

promise for numerous applications in nano photonics and lasers36.
In particular, the relation between coherent perfect absorption and
scattering through PT-cavities37 as well as unidirectional invisibility in
PT-gratings38 have attracted a lot of attention. Symmetry breaking in
fibre loop optical networks39, PT-scattering structures40 and periodic
PT-systems as new types of metamaterials41 are also active research
directions in this new field on PT-optics. Along with these activities,
another direction is that of complex lasers that rely on the concepts of
PT symmetry breaking and exceptional points. Such synthetic lasers
with novel characteristics, are based on loss engineering42. More
specifically, coupled PT-symmetric micro disk lasers can lead to
optical diodes43, single-mode microring lasers44, synthetic PT-
lasers45, loss-induced lasing46,47 and lasers with chiral modes48,49.
More recent developments include large scale exceptional points in
multilayer optical geometries50, transient growth in non-normal lossy
potentials51, modulation instabilities in non-Hermitian structures52,
non-Hermitian phase matching in optical parametric oscillators53,
higher-order exceptional points54, protocols for asymmetric mode
switching based on encircling exceptional points dynamically55,56, and
directional cloaking based on non-Hermitian potentials57.
Here we will build on the advances that were made in both of the

above research fields with the aim to combine them in a novel and
potentially very useful way. We show that for a general disordered
medium, given by a distribution of the real part of the refractive index
nR(x), a corresponding distribution of its imaginary part nI(x) can be
found, such that a wave propagating through this medium will feature
a constant intensity throughout the entire non-uniform scattering
landscape. In other words, we demonstrate that adding a judiciously
chosen distribution of gain and loss to a disordered medium will make
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waves lose all of their internal intensity variations such that they
propagate through the disorder without any back-reflection.

MATERIALS AND METHODS

Scattering states without internal intensity variations
The solution strategy that we explore for this purpose is based on the
one-dimensional Helmholtz Equation that describes time-independent
scattering of a linearly polarised electric field ψ(x) both in forward and
in backward direction,

½∂2x þ εðxÞk2�cðxÞ ¼ 0 ð1Þ
Here ε(x) is the dielectric permittivity function varying along the
spatial coordinate x, k= 2π/λ is the wavenumber (with λ being the free
space wavelength) and ∂x≡d/dx. The dielectric function is complex
thus ε(x)= [nR(x)+inI(x)]

2. In general, when a plane wave is incident
on a spatially varying distribution ε(x), interference takes place
between the waves propagating forward and backward. As a result, a
complex interference pattern is produced with spatial variations on its
intensity. As we will now show, this fundamental physical picture can
be quite different in the case of non-Hermitian cavities with loss and/
or gain.
To jump right to the heart of the matter, we start with an ansatz for a

constant-intensity (CI) wave with unit amplitude, ψ(x)= exp[iS(x)],
where S(x) is a real valued function. Because of the obvious relation to
the semiclassical approximation by Wentzel-Kramers-Brillouin (WKB)58,
we will derive the CI-solution of the Helmholtz Equation (1) in the
bulk, by demanding that the ansatz ψ(x)= exp[iS(x)] has to be exact in
the first order WKB-approximation. As a result of this analysis (see
Supplementary Information for details) we obtain the following non-
Hermitian dielectric function,

εðxÞ ¼ W2ðxÞ � i

k
∂xWðxÞ ð2Þ

that supports a corresponding CI-solution cðxÞ ¼ exp½ik R Wðx0Þdx0�
at wavenumber k, which solves Equation (1) exactly and is valid for the
whole bulk space. At this point we have to emphasise, that the above
exact WKB analysis is generally valid (not only in the geometric optics
limit). The fact that W(x) can be chosen arbitrarily, with no limitations
on its spatial complexity (apart from smoothness), is a key asset of
this approach, making it very generally applicable. From this result
it is also clear that for vanishing imaginary part [W(x)= const.],
the dielectric function as defined in Equation (2), reduces to
ε(x)= const., resulting in the familiar plane wave in free space. We
emphasise that our approach works not only when the functional profile
W(x) is known from the outset. Also when a refractive index distribution
nR(x) is given, the corresponding gain-loss profile nI(x) can be
determined (see Supplementary Information for details).
Furthermore, it can be shown that CI-waves can also be found for

all dielectric functions that are described by Equation (2) in a finite
domain x∈ [−D, D], bordering on free space for xo−D and x4D.
In this case, the scalar Helmholtz-type Equation (1) admits the
following exact CI-scattering state:

cðxÞ ¼
exp½ikðx þ DÞ�; xo� D
exp½ik R x

�D Wðx0Þdx0�; � DrxrD
exp½ikðx � Dþ cÞ�; x4D

8<
: ð3Þ

where the integration constant c makes sure that the field continuity
relations59 are satisfied and is given by c ¼ RD

�D WðxÞdx. We note at
this point that the wavenumber k appearing in Equation (2) is the
same as the wavenumber k in the above CI-wave solution. In other
words, for any value of k for which a CI-scattering state is desired, the

dielectric function ε(x) has to be engineered correspondingly. Once
ε(x) is fixed and plane waves with varying values of k are impinging on
this dielectric structure, a perfectly transmitting CI-solution in general
only occurs at the predetermined k value inherent in the design of
ε(x). Due to this restriction to a single frequency also no issues arise
with the Kramers-Kronig relations.
Most importantly, the solution in Equation (3) does not only

feature a constant intensity |ψ(x)|2= 1 in the asymptotic regions
xo –D and x4D, where ε(x)= 1 and simple plane wave propaga-
tion is realised, but also inside the finite region of length 2D in which
the dielectric function varies and the phase-evolution is non-trivial.
Regarding the appropriate boundary conditions at x=±D, it can be
shown that the following perfect transmission boundary conditions
(zero reflection)40,

∂xcð7DÞ ¼ ikcð7DÞ ð4Þ
imply the following conditions for the generating function,

WðDÞ ¼ 1 ¼ Wð�DÞ ð5Þ
We also emphasise that a CI-wave is associated with a specific

incidence direction (incidence is assumed here from the left, xo−D,
in positive x-direction). When injecting a plane wave with the same
predetermined wavenumber k from the other incidence direction (that
is, from the right, x4D, in negative x-direction) one still gets perfect
transmission simply due to Lorentz-reciprocity. In addition, however,
one will also get finite reflection and non-trivial intensity variations
inside the potential (|x|rD).

Non-Hermitian scattering methods
To elucidate the above ideas, we consider in the section ‘Results and
Discussions’ several specific examples of index distributions and study
the CI-waves they give rise to. For these calculations, a transfer matrix
method59 was used for TE-linearly polarised optical waves along with
an effective Hamiltonian approach40. More specifically, the transfer
matrix method is valid for piecewise refractive index distributions. To
apply such an approach to our scattering problem, we discretised the
continuous potential into many slabs of almost constant refractive
index, and then applied the transfer matrix method. Another
technique we used was that of the effective Hamiltonian. The wave
Equation (1), ½∂2x þ εðxÞk2�cðxÞ ¼ 0, can be written as a generalised
eigenvalue problem for the potential of Equation (2) for a given W(x).

More specifically we have: ∂2xcðxÞ ¼ �εðx; kÞ~k2cðxÞ. This generalised
eigenvalue problem is non-Hermitian due to the perfect transmission
boundary conditions. Notice that only one of its eigenmodes will be

the CI-state and satisfy the relation ~k ¼ k. We have compared the two
different approaches for specific optical structures and they give
identical results.

RESULTS AND DISCUSSION

As a first example, we assume W(x) to be a parabolic function
modulated with a cosine, namely W(x)= [1− 0.2 cos(15πx/2)](2− x2).
The corresponding real part of the refractive index distribution nR(x)
is shown as the grey shaded area in Figure 1. A wave impinging on this
dielectric structure composed of only nR(x) is partly reflected and
features a highly oscillatory profile, see Figure 1a. Quite in contrast,
when adding also the gain and loss inherent in the imaginary index
component nI(x) derived from W(x) (see green and red regions in
Figure 1b), the resulting scattering state is fully transmitted and
features a constant intensity. Because of the boundary conditions,
W(x) must be symmetric at the end points of the cavity, resulting in
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an anti-symmetric distribution of nI(x). Our example shows that for a
plane wave at an arbitrary incident wavenumber k, we can find the
corresponding gain-loss landscape (from Equation (2)), such that this
wave will fully penetrate the scattering medium without forming any
spatial variations in its intensity pattern.

Perfect transmission through disorder
The most striking application of CI-waves is realised for the case of
disordered environments, which is also the focus of our work. We
know, for example, that in strongly scattering disordered media
Anderson localisation occurs, resulting in an exponential decrease of
the transmittance T= |t|2 for structures with sizes greater than the
localisation length x ¼ �2D ln½TðDÞh i�1. For a given real and
disordered index of refraction in the localised regime close to unit
transmittance is thus very unlikely and occurs only at well-isolated,
sharply resonant wavenumbers that are difficult to achieve
experimentally60,61. Our approach now allows to turn this behaviour
upside down—not only in the sense that we can engineer unit
transmission at any predetermined value of the wavenumber k but also
that we can create scattering states that have constant intensity in a
strongly disordered environment which would usually give rise to the
most dramatic intensity fluctuations known in wave physics.
We illustrate our results for the disordered one-dimensional slab

shown in Figure 2, where a refractive index distribution following
Equation (2) is considered with a tunable imaginary component,
ε(x)= [nR(x)+ianI(x)]

2 (the tunable parameter a controls the overall
amplitude of gain and loss). From Equation (2), one can understand
that CI-scattering-states exist only for a= 1. In particular, we choose
the generating function W(x) to be a superposition of N Gaussian
functions of the same width d, but centred around random positions
cn and having random amplitudes rn. More specifically, we consider

WðxÞ ¼ PN
n¼1

rnexp � x�cn
d

� �2h i
, where cn and rn are random variables.

This leads us to the following analytical expression of a CI-state ψ(x)
in a disordered medium:

cðxÞ ¼
exp½ikðx þ DÞ�; xo� D

exp ikd
ffiffi
p

p
2

PN
n¼1 rn erf x�cn

d

� �þ erf Dþcn
d

� �� �h i
; � DrxrD

exp½ikðx � Dþ cÞ�; x4D

8><
>: ð6Þ

where the error function is defined as follows: erfðxÞ ¼ 2ffiffi
p

p
R x
0 expð�s2Þds,

and the constant c is defined as in Equation (3). For a= 0 the
refractive index is Hermitian, whereas for a= 1 CI-waves exist. The
refractive index distribution of such a non-Hermitian disordered
medium is depicted in Figure 2a, and the localisation length ξ of the
Hermitian refractive index (a= 0) is depicted in Figure 2b. The
imaginary part (gain and loss) of the refractive index distribution that
leads (based on Equation (2)) to a CI-state is depicted in Figure 2c. As
is physically expected, without the gain and loss distribution, the
system reflects almost all waves due to localisation. Furthermore,
adding first only the gain part of the refractive index distribution that
leads to a CI-state (see Figure 2c) still results in highly oscillatory
scattering wave functions with finite reflectance for all values of the
gain-loss amplitude a (from 0 to 1), as is illustrated in Figure 2d. Quite
counterintuitively, adding also the loss part of the refractive index
distribution leads to perfect transmission without any intensity
variations for a= 1, as demonstrated in Figure 2e. By varying the
gain-loss amplitude a, as in Figure 2e, we can thus see a smooth
transition from the Anderson localisation regime (at a= 0) to perfect
transmission with constant intensity (at a= 1). Figure 2f shows this
transition for the transmittance T(a), indicating the robustness of our
approach as well as the fact that already smaller values of ao1 lead to
a transmittance that is several orders of magnitude larger than in the
absence of gain and loss (T≈2× 10− 3 for a= 0). We thus find that the
presence of gain and loss in a scattering environment can completely
suppress the localisation of waves due to multiple scattering, leading to
a delocalised state with a constant intensity and perfect transmission.
A crucial question is the physical values of gain and loss required to

observe and realise the proposed CI-waves. It turns out that these
values depend directly on the slope and amplitude of the refractive
index distribution, as well as on the wavelength of operation, as we can
see from Equation (2). The maximum value of gain/loss for the system
shown in Figure 2 is at max(nI) ≈ 6.7 × 10− 3 with the length of the
disorder region being 6 cm. With a wavelength of λ= 0.58 μm this
would correspond (for a variation of ΔnR ≈ 2× 10− 2) to a gain value
of ~ 1450 cm− 1. Typical example gain media at this wavelength that
are also implementable in a practical experimental setting are, for
example, Rhodamine (6 G) dye materials, commonly used in active
plasmonics62 and in opto-fluidic random lasers24. The above gain
values are, however, quite high for organic media such that in an
experimental implementation smoother refractive index distributions,
nR(x), are more realistic, for which the corresponding gain values are
smaller. Since, in turn, the localisation length ξ will then be larger (in
the absence of gain and loss), also longer disorder regions will be
required to see the transition from localised states to CI-waves. We
emphasize, however, that our approach is completely scalable also to
other wavelengths and gain media. First practical applications that we
anticipate will probably also be focused on exploring only a subpart of
the above crossover.

Discrete disordered systems
Certainly the most challenging aspect of CI-waves in terms of their
experimental realisation is the fabrication of a specific index distribu-
tion with gain and loss63. To overcome such inherent difficulties, we
study here also the existence of CI-waves in a system of discrete
scatterers, like the one presented in Figure 3. Such a setup is composed
of many discrete elements (cavities) with gain or loss and a specific
real refractive index distribution. The analytic solution of Equation (2)
is still valid in the discrete version of the Helmholtz-type wave
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nR nR
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Figure 1 (a) Scattering wave function intensity (blue line) in a Hermitian
refractive index distribution for an incident plane wave (from the left) with a
specific normalised wavenumber k=2π/0.26=24.15. (b) Intensity of the CI-
wave for the corresponding non-Hermitian refractive index n(x) and the same
incident plane wave. The real part of the refractive index is shown in grey,
whereas its imaginary part is coloured in green (loss) and red (gain). For
illustration purposes the imaginary part in b was multiplied by a factor of 2.
The calculations were performed using the transfer matrix approach.
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Equation:

εm ¼ b�2 2� e
ikDx
2 ðWmþWmþ1Þ � e�

ikDx
2 ðWmþWm�1Þ

n o
ð7Þ

and

cm ¼ exp
ikDx
2

ðW1 þWm þ 2
Xm−1

n¼2

WnÞ
" #

ð8Þ

where εm is the permittivity of the mth scatterer, b=ωΔx,
ω2= 2[1− cos(kΔx)]/Δx2 and m= 1,…, M. In addition, the perfect
transmission boundary conditions imposed at the end points of the
discrete chain of scatterers ψ0=ψ1 exp(− ikΔx), and ψM+1=ψM exp
(ikΔx) as well as the relation ωΔxo2 must always hold. We consider a
specific example in Figure 3 of M elements that form a one-
dimensional disordered chain. By adding gain or loss onto the sites

as prescribed by Equation (7) an incoming wave from the left will have
the same constant intensity on all of these sites.

PT symmetry and mean reality condition
So far we have not discussed the relation of the non-Hermitian
distribution (Equation (2)) that supports CI-waves with PT symmetry.
For the special case that the generating function is even with respect to
x, namely W(x)=W(− x), the dielectric function turns out to be PT-
symmetric since ε(x)= ε*(− x). In other words, our approach is rather
general and the only restrictions are the permittivity distribution
(Equation (2)) and the boundary conditions (Equation (5)) for W.
Keep in mind that Re[ε(x)] could in principle also be negative—at
least there is no restriction from the mathematical point of view. Since
we wish to study relevant physical materials that are easily accessible also
experimentally, we choose our W(x) such that we have Re[ε(x)]41
and also nR(x)41. A direct consequence of these two restrictions is
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Figure 2 A strongly disordered potential consisting of N=99 000 Gaussian scatterers is considered in the region −D0oxoD0 with D0=5000. (a) The
corresponding refractive index distribution nR(x) in a small interval of x is shown. (b) Exponential suppression of the transmittance T with localization length ξ
in this system for variable length of the disordered region D. (c) Imaginary part of the refractive index nI(x) following from the CI design principle (nI(x) is
matched to the real index distribution in a). (d and e) Scattering wave functions for the disordered region as a function of the gain–loss strength parameter a,
for the gain-only and gain–loss potential, respectively. In both cases, an incident plane wave with normalised wavenumber k=2π/0.1=62.8 is considered
(from left to right), and the x axis is represented in logarithmic scale. The CI-wave can be clearly seen for the full gain–loss strength (a=1) in (e). (f) The
transmittance T is shown here for different gain–loss strength a, indicating a smooth transition to perfect transmission T=1 at a=1.
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that the spatial average gain-loss over the scattering region is zero,RD
�D Im½εðxÞ�dx ¼ 0. In terms of the refractive index, the evaluation of
the integral

RD
�D nIðxÞdx depends on the symmetry of W(x). For

example, if W(x) is an even function of x, then the refractive index is
PT-symmetric, and

RD
�D nIðxÞdx ¼ 0. It would be interesting to

explore if this condition of ‘mean reality’ also has other interesting
consequences that go beyond the restrictions imposed by PT
symmetry.

Effect of wavenumber detuning and gain saturation
As we have already shown analytically and numerically, for a fixed
refractive index determined by Equation (2), a CI-wave at the
corresponding wavenumber k0 exists. A natural question one may
ask at this point is what happens to incident plane waves with detuned
wavenumbers k07Δk0 (Figure 4; when considering active materials
that are characterised by approximately flat dispersion curves near the
values of the wavelength of operation). Naively, one may expect that
the emergence of CI-waves is a sharp resonance phenomenon, so that
waves with a slight detuning in the wavenumber k0 should show a
completely different behaviour as, for example, around a resonance in
a Fabry-Pérot interferometer59. This picture turns out to be misleading
on several levels. Since the CI-wave function at position x,
cðxÞ ¼ exp½ik R x

�D Wðx0Þdx0�, only depends on the generating func-
tionW(x') evaluated at values x'ox, one can easily truncate the system
at any point x and still get a CI-wave provided one continues the
system for all x4x' with a constant generating function that has the
same value as at the point of truncation. This behaviour indicates that
a refractive index profile that supports CI-waves is not only
reflectionless in total but also unidirectional at any point inside a
given structure. Perfect transmission in such systems is thus not a
resonance phenomenon (as resulting from a back and forth propaga-
tion of waves), suggesting that CI-waves are stable against changes of
the incident wavelength. To check this explicitly, we numerically
calculated the average resonance width of the transmission spectrum
|t(k)| of the Hermitian system in Figure 1, DkHermh i ¼ 0:74, in an
interval kA½ 2p0:26 � 3; 2p

0:26 þ 3�, with minimum transmission |t(k)min| =
0.94, as is shown in Figure 4. The transmission of waves through the
corresponding non-Hermitian CI-refractive index (that of Figure 1b)
stays larger than 0.99 over the entire k-interval, confirming our
prediction. Another important point to make is that one can easily
achieve a transmission equal to one in a non-Hermitian system
just by adding enough gain to it. In the scattering landscapes that we
consider here, however, the net average amplification is zero, sinceRD
�D Im½εðxÞ�dx ¼ 0 and the intensity is equally distributed
everywhere.

In realistic gain materials, high enough field amplitudes lead
inevitably to gain saturation. A natural question to ask is if CI-
waves exist also in this nonlinear regime. As we show in the
Supplementary Information, one can analytically derive CI-
scattering-states by solving the corresponding nonlinear Helmholtz
equation. The difference in this case is that the CI amplitude is specific
for the parameters of the gain material.

Connections to the literature
The results presented above also have several interesting connections
to earlier insights from the literature. Perhaps the first mention of CI-
waves was made in laser physics in an under-appreciated work by
Yariv et al.64, in which it was shown that modes in distributed
feedback (DFB) lasers can be engineered to have a constant intensity
throughout the entire laser device—a feature that was proposed as a
strategy to overcome spatial and spectral lasing instabilities65,66. The
design principle for CI-waves in these DFB lasers was, however,
restricted to periodic potential structures without any incoming wave
and is thus orthogonal to our own approach. In a recent work,
CI-waves were presented as solutions of the paraxial wave Equation
where the ‘Wadati potential’, previously introduced in Ref. 67, varies
only transversely to the propagation direction52. The paraxial approx-
imation employed in that work, however, excludes any backscattering
from the potential and the incoming wave had to be engineered
through wave front shaping to yield the desired CI-solution. The
approach presented here has the clear advantage that it does not rely
on any approximation, that no wave front shaping of the incoming
wave is necessary and that it can be applied to arbitrary, even
disordered potentials with an unspecified amount of backscattering.
We also mention in this context that during the last few years non-
Hermitian potentials without PT symmetry that yield real propagation
constants (including similar ones as in our Equation (2)) have been
studied (see Refs 68–72). In our own work we are, however, not
concerned with a phase transition to complex eigenvalues, but rather
focus on the unique possibility to achieve perfect transmission and a
suppression of any intensity variations in disordered media. For this
purpose it is clearly essential that, in contrast to these earlier works, we
address here the full scattering problem including backscattering. Last
but not least we also highlight that our approach opens up a new and
promising way to apply the WKB-approximation to potentials such as
those with a short-range disorder, that usually fall completely outside
the scope of this well-studied approximation.
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Figure 4 Effect of incident wavenumber detuning in a narrow wavelength
window, on the transmittance through the potential of Figure 1b (blue line).
The Hermitian case is plotted for comparison (red line). The two insets
illustrate the complex refractive index distributions.
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Figure 3 Disordered chain of discrete scatterers with an incoming plane
wave from the left. The real part (grey) as well as the gain (red) and loss
(green) components of the refractive index are shown for each scatterer. The
corresponding discrete CI-wave is depicted with black dots. The normalised
parameters used are M=20, ω=12, L=2 and Δx=L/(M−1).
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CONCLUSIONS

In conclusion, we examine the existence and the properties of a novel
type of waves, the CI-waves in one-dimensional non-Hermitian
optical slab geometries with and without disorder. For any wavenum-
ber k of a plane wave incident on a real refractive index distribution,
we can identify a corresponding gain-loss profile that allows for CI-
waves to propagate through such a scattering landscape without any
reflection. Most importantly, we found the gain-loss profiles that need
to be added to any disordered system such as to completely overcome
the strong backscattering and the intensity variations that usually
occur in such media. As a first step towards an experimental
realisation we propose to study chains of discrete scatterers with gain
and loss that can nowadays be routinely fabricated in the laboratory.
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