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Cohesion: a method for quantifying the connectivity
of microbial communities
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The ability to predict microbial community dynamics lags behind the quantity of data available in
these systems. Most predictive models use only environmental parameters, although a long history
of ecological literature suggests that community complexity should also be an informative parameter.
Thus, we hypothesize that incorporating information about a community’s complexity might improve
predictive power in microbial models. Here, we present a new metric, called community ‘cohesion,’
that quantifies the degree of connectivity of a microbial community. We analyze six long-term
(10+ years) microbial data sets using the cohesion metrics and validate our approach using data
sets where absolute abundances of taxa are available. As a case study of our metrics’ utility, we show
that community cohesion is a strong predictor of Bray–Curtis dissimilarity (R2=0.47) between
phytoplankton communities in Lake Mendota, WI, USA. Our cohesion metrics outperform a model
built using all available environmental data collected during a long-term sampling program. The result
that cohesion corresponds strongly to Bray–Curtis dissimilarity is consistent across the six long-
term time series, including five phytoplankton data sets and one bacterial 16S rRNA gene sequencing
data set. We explain here the calculation of our cohesion metrics and their potential uses in microbial
ecology.
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Introduction

Most efforts to model microbial communities pri-
marily use environmental drivers as predictors of
community dynamics (Patterson, 2009; Hambright
et al., 2015). However, despite the vast quantities of
data becoming available about microbial commu-
nities, predictive power in microbial models is often
surprisingly poor (Blaser et al., 2016). Even in one of
most well-studied microbial systems, the San Pedro
Ocean Time Series, there are sampling sites where
none of the 33 environmental variables measured are
highly significant (Po0.01) predictors of community
similarity (Cram et al., 2015). Thus, there may be
room to improve predictive models by adding new
parameters; ecological literature has long suggested
that the degree of complexity in a community should
inform community dynamics (MacArthur, 1955;
Cohen and Newman., 1985; Wootton and Stouffer,
2016). We use the term ‘complexity’ as defined in the
theoretical ecology literature, which refers to the

number and strength of connections in a food web
(May, 1974). We hypothesize that incorporating
information about the complexity of microbial
communities could improve predictive power in
these communities.

Here, we present a workflow to generate metrics
quantifying the connectivity of a microbial commu-
nity, which we call ‘cohesion’. We demonstrate how
our cohesion metrics can be used to predict commu-
nity dynamics by showing that cohesion is signifi-
cantly related to the rate of compositional turnover
(Bray–Curtis dissimilarity) in microbial communities.
As an application of our metrics, we present a case
study using our newly developed cohesion variables
as predictors of the compositional turnover rate (a
common response variable in microbial ecology) in
phytoplankton communities. Prior modeling efforts
have indicated that incorporating taxon traits and
interactions improved models of phytoplankton com-
munity assembly (Litchman and Klausmeier, 2008;
Thomas et al., 2012). However, even basic traits such
as taxonomy are still often unknown for other
microbial taxa, such as bacteria (Newton et al.,
2011). Thus, taxon interactions and community
connectivity must be inferred statistically.

Our cohesion metrics overcome two barriers that
often preclude using information about community

Correspondence: CM Herren, Freshwater and Marine Science
Program, University of Wisconsin—Madison, 4440 Microbial
Sciences Building, 1550 Linden Drive, Madison, WI 53706, USA.
E-mail: cherren@wisc.edu
Received 1 February 2017; revised 27 April 2017; accepted 3 May
2017; published online 21 July 2017

The ISME Journal (2017) 11, 2426–2438
www.nature.com/ismej

http://dx.doi.org/10.1038/ismej.2017.91
mailto:cherren@wisc.edu
http://www.nature.com/ismej


complexity in microbial analyses. First, the large
number of taxa in microbial data sets makes it difficult
to use information about all taxa in statistical analyses.
Although methods exist to analyze microbial commu-
nity interconnectedness (for example, local similarity
analysis, artificial neural networks), this often involves
constructing networks with many parameters that are
difficult to interpret. Second, microbial community
data are often ‘relativized’ or ‘compositional’ data sets,
where the abundance of each taxon represents the
fraction of the community it comprises. This creates
several problems in downstream analysis (Weiss et al.,
2016). For example, taxon correlation values are
different in absolute versus relative data sets (Faust
and Raes, 2012; Friedman and Alm, 2012), and it is
unclear how using relative abundances influences the
apparent population dynamics of individual taxa
(Lovell et al., 2015). Thus, these two features (many
taxa and relative abundance) have previously proven
problematic when analyzing microbial community
connectivity. The methods used to account for these
biases influence the results of the analyses. For
instance, the proportion of positive versus negative
pairwise interactions identified in a single data set
varied widely when using different correlation detec-
tion methods (Weiss et al., 2016). In addition, the
power to detect significant relationships between taxa
declines steeply when taxa are less persistent and as
relationships become nonlinear (Weiss et al., 2016). In
contrast to existing correlation detection methods,
which aim to identify significant pairwise interactions,
our cohesion metrics evaluate connectivity at the
community level.

Here, we describe and test a method to quantify one
aspect of microbial community complexity. Our
resulting ‘cohesion’ metrics quantify the connectivity
of each sampled community. Thus, our cohesion
metrics integrate easily with other statistical analyses
and can be used by any microbial ecologist interested
in asking whether community interconnectedness is
important in their study system. We demonstrate how
to obtain these cohesion metrics from time series data
and, as a case study, show how cohesion relates to
rates of compositional turnover in long-term micro-
bial data sets. We develop this workflow with data
sets where raw abundance data are available and use
these raw abundances to validate our methods when
working with relativized data sets. Thus, our
approach was designed to overcome known chal-
lenges of analyzing microbial data sets.

Materials and methods

Description of data sets
The North Temperate Lakes Long-Term Ecological
Research database hosts many long-term time ecolo-
gical series. We used five long-term phytoplankton
data sets (two from the North Temperate Lakes Long-
Term Ecological Research and three from the
Cascade research group) to validate the cohesion

workflow. These data sets met a number of criteria
that made them good candidates for the validation:
the samples were collected regularly, sampling
spanned multiple years and many environmental
gradients, and taxa were counted in absolute
abundance. The term ‘phytoplankton’ refers to the
polyphyletic assemblage of photosynthetic aquatic
microbes (Litchman and Klausmeier, 2008). The data
sets are from the following lakes in Wisconsin, USA:
Lake Mendota (293 samples with 410 taxa over 19
years), Lake Monona (264 samples with 382 taxa
over 19 years), Paul Lake (197 samples with 209
taxa over 12 years), Peter Lake (197 samples with 237
taxa over 12 years) and Tuesday Lake (115 samples
with 121 taxa over 12 years). These lakes vary in
size, productivity and food web structure. Lake
Mendota and Lake Monona are large (39.4 km2 and
13.8 km2), urban, eutrophic lakes (Brock, 2012).
Peter, Paul and Tuesday lakes are small (each
o0.03 km2) lakes surrounded by forest (Carpenter
and Kitchell, 1996). Peter Lake and Tuesday Lake
were also subjected to whole-lake food web manip-
ulations during the sampling timeframe (detailed in
Elser and Carpenter, 1988 and Cottingham et al.,
1998). After validating our workflow using the
phytoplankton data sets, we tested the cohesion
metrics on a bacterial data set obtained using 16S
rRNA gene amplicon sequencing. These types of data
sets often contain thousands of taxa, most of them
rare, which may influence the results of correlation-
based analyses (Faust and Raes, 2012). We used the
Lake Mendota bacterial 16S rRNA gene sequencing
time series (91 samples with 7081 taxa over 11 years)
for this analysis (Hall et al., in review). Sample
processing, sequencing and core amplicon data
analysis were performed by the Earth Microbiome
Project (www.earthmicrobiome.org; Gilbert et al.,
2014), and all amplicon sequence data and metadata
have been made public through the data portal (qiita.
microbio.me/emp). Briefly, community DNA (Kara
et al., 2013) was used to amplify partial 16S rRNA
genes using the 515F-806R primer pair (Caporaso
et al., 2011) and an Illumina MiSeq, with standard
Earth Microbiome Project protocols.

We present the workflow using results from the
Lake Mendota phytoplankton data set, as it is the
largest (longest duration and most taxa) data set
available in absolute abundance. The dominant
taxa in the Lake Mendota phytoplankton data set
change throughout the year, with diatoms most
abundant during the spring bloom and cyanobacteria
most abundant in summer. Details about phyto-
plankton data sets can be found at https://lter.
limnology.wisc.edu/. Further details about the Lake
Mendota 16S rRNA gene data set are included in the
Supplementary Online Material.

Data curation
Phytoplankton densities in Lake Mendota varied by
more than two orders of magnitude between sample
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dates. The densities of cells in these samples ranged
from 956 cells ml− 1 to 272 281 cells ml− 1. We
removed individuals that were not identified at any
level (for example, categorized as Miscellaneous).
For each sample date, we converted the raw
abundances to relative abundances by dividing each
taxon abundance by the total number of individuals
in the community, such that all rows summed to 1.
Relative abundances indicate the fraction of a
community comprised by the taxon. We removed
taxa that were not present in at least 5% of samples,
as we were not confident that we could
recover robust connectedness estimates for very
rare taxa. This cutoff retained an average of
98.9% of the identified cells in each sample.
The results of our analyses using other cutoff
values can be found in the Supplementary Online
Material.

Results
Overview
The input of our workflow is the taxon relative
abundance table, and the outputs are measurements
of the connectivity of each sampled community,
which we call community ‘cohesion’ (Figure 1). In
the process, our workflow also produces metrics of
the connectedness of each taxon. Briefly, our work-
flow begins by calculating the pairwise correlation
matrix between taxa, using all samples. We use a
null model to account for bias in these correlations
due to the skewed distribution of taxon abundances
(that is, many small values and a few large values)
and relativized nature of the data set (that is, all rows
sum to 1). We subtract off these ‘expected’ correla-
tions generated from the null model to obtain a
matrix of corrected correlations. For each taxon, the
average positive corrected correlation and average
negative corrected correlation are recorded as the
connectedness values. As previously noted, our goal
was to create a metric of connectivity for each
community; thus, the next step in the workflow
calculates cohesion values for each sample. Cohe-
sion is calculated by multiplying the abundance of
each taxon in a sample by its associated connected-
ness values, then summing the products of all taxa in
a sample. There are two metrics of cohesion, because
we separately calculate metrics based on the positive
and negative relationships between taxa. Within
each section given below, we alternate between
presenting an analysis step and showing a validation
of these techniques.

Connectedness metric

Analysis
Null models: It is difficult to directly observe
interactions within microbial communities, so cor-
relations are often used to infer relationships
between taxa or between a taxon and the

environment. Thus, we used a correlation-based
approach for determining the connectedness of taxa.
However, when using correlation-based approaches
with relativized microbial data sets, it is necessary to
use a null model to evaluate how the features of the
data set (skewed abundances and the fact that all
rows sum to 1) contribute to correlations between
taxa (Weiss et al., 2016). The purpose of a null model
is to assess the expected strengths of correlations
when there are no true relationships between taxa
(Ulrich and Gotelli, 2010).

The null model was used to calculate how strongly
the features common to microbial data sets con-
tribute to taxon connectedness estimates, so that this
structural effect could be subtracted from the con-
nectedness metrics. Of the several dozen null models
tested, we have selected two for inclusion in the
cohesion R script. We discuss both null models here
and in the Supplementary Online Material. The
Supplementary Online Material and readme docu-
ment should assist in choosing the null model
appropriate for a given data set. While testing
various null models, it became clear that a taxon’s
pairwise correlation values were strongly related to
its persistence (fraction of samples when present)
across the data set. Thus, taxon persistence was
preserved in both the null models.

The objective of the null model was to calculate
the strength of pairwise correlations that would be
observed if there were no true relationship between
taxa. This paragraph describes the ‘taxon/column
shuffling’ null model used for the phytoplankton
data set analyses. During each iteration, one taxon
was designated as the ‘focal taxon’ (Figure 2). For
each taxon besides the focal taxon, abundances in
the null matrix were permuted (that is, randomly
sampled without replacement) from their abundance
distribution across all the samples. Then, we
calculated Pearson correlations between the focal
taxon and the randomized other taxa. We iterated
through this process of calculating pairwise correla-
tions between the focal taxon and all other taxa 200
times. The median correlations from these 200
randomizations were called the ‘expected’ correla-
tions for the focal taxon. We recorded the median
value as the ‘expected’ correlation, rather than the
mean value, because distributions were skewed
toward larger values. Thus, a greater proportion of
the distribution fell within one standard deviation of
the median, as compared with within one standard
deviation of the mean. We repeated this process for
each taxon as the focal taxon, which resulted in a
matrix of expected taxon correlations. Finally, we
subtracted the expected taxon correlations from their
paired observed taxon correlations, thereby produ-
cing a matrix where each value was an observed
minus expected correlation for the given pair of taxa.

The second null model uses the same workflow as
described above, where the data set is iteratively
randomized and median correlations are used as
the ‘expected’ pairwise correlations. However, the
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method of randomization is different; instead, the
abundances of all taxa present within one sample
were randomized. We refer to this null model as the
‘row shuffling’ model. The benefit of this null model
is that row sums are maintained. Thus, negative
dependencies between taxa within the same sample
are accounted for in this model. The drawback of this
null model is that a taxon might be assigned an
abundance value that is implausible (that is, larger

than its maximum observed abundance). In the
online script to calculate cohesion, we have included
the option to choose between these two null models
(taxon shuffle and row shuffle).

We have included an additional option to input a
pre-determined correlation matrix, thereby bypass-
ing the null model. Using a pre-determined correla-
tion matrix allows researchers to use a different
correlation detection strategy to generate the

Figure 1 This diagram shows an overview of how our cohesion metrics are calculated, beginning with the relative abundance table and
ending with the cohesion values. The relative abundance table shows six samples (S1 indicating ‘Sample 1’ and so on) and a subset of taxa
(A, B, C and Z). First, pairwise correlations are calculated between all taxa, which are entered into the correlation matrix. We then used a
null model to account for how the features of microbial data sets might affect correlations, and we subtracted off these values (null model
detailed in Figure 2). For each taxon, we averaged the positive and negative corrected correlations separately and recorded these values as
the positive and negative connectedness values. Cohesion values were obtained by multiplying the relative abundance table by the
connectedness values. Thus, there are two metrics of cohesion, corresponding to positive and negative values.
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correlation matrix. This option to import a custom
correlation matrix makes our cohesion workflow
compatible with other software packages designed
for detecting pairwise relationships in microbial
communities.
Calculating connectedness: We calculated taxon
connectedness values from the corrected (observed
minus expected) correlation matrix. For each taxon,
we separately averaged its positive and negative
correlations with other taxa to produce a value of
positive connectedness and a value of negative
connectedness. We kept positive and negative values
separate for both mathematical and biological rea-
sons. First, we had hypothesized that positive and
negative correlations may capture different ecologi-
cal relationships between taxa. Furthermore, posi-
tive correlations were stronger (an average of 2.5
times larger in magnitude) than negative correla-
tions. And, correlation distributions were generally
skewed toward positive values. Thus, a small
number of positive correlations could mute the
signal of negative correlations, if positive and
negative correlations were averaged together.

The averaging step in this workflow was intended
to overcome the issue that individual correlations
between taxa can be influenced by many factors and
may be spurious (Fisher and Mehta, 2014). However,

assuming that correlations often (but not always)
reflect complexity in a community, the average of
many correlations should be a more robust metric of
complexity than any single correlation. In other
words, we assume only that highly connected taxa
have stronger correlations on average. Invoking the
law of large numbers, these average correlations
should be increasingly accurate measures of a
taxon’s connectedness as the number of pairwise
correlations increases (that is, as the number of taxa
in the data set increases). Similarly, applying the
central limit theorem, each mean correlation should
be normally distributed with low variance due to the
large number of pairwise correlations.

Validation. As discussed previously, there are
inherent limitations of using correlation-based meth-
ods with relative abundance data instead of absolute
counts (Fisher and Mehta, 2014). Thus, we examined
whether a measure of connectedness based on
absolute abundance would show the same pattern
observed using the relativized data. However, we
needed a different approach for calculating correla-
tions to account for the following properties of count
data: (1) variance-mean scaling, which results in very
large population variances of abundant taxa (Taylor,
1961) and (2) the fact that individual population

Figure 2 Microbial data are in the form of relative abundance, and some taxa are much more abundant than others, which are factors that
may cause taxa to be spuriously correlated. Thus, we devised a null model to account for the bias that these data features introduce into
our metrics. We repeated this process with each taxon as the ‘focal taxon’, which is A in this figure. For each of the 200 iterations,
we randomized all taxon abundances besides the focal taxon. We then calculated correlations between the focal taxon and all other taxa.
We recorded the median value of the 200 correlations calculated for each pair of taxa in the median correlation matrix.
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sizes are strongly related to overall community
densities, which causes positive correlations among
all taxa (Doak et al., 1998). As noted previously,
phytoplankton densities in Lake Mendota samples
varied by more than two orders of magnitude among
sample dates. Therefore, using correlations between
raw abundances would inflate the positive relation-
ships between taxa as a result of changing overall
community density. Thus, we first detrended the
count data to account for changing community
density (on different sampling dates) and drastically
different variances of taxon populations (which are
expected as a result of mean-variance scaling).

We used a hierarchical linear model to estimate
the effects of overall community density and mean
taxon abundance on individual taxon observations
(sensu Jackson et al., 2012), so that these effects
could be removed when calculating correlations.
We modeled the abundance of each taxon at each
time point as a function of sample date and
taxon, assuming a quasipoisson distribution (which
accounts for increases in population variances when
population means increase). The model estimates a
mean abundance effect for each sample, based on the
abundances of each taxon in the sample. Similarly,
the model estimates mean abundances for each
taxon, based on the distribution of taxon abundances
across all the samples. Thus, the residuals of this
analysis represent the normalized (transformed)
deviations of taxon abundances after accounting for
overall community density on the sample date and
taxon abundance/variance. We created a pairwise
correlation matrix for the phytoplankton taxa using
the correlations between these residuals. We calcu-
lated connectedness metrics from the pairwise
correlation matrix using the same technique that
we applied to the corrected correlation matrix from
the relativized data: we used the average positive
and negative taxon correlations as their connected-
ness values.

We validated our workflow for the relative
abundance data set using the estimates of taxon

connectedness obtained from the absolute abun-
dance data set. Comparing the connectedness values
from these two methods shows strong agreement
between the two sets of connectedness metrics
(correlation for positive connectedness metrics =
0.820; correlation for negative connectedness
metrics = 0.741, Figure 3). Although two taxa deviate
from the linear relationship between the negative
connectedness metrics (appearing as outliers in
Figure 3b), both metrics rate these taxa as having
strong connectedness arising from negative
correlations. Thus, the two methods are qualitatively
consistent for these two anomalous points.
Furthermore, using the null model improved the
correspondence between absolute and relative con-
nectedness metrics, as measured by their propor-
tionality. The variance in the proportions (relative
metric/absolute metric) decreased after the null
model correction was implemented (variance in
proportions for positive metrics: uncorrected =0.25,
corrected= 0.065; variance in proportions for
negative metrics: uncorrected =0.047, corrected =
0.035).

Cohesion metric

Analysis. Many researchers seek to detect differ-
ences in community connectivity across time, space
or treatments. Thus, it would be useful to have a
metric that quantifies, for each community, the
degree to which its component taxa are connected.
The aim of our cohesion metric is to quantify the
instantaneous connectivity of a community, where
connectivity increases when highly connected taxa
become more abundant in the community. We used
a simple algorithm to collapse the connectedness
values of individual taxa into two parameters
representing the connectivity of the entire sampled
community, termed ‘cohesion’. Again, one metric of
cohesion stems from positive correlations, and one
metric stems from negative correlations. To calculate

Figure 3 Comparing the metrics of connectedness obtained from the absolute abundance data set (x axes) and the relative abundance data
set (y axes) shows agreement between the two methods of generating these metrics. Correlations between the metrics are 0.810 (a) and
0.741 (b). We used separate variables for positive and negative metrics because relativizing the data set is expected to differentially affect
positive and negative correlations. Solid lines show the fit of linear models.
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each cohesion metric, we multiplied the relative
abundance of taxa in a sample by their associated
connectedness values and summed these products.
This cohesion index can be represented mathemati-
cally as the sum of the contribution of each of the n
taxa in the community, after removing rare taxa
(Equation 1). Thus, communities with high relative
abundances of strongly connected taxa would have a
high score of community cohesion. We note that this
index is bounded by − 1 to 0 for negative cohesion or
from 0 to 1 for positive cohesion.

Cohesion ¼
Xn

i¼1

abundancei ´ connectednessi ð1Þ

Validation. We had hypothesized that our cohe-
sion metrics could be significant predictors of
microbial community dynamics. Thus, a natural
question to ask was whether our metrics of cohesion
outperform environmental variables when analyzing
the Lake Mendota phytoplankton data. Fortunately,
the North Temperate Lakes Long-Term Ecological
Research program has collected paired environmen-
tal data for the Lake Mendota phytoplankton
samples. We obtained these environmental data sets
to use as alternative predictors of phytoplankton
community dynamics in Lake Mendota. The envir-
onmental data sets available (11 variables) were:
water temperature, air temperature, dissolved oxy-
gen concentration, dissolved oxygen saturation,
Secchi depth, combined NO3 + NO2 concentrations,
NH4 concentration, total nitrogen concentration,
dissolved reactive phosphorus concentration, total
phosphorus concentration and dissolved silica con-
centrations. Protocols, data and associated metadata
can be found at https://lter.limnology.wisc.edu/. We
use these environmental data to build an alternate
model in our case study below.

Case study of utility

Analysis. To demonstrate their utility, we applied
our new metrics to the Lake Mendota phytoplankton
data set. We tested whether community cohesion
could predict compositional turnover, a common
response variable in microbial ecology. We used
multiple regression to model compositional turnover
(Bray–Curtis dissimilarity between time points) as a
function of community cohesion at the initial time
point. That is, Bray–Curis dissimilarity was the
dependent variable, whereas positive and negative
cohesion were the independent variables. Because
time between samples influences Bray–Curtis dis-
similarity (Nekola and White, 1999; Shade et al.,
2013), we only included pairs of samples taken
within 36 to 48 days of each other. These criteria
included 186 paired communities across the 19
years. Cohesion values (both positive and negative)

were calculated at the first time point for each
sample pair. We chose this timeframe because it was
sufficiently long for multiple phytoplankton genera-
tions to have occurred, and because this timeframe
was compatible with the sampling frequency.

Community cohesion was a strong predictor of
compositional turnover (Figure 4). The regression
using our cohesion metrics explained 46.5%
of variability (adjusted R2 = 0.465) in Bray–Curtis
dissimilarity. Cohesion arising from negative
correlations was a highly significant predictor,
whereas cohesion arising from positive correlations
was not significant (negative cohesion: F1,183 = 6.81,
Po1× 10− 20; positive cohesion: F1,183 = 0.735,
P=0.405).

For the purpose of model comparison, we used the
associated environmental data to model Bray–Curtis
dissimilarity as a function of environmental drivers.
We included as predictors the 11 variables pre-
viously mentioned, as well as 11 additional pre-
dictors that measured the change in each of these
variables between the two sample dates. Finally,
because many chemical and biological processes are
dependent on temperature (Brown et al., 2004), we
included first-order interactions between water
temperature and the 21 other variables. We first
included all 43 terms in the model, then used
backward selection (which iteratively removes the
least-significant term in the model, beginning with
interaction terms) until all the remaining terms in the
model were significant at Po0.1, as to maximize the
adjusted R2 value. Although this analysis does not
represent an exhaustive list of possible environmen-
tal drivers, it includes all available paired environ-
mental data from the long-term monitoring program.
Twenty-nine values of Bray–Curtis dissimilarity
were excluded from this analysis (leaving 157 of
the 186 values), because they lacked one or more

Figure 4 We used our metrics of community cohesion as
predictors of the rate of compositional turnover (Bray–Curtis
dissimilarity) in the Mendota phytoplankton communities. Nega-
tive cohesion was a significant predictor (Po1×10− 20) of Bray–
Curtis dissimilarity, and the regression explained 46.5% of
variation in compositional turnover.
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associated environmental variables. Additional
details about this analysis can be found in the
Supplementary Online Material.

In the final model after backward selection, 16
variables were retained as significant predictors (see
the Supplementary Online Material). Significance
was determined using type III sums of squares. Using
the guideline that each variable should have
approximately 10 additional data points to prevent
overparameterization (Peduzzi et al., 1995), we were
not concerned about overfitting. The adjusted R2 of
this model was 0.229. The non-adjusted R2 value of
the full model (all 43 variables) was 0.393. When
adding negative cohesion as a parameter into the
final environmental model, negative cohesion was
highly significant (Po1×10− 13) and 12 environmen-
tal variables remained significant at Po0.1.

To address the generality of the relationship
between cohesion and community turnover, we
calculated cohesion metrics and Bray–Curtis dissim-
ilarity for the four other phytoplankton data sets
(Monona, Peter, Paul and Tuesday lakes) and for the
Lake Mendota bacterial 16S rRNA gene sequencing
data set. Community cohesion was a significant
predictor of Bray–Curtis dissimilarity in all the data
sets. In each instance, stronger cohesion resulting
from negative correlations was related to lower
compositional turnover. Table 1 presents the results
of these analyses and associated workflow para-
meters. Additional information about the sensitivity
of model performance to varying parameters can be
found in the Supplementary Online Material.

Validation. Strong correlations between predictor
variables are known to influence the results of
statistical analyses (Neter et al., 1996). Thus, we
wondered whether strong correlations between taxa
would necessarily generate the observed relationship
where greater cohesion is related to lower composi-
tional turnover. We conducted simulation studies to
investigate whether our significant results might be
simply an artifact of strong inter-taxon correlations.
We generated data sets where taxa were highly
correlated in abundance, as if they were synchro-
nously responding to exogenous forces. We
calculated cohesion metrics and Bray–Curtis dissim-
ilarities for the simulated data sets to analyze
whether strong taxon correlations was sufficient to
produce results similar to those we observed in the
real data.

Here, we briefly describe the process used to
simulate data sets, while additional details can be
found in the Supplementary Online Material. First,
we generated four autocorrelated vectors to represent
exogenous forces, such as environmental drivers.
Taxa were artificially correlated to these external
vectors, thereby also producing strong correlations
between taxa. We manipulated the taxon abun-
dances to mimic other important features of the
microbial data sets, including skewed taxon mean
abundances and a large proportion of zeroes in

the data set. We calculated cohesion metrics and
Bray–Curtis dissimilarities for the simulated data
sets, and we used a multiple regression to model
Bray–Curtis dissimilarity as a function of positive
cohesion and negative cohesion. We recorded the
R2 value and parameter estimates of this multiple
regression. We repeated this simulation process 500
times to generate distributions of these results.

Our cohesion metrics had a very low ability to
explain compositional turnover (Bray–Curtis dissim-
ilarity) in the simulated data sets. The median
model-adjusted R2 value was 0.022, with 95% of
adjusted R2 values below 0.088 (Figure 5). Although
the community cohesion metrics were highly sig-
nificant predictors (Po0.001) of community turn-
over more commonly than would be expected by
chance (1.0% of simulations for positive cohesion
and 8.6% for negative cohesion), the proportion of
variance explained by these metrics was compara-
tively very low. For comparison, across the six long-
term data sets from Wisconsin lakes, model-adjusted
R2 values ranged from 0.36 to 0.50. Thus, there was
comparatively little ability to explain compositional
turnover in the simulated data sets using our
cohesion metrics.

Discussion

The ability to predict microbial community
dynamics lags behind the amount of data collected
in these systems (Blaser et al., 2016). Here, we
present new metrics, called ‘cohesion’, which can be
used as additional predictor variables in microbial
models. The cohesion metrics contain information
about the connectivity of microbial communities,
which has been previously hypothesized to influ-
ence community dynamics (MacArthur, 1955; May,
1972; Nilsson and McCann, 2016). Our cohesion
metrics are easily calculated from a relative abun-
dance table (R script provided online) and might be
of interest to a variety of microbial ecologists and
modelers.

In the Lake Mendota phytoplankton example, our
two cohesion parameters outperformed the available
environmental data at predicting phytoplankton
community changes. The two cohesion parameters
explained 46.5% of variability (adjusted R2 = 0.465)
in community turnover over 19 years of phytoplank-
ton sampling, in comparison with the final environ-
mental model using 16 predictors, which explained
22.9% of community turnover (adjusted R2 = 0.229).
The simultaneous significance of negative cohesion
and 12 environmental variables when all predictors
were included in a single model indicates that
environmental variables and negative cohesion
explained different sources of variability in Bray–
Curtis dissimilarity. Although there are almost
certainly important predictors missing from the
environmental model (for example, photosyntheti-
cally active radiation, three-way interactions), the
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environmental model represents a commonly
applied approach to explaining microbial composi-
tional turnover (Tripathi et al., 2012; Chow et al.,
2013) that uses all associated environmental data
from a long-term sampling program. Although we
still strongly advocate for the collection of environ-
mental data, we note that cohesion was a much
better predictor of compositional turnover than any
available environmental variable.

Our workflow overcomes many challenges asso-
ciated with using correlation-based techniques in
microbial data sets. The validations we conducted
indicated that our connectedness metrics are appro-
priate for relativized data sets, because connected-
ness metrics from relative and absolute data sets
showed strong correspondence. Most DNA-
sequencing data sets are only available in relative
abundance. Previous methods for analyzing relative
abundance data sets have identified potential pitfalls
of calculating correlations for these data (Friedman
and Alm, 2012; Weiss et al., 2016); however, the
extent to which these biases influence analysis
results is often unknown, because paired absolute
abundance data sets do not exist. The validations of
our cohesion workflow with absolute abundance
data indicate that the steps taken to account for
biases (using a null model and averaging pairwise
correlations) make the cohesion metrics robust for
relative abundance data sets.

Our cohesion metrics address a common problem
of techniques describing community complexity
(such as network analyses), which is that they do
not quantify the connectivity of individual commu-
nities. For instance, the ‘hairball’ generated from a
network analysis is generated from many samples;
there are no parameters specific to each sample, and
therefore the network cannot be used as a predictor
variable. Thus, existing methods to quantify con-
nectivity do not pair easily with other analyses.
Furthermore, in contrast to many other network
analyses, we did not attempt to calculate significance
values for pairwise correlations as a part of the
cohesion workflow. Based on our a priori hypothesis
that weak interactions are ecologically important
(McCann et al., 1998), we included all pairwise
correlations in the connectedness metrics. Our
cohesion metrics quantify sample connectivity using
only two parameters, which can be used as pre-
dictors in a variety of further analyses (linear
regression, ordinations, time series and so on).
Finally, our simulations showed that strong inter-
taxon correlations were not sufficient to reproduce
the observed result that cohesion was a strong
predictor of Bray–Curtis dissimilarity. In the simula-
tions, cohesion had low explanatory power, even
though taxa were highly correlated. From this result,
we infer that correlations between taxa in real
communities are an important aspect of complexity
that is captured by our cohesion metrics.

Our cohesion metrics explain a significant amount
of compositional change in all six data sets (fiveT
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phytoplankton and one bacterial 16S rRNA gene data
set). Yet, it is not immediately clear what cohesion is
measuring. There are two broad factors that could
cause correlations between taxa: biotic interactions
and environmental drivers. Thus, at least one of
these two factors must underlie our connectedness
and cohesion metrics. Here, we discuss the evidence
supporting either of these interpretations:

Cohesion as a measure of biotic interactions
Even if shared responses to environmental drivers
underlie most pairwise taxon correlations, cohesion
could still indicate biotic interaction strength in a
community. This would occur if taxa were influ-
enced to the same degree by environmental drivers,
but differentially influenced by species interactions.
In this case, averaging over all correlations would
give larger connectedness values for strong inter-
actors and smaller connectedness values for weak
interactors. Many studies have indicated that micro-
bial taxa have differential interaction strengths. For
example, some microbial communities contain key-
stone taxa, which have disproportionate effects on
community dynamics through their strong taxon
interactions (Trosvik and de Muinck, 2015; Banerjee
et al., 2016). Similarly, recent work suggests that
many taxa within candidate phyla are obligate
symbionts, meaning they must interact strongly with
other taxa for their survival and reproduction
(Kantor et al., 2013; Hug et al., 2016). Conversely,
there are many taxa that can be modeled adequately
as a function of environmental drivers; this is true for
some bloom forming cyanobacteria, which are
known to respond strongly to nutrient concentra-
tions and temperature (McQueen and Lean, 1987;

Beaulieu et al., 2013). Taken together, these studies
suggest that there is a wide spectrum of how strongly
taxa interact with one another. These differences in
interaction strength would be detected by our
connectedness metric due to averaging over the large
number of pairwise correlations. Thus, it is plausible
that connectedness and cohesion are reflecting biotic
interactions in communities.

We now examine results from the long-term data
set analyses under the assumption that cohesion
measures biotic interactions. The Bray–Curtis dis-
similarity regression results would mean that com-
munities with many strong interactors have lower
rates of change, especially when the interactions
create negative correlations between taxon abun-
dances. This finding is in line with prior work
showing that biotic interactions affect microbial
community stability (Coyte et al., 2015). Thus, the
interpretation that stronger biotic interactions lead to
lower compositional turnover is a plausible explana-
tion for our observed results. However, we specifi-
cally refrain from interpreting positive or negative
connectedness values as indications of specific
biotic interactions, such as predation, competition
or mutualism. For example, a positive correlation
between two taxa could be the result of a mutualism
between the taxa, or it could be the result of a shared
predator declining in abundance. Further work, both
empirical and theoretical, is necessary to identify
what these positive and negative correlations signify
in the context of the ecology of these organisms.

Cohesion as a measure of environmental synchrony
We now consider the possibility that connectedness
and cohesion are simply detecting environmental
synchrony. If a subset of taxa respond to a changing
environmental driver, then these taxa will have
strong pairwise correlations. For example, correla-
tions between phytoplankton species of the same
genus (and, therefore, with similar niches) can be
upwards of 0.9, indicating strong similarity in
abundance patterns. In this case, connectedness
would measure the degree of environmentally driven
population synchrony that a taxon has with other
taxa. A high cohesion value would indicate that a
community has many taxa that respond simulta-
neously to external forces; then, cohesion would
quantify overall community responsiveness to one or
more environmental drivers. Under this assumption,
cohesion should correlate with environmental dri-
vers (for example, cohesion is high because many
taxa are positively correlated to warm temperatures,
but cohesion drops when it gets colder and
these taxa senesce). We tested this prediction
with 22 variables from the environmental model
(11 for the environmental variables and 11 for the
changes in environmental variables) and found that
negative cohesion in the Lake Mendota phytoplank-
ton data set generally had weak correlations with
these predictors (absolute correlationso0.25,

Figure 5 We simulated data sets where correlations between taxa
were artificially produced by forced correlation to external factors.
We calculated cohesion values for the simulated communities to
test whether cohesion and Bray–Curtis dissimilarity were strongly
related in simulated data sets. The histogram of model-adjusted R2

values from our simulations shows that the median-adjusted R2

was 0.022 (dashed line), with 95% of values falling below 0.088.
For comparison, observed adjusted R2 values ranged from 0.36
to 0.50.
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Supplementary Online Material). We also looked for
a seasonal trend in cohesion, but found no signifi-
cant correlation between cohesion (positive or
negative) and Julian Day, or a quadratic term for
Julian Day. Thus, we do not find any evidence that
cohesion is simply reproducing the information
contained in environmental data. Finally, our simu-
lations show one example where taxon abundances
could be driven exclusively by external factors (such
as the environment), but this does not necessarily
lead to strong predictive power of compositional
turnover. However, our simulations omitted many
features of real ecological communities, and so we
cannot completely rule out the possibility that
environmental drivers contributed to our cohesion
metrics in the phytoplankton data sets.

Under the assumption that cohesion measures
environmentally driven population synchrony, we
examine our result that stronger negative cohesion
was related to lower Bray–Curtis dissimilarity. In
this scenario, communities that have strong cohesion
contain high abundances of taxa that respond
simultaneously to environmental forces. Then, com-
munities with many synchronous taxa would turn
over more slowly than communities with taxa whose
abundances are independent of the environment.
This conclusion is counterintuitive, but possible.
This pattern could occur if taxa that are strongly
influenced by the environment have lower varia-
bility than taxa that are weakly influenced by the
environment; in that case, highly correlated taxa
would have their abundances more tightly regulated
than other taxa. Although possible, this explanation
disagrees with many studies that have found that
environmental gradients regulate which taxa can
persist in communities (Fierer and Jackson, 2006;
Walter and Ley, 2011; Freedman and Zak, 2015).

Comparing the two possible signals that cohesion
might be detecting, we believe the evidence points to
biotic interaction as the larger contributor. However,
we expect that environmental synchrony is captured
to some extent, with the relative importance of
environmental factors depending on the particular
communities and ecosystem. In instances where
synchronous responses to environmental drivers
cause positive correlations between taxa, we would
expect this environmentally driven signal to affect
positive cohesion values more than negative cohe-
sion values. Regardless of the ecological force
measured by cohesion, there is a clear result in the
six data sets analyzed that stronger negative cohe-
sion is related to lower compositional turnover. This
result suggests that negative correlations between
taxa are arranged non-randomly to counteract one
another, thereby stabilizing community composition.
In other words, relationships between taxa appear to
buffer, rather than amplify, changes to community
composition. This result agrees with prior theoretical
models that propose that feedback loops originating
from taxon interactions are integral to modulating
food web stability (Neutel et al., 2007; Brose, 2008).

Although stronger negative cohesion was related to
lower compositional turnover, negative pairwise
correlations were, on average, weak. The negative
connectedness values ranged from −0.004 to − 0.12,
and the mean negative correlation was − 0.022. Thus,
our results are not inconsistent with the hypothesis
that weak interactions are stabilizing to communities
(McCann et al., 1998). The finding that negative
cohesion was stabilizing was not easily replicated in
our simulations, where positive and negative corre-
lations were interspersed with random magnitude
throughout the data set. Thus, the arrangement of
correlations between taxa in the data set appears to
be an important feature of real communities that may
contribute to their stability (Worm and Duffy, 2003).

Guidelines for using our metrics
Although we used long-term time series data sets for
the analyses presented here, our cohesion metrics
can be used to predict community dynamics in a
variety of data sets. For example, cohesion could be
used with a spatially explicit data set, where samples
were collected from different locations across a
landscape. In the context of phytoplankton samples,
this could be a data set consisting of samples from
different locations in a lake or watershed. Then, the
cohesion metrics could be used to predict commu-
nity composition change at one location over time, or
to predict differences in community composition
between locations. It would also be interesting to
investigate how cohesion is affected by experimental
perturbations. Finally, cohesion could be used as a
predictor for many response variables. Additional
applications of the cohesion metrics could include
identifying communities susceptible to major com-
positional change (for example, cyanobacterial
blooms, infection in the human microbiome), relat-
ing community cohesion to spatial structure (for
example, how taxon connectedness relates to the
dispersal abilities of different microbial taxa), and
investigating how disturbance influences cohesion
(for example, how illness influences the cohesion of
communities in a host-associated microbiome, how
oil spills affect cohesion of marine microbial com-
munities). The consistent results between the phy-
toplankton data sets and the bacterial 16S rRNA gene
data set indicates that our cohesion metrics are
robust for DNA-sequencing data sets.

The critical step in the cohesion workflow is
calculating reliable correlations between taxa. Thus,
some data sets will be more suitable for our cohesion
metric than others. For example, a data set consisting
of 20 samples from five lakes over multiple years
might be a poor candidate for the cohesion metrics.
In this case, correlations between taxa might be
driven mainly by environmental differences or
location, and the sample number would be too low
to calculate robust correlations. Based on the
phytoplankton data sets analyzed here, we suggest
a lower limit of 40–50 samples when calculating
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cohesion metrics, with more samples necessary for
more heterogeneous data sets. We also suggest
including environmental variables as covariates
when analyzing heterogeneous data sets. Finally,
the persistence cutoff for including taxa should be
adjusted based on the data set being analyzed. For
example, in data sets obtained by DNA sequencing,
the sequencing depth affects taxon persistence
(Smith and Peay, 2014). Thus, for DNA-sequencing
data sets, we also recommend implementing a cutoff
by mean abundance, where very rare taxa are
omitted from the cohesion metrics.

Conclusion

Our cohesion metrics provide a method to incorpo-
rate information about microbial community com-
plexity into predictive models. These metrics are
easy to calculate, needing only a relative abundance
table. Furthermore, across all data sets analyzed in
this study, negative cohesion was strongly related to
compositional turnover. In systems where cohesion
is a significant predictor of community properties
(for example, nutrient flux, rates of photosynthesis),
this result could guide further investigation into the
effects of microbial interactions in mediating com-
munity function. In this case, researchers might
focus their efforts on understanding the role of
highly connected taxa, which are identified in our
workflow. We aim to eventually determine the
features that distinguish systems in which cohesion
is important versus systems in which cohesion does
not predict community properties.

Conflict of Interest

The authors declare no conflict of interest.

Acknowledgements
We thank the North Temperate Lakes LTER program for
the use of their publicly available data on Lake Mendota
and Lake Monona. We also thank the Cascade research
group for the use of their data from Peter, Paul and
Tuesday lakes, which is hosted on the LTER website. This
manuscript has been much improved as a result of
comments from the McMahon lab. Mark McPeek provided
helpful comments on this work. This work was funded by
a United States National Science Foundation (NSF) GRFP
award to CMH (DGE- 1256259). KDM acknowledges
funding from the NSF Long-Term Ecological Research
program (NTL-LTER DEB-1440297) and an INSPIRE award
(DEB-1344254).

References
Banerjee S, Kirkby CA, Schmutter D, Bissett A, Kirkegaard

JA, Richardson AE. (2016). Network analysis reveals
functional redundancy and keystone taxa amongst

bacterial and fungal communities during organic
matter decomposition in an arable soil. Soil Biol
Biochem 97: 188–198.

Beaulieu M, Pick F, Gregory-Eaves I. (2013). Nutrients and
water temperature are significant predictors of cyano-
bacterial biomass in a 1147 lakes data set. Limnol
Oceanogr 58: 1736–1746.

Blaser MJ, Cardon ZG, Cho MK, Dangl JL, Donohue TJ,
Green JL et al. (2016). Toward a predictive under-
standing of Earth’s microbiomes to address 21st
century challenges. Mbio 7: e00714–e00716.

Brock TD. (2012). A Eutrophic Lake: Lake Mendota,
Wisconsin. Springer Science & Business Media: New
York, NY, USA.

Brose U. (2008). Complex food webs prevent competitive
exclusion among producer species. Proc R Soc Lond B
Biol Sci 275: 2507–2514.

Brown JH, Gillooly JF, Allen AP, Savage VM, West GB.
(2004). Toward a metabolic theory of ecology. Ecology
85: 1771–1789.

Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D,
Lozupone CA, Turnbaugh PJ et al. (2011). Global patterns
of 16S rRNA diversity at a depth of millions of sequences
per sample. Proc Natl Acad Sci USA 108: 4516–4522.

Carpenter SR, Kitchell JF. (1996). The Trophic Cascade in
Lakes. Cambridge University Press: New York, NY, USA.

Chow C-ET, Sachdeva R, Cram JA, Steele JA,
Needham DM, Patel A et al. (2013). Temporal
variability and coherence of euphotic zone bacterial
communities over a decade in the Southern
California Bight. ISME J 7: 2259–2273.

Cohen JE, Newman CM. (1985). When will a large complex
system be stable? J Theor Biol 113: 153–156.

Cottingham KL, Carpenter SR, Amand ALS. (1998).
Responses of epilimnetic phytoplankton to experimen-
tal nutrient enrichment in three small seepage lakes.
J Plankton Res 20: 1889–1914.

Coyte KZ, Schluter J, Foster KR. (2015). The ecology of the
microbiome: networks, competition, and stability.
Science 350: 663–666.

Cram JA, Chow C-ET, Sachdeva R, Needham DM,
Parada AE, Steele JA et al. (2015). Seasonal and
interannual variability of the marine bacterioplankton
community throughout the water column over
ten years. ISME J 9: 563–580.

Hambright KD, Beyer JE, Easton JD, Zamor RM, Easton AC,
Hallidayschult TC. (2015). The niche of an invasive
marine microbe in a subtropical freshwater impound-
ment. ISME J 9: 256–264.

Doak DF, Bigger D, Harding EK, Marvier MA, O’Malley RE,
Thomson D. (1998). The statistical inevitability of
stability‐diversity relationships in community ecology.
Am Nat 151: 264–276.

Elser JJ, Carpenter SR. (1988). Predation-driven dynamics
of zooplankton and phytoplankton communities in a
whole-lake experiment. Oecologia 76: 148–154.

Faust K, Raes J. (2012). Microbial interactions: from
networks to models. Nat Rev Micro 10: 538–550.

Fierer N, Jackson RB. (2006). The diversity and biogeo-
graphy of soil bacterial communities. Proc Natl Acad
Sci USA 103: 626–631.

Fisher CK, Mehta P. (2014). Identifying keystone species in
the human gut microbiome frommetagenomic timeseries
using sparse linear regression. PLoS One 9: e102451.

Freedman Z, Zak DR. (2015). Soil bacterial communities
are shaped by temporal and environmental filtering:

Cohesion: quantifying connectivity of communities
CM Herren and KD McMahon

2437

The ISME Journal



evidence from a long-term chronosequence. Environ
Microbiol 17: 3208–3218.

Friedman J, Alm EJ. (2012). Inferring correlation networks
from genomic survey data. PLoS Comput Biol 8: 1–11.

Gilbert JA, Jansson JK, Knight R. (2014). The Earth
Microbiome project: successes and aspirations. BMC
Biol 12: 69.

Hall MW, Rohwer RR, Perrie J, McMahon KD, Beiko RG.
(in review). Ananke: temporal clustering reveals
ecological dynamics of microbial communities. Pre-
print available at https://peerj.com/preprints/2879/.

Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ,
Castelle CJ et al. (2016). A new view of the tree of life.
Nat Microbiol 1: 16048.

Jackson MM, Turner MG, Pearson SM, Ives AR. (2012).
Seeing the forest and the trees: multilevel models
reveal both species and community patterns. Eco-
sphere 3: 1–16.

Kantor RS, Wrighton KC, Handley KM, Sharon I, Hug LA,
Castelle CJ et al. (2013). Small genomes and sparse
metabolisms of sediment-associated bacteria from four
candidate phyla. Mbio 4: e00708–e00713.

Kara EL, Hanson PC, Hu YH, Winslow L, McMahon KD.
(2013). A decade of seasonal dynamics and co-
occurrences within freshwater bacterioplankton
communities from eutrophic Lake Mendota,
WI, USA. ISME J 7: 680–684.

Litchman E, Klausmeier CA. (2008). Trait-based commu-
nity ecology of phytoplankton. Annu Rev Ecol Evol
Syst 39: 615–639.

Lovell D, Pawlowsky-Glahn V, Egozcue JJ, Marguerat S,
Bähler J. (2015). Proportionality: a valid alternative to
correlation for relative data. PLOS Comput Biol 11:
e1004075.

MacArthur R. (1955). Fluctuations of animal populations and
a measure of community stability. Ecology 36: 533–536.

May RM. (1972). Will a large complex system be stable?
Nature 238: 413–414.

May RM. (1974). Stability and Complexity in Model Ecosys-
tems. Princeton University Press: Princeton, NJ, USA.

McCann K, Hastings A, Huxel GR. (1998). Weak trophic
interactions and the balance of nature. Nature 395:
794–798.

McQueen DJ, Lean DRS. (1987). Influence of water
temperature and nitrogen to phosphorus ratios on the
dominance of blue-green algae in Lake St. George,
Ontario. Can J Fish Aquat Sci 44: 598–604.

Nekola JC, White PS. (1999). The distance decay of
similarity in biogeography and ecology. J Biogeogr 26:
867–878.

Neter J, Kutner MH, Nachtsheim CJ, Wasserman W. (1996).
Applied lInear Statistical Models, vol. 4. Irwin:
Chicago, IL, USA.

Neutel A-M, Heesterbeek JAP, van de Koppel J, Hoender-
boom G, Vos A, Kaldeway C et al. (2007). Reconciling
complexity with stability in naturally assembling
food webs. Nature 449: 599–602.

Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S.
(2011). A guide to the natural history of freshwater
Lake Bacteria. Microbiol Mol Biol Rev 75: 14–49.

Nilsson KA, McCann KS. (2016). Interaction strength
revisited—clarifying the role of energy flux for food
web stability. Theor Ecol 9: 59–71.

Patterson DJ. (2009). Seeing the big picture on microbe
distribution. Science 325: 1506–1507.

Peduzzi P, Concato J, Feinstein AR, Holford TR. (1995).
Importance of events per independent variable in
proportional hazards regression analysis II. Accuracy
and precision of regression estimates. J Clin Epidemiol
48: 1503–1510.

Shade A, Gregory Caporaso J, Handelsman J, Knight R, Fierer N.
(2013). A meta-analysis of changes in bacterial and
archaeal communities with time. ISME J 7: 1493–1506.

Smith DP, Peay KG. (2014). Sequence depth, not PCR
replication, improves ecological inference from next
generation DNA sequencing. PLoS ONE 9: e90234.

Taylor LR. (1961). Aggregation, variance and the mean.
Nature 189: 732–735.

Thomas MK, Kremer CT, Klausmeier CA, Litchman E.
(2012). A global pattern of thermal adaptation in
marine phytoplankton. Science 338: 1085–1088.

Tripathi BM, Kim M, Singh D, Lee-Cruz L, Lai-Hoe A,
Ainuddin AN et al. (2012). Tropical soil bacterial
communities in Malaysia: pH dominates in the
Equatorial Tropics too. Microb Ecol 64: 474–484.

Trosvik P, de Muinck EJ. (2015). Ecology of bacteria in the
human gastrointestinal tract—identification of key-
stone and foundation taxa. Microbiome 3: 44.

Ulrich W, Gotelli NJ. (2010). Null model analysis of
species associations using abundance data. Ecology
91: 3384–3397.

Walter J, Ley R. (2011). The human gut microbiome:
ecology and recent evolutionary changes. Annu Rev
Microbiol 65: 411–429.

Weiss S, Van Treuren W, Lozupone C, Faust K, Friedman J,
Deng Y et al. (2016). Correlation detection strategies in
microbial data sets vary widely in sensitivity and
precision. ISME J 10: 1669–1681.

Wootton KL, Stouffer DB. (2016). Many weak interactions
and few strong; food-web feasibility depends on the
combination of the strength of species’ interactions and
their correct arrangement. Theor Ecol 9: 185–195.

Worm B, Duffy JE. (2003). Biodiversity, productivity and
stability in real food webs. Trends Ecol Evol 18: 628–632.

This work is licensed under a Creative
Commons Attribution-NonCommercial-

ShareAlike 4.0 International License. The images or
other third party material in this article are included
in the article’s Creative Commons license, unless
indicated otherwise in the credit line; if the material
is not included under the Creative Commons license,
users will need to obtain permission from the license
holder to reproduce the material. To view a copy
of this license, visit http://creativecommons.org/
licenses/by-nc-sa/4.0/

© The Author(s) 2017

Supplementary Information accompanies this paper on The ISME Journal website (http://www.nature.com/ismej)

Cohesion: quantifying connectivity of communities
CM Herren and KD McMahon

2438

The ISME Journal

https://peerj.com/preprints/2879/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

	Cohesion: a method for quantifying the connectivity of microbial communities
	Introduction
	Materials and methods
	Description of data sets
	Data curation

	Results
	Overview
	Connectedness metric
	Validation

	Cohesion metric
	Analysis
	Validation

	Case study of utility
	Analysis
	Validation


	Discussion
	Cohesion as a measure of biotic interactions
	Cohesion as a measure of environmental synchrony
	Guidelines for using our metrics

	Conclusion
	Acknowledgements
	Note
	References




