Prostate Cancer and Prostatic Diseases
SEARCH     advanced search my account e-alerts subscribe register
Journal home
Advance online publication
Current issue
Press releases
For authors
For referees
Contact editorial office
About the journal
For librarians
Contact NPG
Customer services
Site features
NPG Subject areas
Access material from all our publications in your subject area:
Biotechnology Biotechnology
Cancer Cancer
Chemistry Chemistry
Dentistry Dentistry
Development Development
Drug Discovery Drug Discovery
Earth Sciences Earth Sciences
Evolution & Ecology Evolution & Ecology
Genetics Genetics
Immunology Immunology
Materials Materials Science
Medical Research Medical Research
Microbiology Microbiology
Molecular Cell Biology Molecular Cell Biology
Neuroscience Neuroscience
Pharmacology Pharmacology
Physics Physics
Browse all publications
2002, Volume 5, Number 1, Pages 6-12
Table of contents    Previous  Article  Next   [PDF]
Lycopene and prostate cancer
N J Barber1 and J Barber2

1Department of Urology, St George's Hospital, London, UK

2Department of Biological Sciences, Imperial College, London, UK

Correspondence to: N J Barber, Department of Urology, St George's Hospital, Blackshaw Road, London SW17 0QT, UK


The role of diet and dietary supplements in the development and progression of prostate cancer represents an increasingly frequent topic of discussion in the urologist's office. As access to information becomes forever easier, patients are more aware and educated about this subject than ever before. The role of antioxidants including carotenoids in all this has been the subject of great interest for some time. Lycopene, the carotenoid that gives tomatoes and other fruits and vegetables their red colour, has been of particular interest recently as regards its role in prostate cancer. The aim of this review is to briefly outline the biology and chemistry of lycopene, the scientific basis for its proposed anticancer properties and evaluate what conclusions the practicing urologist may draw from the data thus far. The media and industry have raced to encourage not only diets high in lycopene but also dietary lycopene supplements but there is probably only sufficient evidence to recommend to patients a diet rich in all vegetables and fruits of which tomatoes and tomato based products should certainly be a part.

Prostate Cancer and Prostatic Diseases (2002) 5, 6-12. DOI: 10.1038/sj/pcan/4500560


carotenoids; lycopene; prostate cancer


In the twenty first century the public are increasingly more educated regarding health issues. With this comes a greater awareness of the incidence of prostate cancer in the population and inevitably, therefore, more interest in what lifestyle changes may help in the avoidance of this common disease. The incidence and mortality rates of prostate cancer vary geographically but are strongly associated with affluence and dietary factors related to affluence.1,2 Populations who migrate from low risk countries, for example Japan and Poland to the USA, suffer an increase risk of developing the disease.3,4 Furthermore, as previously low risk countries have become more westernized so the incidence of prostate cancer has risen.2 Around the world and particularly in the USA this has led to numerous epidemiological studies investigating the link between diet and all cancers including that of the prostate gland. To date a long list of dietary factors have been associated with the development of prostate cancer including fat, specific fatty acids, soy, calcium, various vegetables, lycopene and supplements of vitamin E, selenium, vitamin C and zinc. It was analysis of data from the Health Professionals Follow-Up (HPFU) study that first indicated a possible inverse relationship between the intake of lycopene and the risk of prostate cancer.5 Not surprisingly, this has led to a great deal of enthusiasm for the recommendation of lycopene containing foodstuffs as a regular part of a healthy diet. Indeed, Heinz, for example, have established an intensive advertising campaign to promote their lycopene-rich products (Figure 1). There are now even numerous websites expounding the benefits of dietary lycopene, eg, lycopene¾,, and and even more advertising lycopene containing dietary supplements. Famously the departing Mayor of New York, Rudolph Giuliani, has also declared that he now eats large amounts of lycopene-rich plum tomatoes having been diagnosed with prostate cancer.

In this review we hope to briefly outline the nature of lycopene, the scientific basis for its proposed anti cancer properties and discuss the evidence thus far as related to its role in the incidence of prostate cancer such that urologists may be better armed in the face of ever more knowledgeable and inquiring patients.

The chemistry and biology of lycopene

Lycopene is a member of a group of natural pigments known as carotenoids. Carotenoids are synthesized by both plants and micro-organisms and are widely found in the environment, giving, for example, the colours to many flowers, fruits and vegetables. Animals cannot synthesize carotenoids and rely on ingestion for their source of these molecules. In plants the principal function of this family is to serve as light absorbing pigments and also protect cells against photo-oxidative damage during the process of photosynthesis. For humans, carotenoids have a dietary role; principally that of beta-carotene, which serves as a source of vitamin A. Until recently less emphasis has been placed on the importance of lycopene as a dietary factor. While beta-carotene is orange and responsible for the colour of carrots for example, lycopene gives the red colour to tomatoes and other fruits such as guava, watermelon, pink grapefruit and papaya (see Table 1). In the Western world 85% or more of dietary lycopene comes from tomatoes and tomato based products. In the UK the average intake is about 1 mg which is lower than that estimated for the USA by about five times.

Thus far, more than 600 carotenoids have been described and as a family they share common structural features. These include a number of centrally located conjugated double bonds and a polyisoprenoid structure. Lycopene itself is an acrylic and extremely hydrophobic carotenoid and is known to have 13 conjugated double bonds arranged in a linear fashion (Figure 2). It is a lack of a beta ionone ring that leaves lycopene free of provitamin A activity. The conjugated double bonds allow lycopene and indeed all carotenoids the ability to isomerize and thus numerous combinations of cis and trans isomers are possible. The most thermodynamically stable configuration is the all-trans configuration and it is this isomer of lycopene that is most commonly found in raw foods. However, cooking or other types of food processing can cause isomerization leading to increased levels of cis-isomers, particularly 5-cis.6 In biology, the absorption of light, exposure to energy (eg heat) or chemical reactions are thought to result in isomeric interconversion.

In truth, little is known regarding the biology of dietary lycopene in the human gastrointestinal tract. It is assumed to follow a similar route of absorption as beta-carotene. It is likely, therefore, that lycopene is digested and absorbed in a pattern of events one would expect of a hydrophobic molecule or lipid, being acted upon by bile salts and pancreatic lipases and incorporated into micelles that are absorbed into the mucosal cells by a passive process. Thereafter, lycopene is transported from the gut mucosa by chylomicrons and later in the circulation the bulk of lycopene is found in the hydrophobic core of low density lipoproteins.7,8 Interestingly, lycopene, like other carotenoids, is found in tight protein-carotenoid complexes and crystalline aggregates in most foods leading to some significant barriers to economic absorption. These tight bonds are dissociated by heating leading to improved bioavailability and it is well recognized that heating tomato juice with lipid improves lycopene absorption.6 Under favourable conditions as much as 30% of lycopene can be absorbed with the rest being excreted.

Once absorbed it is possible to measure serum concentrations of lycopene and it appears stable in collected blood samples stored at -70°C for many years.9,10 Whilst serum concentrations may vary hugely between different populations11,12,13,14,15,16,17,18,19,20 there appears to be much smaller changes in the serum within an individual unless significant changes in dietary intake occur; for both dietary restriction21 and addition22,23 of lycopene will have gradual effects on serum concentration. To measure the immediate effect of diet on lycopene absorption it is better to measure chylomicron lycopene content.24 Once in the circulation, lycopene is distributed to tissues around the body and it is becoming increasingly clear that this is not a uniform process. Significantly higher concentrations of lycopene, compared to the other carotenoids, are found in the liver, the adrenal glands, the testes and the prostate gland.14,25,26,27,28,29,30 Once again, however, the interpersonal variation of tissue lycopene content is large (up to 100-fold). The efficiency of the digestive and absorptive pathway from dietary intake of lycopene to absorption into the serum and transport to the tissues has not been widely investigated. Furthermore, there is significant variation in the types of isomers measured in the plasma as compared to prostate tissue. In foodstuffs approximately 5-10% of total lycopene appears as cis isomers as compared to about 50% in plasma and about 80% in prostate tissue.28,31,32 The relative importance of this is not clear, particularly in any active biological role lycopene may play within the prostate. However, given that cis isomers dissolve better in lipophilic solutions compared to trans isomeric forms, which tend to aggregate and crystallize, trans-membrane movement of the cis isomer into cells may be relatively facilitated. Lycopene does seem to be a major carotenoid in the prostate, however, the two studies that have examined this to date appear to differ as to relative quantities of the carotenoids found.28,33 In the more recent study,33 lycopene levels in the prostate tissue ranked third behind beta-carotene and lutein and this appeared to reflect relative plasma concentrations. This would tend to suggest that lycopene is not preferentially taken up by the prostate and that uptake from the plasma to prostate tissue is a passive process from the serum lipoproteins in which carotenoids are transported. Thus increased levels of lycopene in prostate tissue is expected when its plasma concentration is high due to a lycopene rich diet.

Dietary sources of lycopene

Lycopene is found in a relatively narrow range of foods and its content in these foodstuffs has been measured in a number of laboratories (Table 1).31,34,35,36

The principal source of dietary lycopene is undoubtedly tomatoes in most people's diets, however, lycopene content varies in different varieties of tomatoes and it is important to realize that tomatoes contain a whole different variety of carotenoids other than lycopene. Although sensitive to isomerization, lycopene is relatively stable when cooked.37,38 Indeed, as mentioned earlier, the bioavailability of lycopene appears to be enhanced by processing and cooking.6 Ingestion of tomato paste leads to greater rises in both serum chylomicron trans and cis isomers of lycopene compared to that of fresh tomatoes when both are given with corn oil to aid absorption.39

The accurate estimation of lycopene intake is dependent both on the accuracy of food frequency questionnaires and also on the food composition databases employed. Unfortunately significant quantitative differences in estimated lycopene intake may be observed if different databases are used in analyzing the results of the same food intake questionnaire although qualitatively individuals are similarly ranked in terms of high or low intake of lycopene.24 Thus, self reported food questionnaires and estimation of lycopene intake calculated from databases thereafter does appear to rank intake correctly40,41 but lacks quantitative accuracy. It does seem that such food questionnaires cannot be used confidently to estimate the lycopene (or indeed any carotenoid) content of the prostate however.33 Whether this conclusion of Freeman et al. reflects the small numbers in the study (n=47) or the methodology employed (particularly of tissue sampling) is open to question. The authors themselves held the self-report of dietary intake as the most likely source of any error. However, accurate data of lycopene content in cooked vegetables was not incorporated into a comprehensive database until 199842 and this was not used in this study, perhaps leading to another source of error. Other studies have demonstrated good associations between dietary carotenoid intake and plasma levels43 and, importantly, plasma levels of all the antioxidants measured did correlate well with prostatic tissue levels in this study. Further larger studies or well designed feeding studies or studies requiring more accurate dietary assessments will be required to demonstrate the relationship between lycopene intake and prostatic levels.44 Moreover, the important influence of other concurrent dietary factors on the efficiency of intestinal lycopene absorption need to be included in any database.

Lycopene and the biology of cancer

For some time the role of the oxidative damage to cellular protein, lipid and most importantly DNA has been proposed as a possible mechanism of the evolution of cancer, including prostate cancer.45,46 The oxidative weapons are free radicals, which are molecules with an unpaired electron on the outer shell. There are intrinsic defense mechanisms against cellular damage by these free radicals including the enzymes glutathoine peroxidase and superoxide dismutase. Not surprisingly, interest has developed in exogenous sources of antioxidants and these include vitamin E, vitamin A, selenium and carotenoids including lycopene.47 Carotenoids may react with oxygen free radicals by either transfer of the unpaired electron leaving the carotenoid in an excited triplet state, the excess energy being dissipated as heat, or by 'bleaching' of the carotenoid. The former leaves the carotenoid intact and therefore able to be involved in numerous cycles of free radical scavenging, the latter results in decomposition of the carotenoid. Fortunately, it is the former that predominates and the efficiency of this process seems to be related to the number of double bonds incorporated in the carotenoid structure. Interest has been heightened in lycopene, in particular, as it has a large number of double bonds and thus has been found to be the most potent scavenger of oxygen free radicals of all the carotenoids.48 Lycopene has been demonstrated to not only scavenge oxygen free radical species, for example peroxyl radicals, but also interact with reactive oxygen species such as hydrogen peroxide and nitrogen dioxide49,50,51 and in this manner protect cells from oxidative damage. Interestingly lycopene was found to be twice as efficient as beta-carotene in scavenging for nitrogen dioxide.49,52 Lycopene has also been demonstrated to have other possible anti cancer activities particularly relating to modulation of intercellular communication and alterations in intracellular signalling pathways.53 These include an upregulation in intercellular gap junctions,54 an increase in cellular differentiation55 and alterations in phosphorylation of some regulatory proteins.56 Little is known regarding the role or indeed importance of these effects in vivo, however, lycopene has been demonstrated to be significantly more efficient than any carotene in inhibiting insulin-like growth factor type 1 (IGF1) induced proliferation of a number of tumour cell lines57 and decrease the occurrence of both spontaneous and chemically induced mammary tumours in animal models.58,59 In prostate cancer, in particular, a study has demonstrated inhibition of cell line proliferation in the presence of physiological concentrations of lycopene in combination with alpha-tocopherol.60 Interestingly, a large study has linked lower levels of IGF1 (high levels of which are associated with the incidence of prostate cancer61) with increased tomato intake in the diet.62

Lycopene and prostate cancer

The interest in the possible anti cancer properties of carotenoids and more recently lycopene itself are based not only on a sound scientific basis, but also on a wealth of epidemiological data from around the world. Numerous studies have demonstrated associations of higher dietary fruit and vegetable intake with lower risks of a whole range of cancers. The strength of the evidence is such that the National Research Council of the Academy of Sciences,63 the National Cancer Institute64 and the World Cancer Research Fund and the American Institute for Cancer Research65 have all recommended increasing dietary intake of citrus fruits, cruciferous vegetables, green and yellow vegetables and fruit and vegetables high in vitamins A and C to lower cancer risk. Similar recommendations have been made by the UK government66 and by the World Health Organization.67 However, it was analysis of data from the HPFU study that initially proposed the possible importance of relative intake of lycopene as opposed to other chemicals found in fruit and vegetables on the risk of prostate cancer.5 Of nearly 50 000 men, 812 developed prostate cancer. Of the dietary variables measured (including alpha- and beta-carotene) only lycopene was associated with a decreased risk (21%) of prostate cancer (age and energy adjusted RR=0.79; 95% confidence interval=0.64-0.99 for high vs low quintile intake). In this study high intake of tomatoes and tomato products (accounting for 82% of lycopene intake) reduced the total risk of prostate cancer by 35% and of high grade cancer by 53%. Those in the higher quintile were said to consume more than 10 servings of lycopene per week as opposed to less than one in the lower quintile. Perhaps related to changes in bioavailability as outlined above, it was also found that the consumption of tomato sauce as opposed to tomato juice has the strongest inverse association (RR=0.66, 95% confidence interval=0.49-0.90; P for trend=0.001). It is important to note that this study is one of some 17 studies5,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83 that has examined dietary carotenoid intake and the risk of prostate cancer and whilst two have found protective effects for beta-carotene only the study by Giovannuci et al 5 has shown an effect related to lycopene. Moreover, of the seven studies that specifically examined whether dietary tomato products in particular reduce the risk of prostate cancer, only three found this to be the case.5,84,85 One further is inconclusive statistically but tends to support that hypothesis86 and three found no association at all.73,87,88 However, one of the latter three negative studies73 did describe a strong dietary association of decreased risk of prostate cancer with the consumption of tinned baked beans (RR=0.52; 95% confidence interval=0.31-0.88) and the authors did suggest that tinned baked beans do provide a large amount of highly bioavailable lycopene.

A number of studies have examined a similar association with plasma lycopene levels rather than dietary intake. Three have shown a negative association with the risk of prostate cancer89,90,91 and one showed no link.92 In one study,89 a statistically non significant 6.2% lower median lycopene level was demonstrated in those who developed prostate cancer compared to age and race matched controls (RR=0.50 95%CI=0.20-1.29) between high and low quartiles of plasma lycopene and another (based on 581 subjects)90 a statistically significant RR of 0.56% (95%CI=0.34-0.91) was demonstrated when comparing high quintile with low quintile of plasma lycopene.

In comparing both dietary studies and plasma studies one must remember the huge interpersonal and indeed intercultural differences in lycopene levels, as outlined above, and recognize that some of the unsupportive studies relate to populations with low base-line dietary intake and plasma levels.88,92


In order to clarify the muddied waters as to whether any proposed association truly exists between ingestion of lycopene and reduced frequency of prostate cancer, further studies should aim to separate the effects of vegetables in general from that of tomatoes. It may be that lycopene merely represents a good marker of vegetable and fruit intake and that people who eat large quantities of fruit and vegetables tend to be those who are more health conscious and one could argue also avoid high cancer risk behavior anyway. On the other hand, those same health conscious people are more likely to seek 'screening' for prostate cancer and thus be diagnosed with the disease. It is also important to realize that lycopene rich foodstuffs are not necessarily linked to vegetable intake, such as ketchup, pizzas and tomato sauces and as such may be fairly viewed as a separate dietary factor from vegetable intake. Further studies should employ dietary questionnaires and nutrient databases that are specifically sensitive to lycopene.44

Of all the carotenoids, beta-carotene has been most investigated, particularly in relation to decreasing risk of smoking related cancers. It is important to note, however, that two trials of supplemental beta-carotene actually seemed to lead to an increased risk of lung cancer in male smokers of 28%93 and 18%94 in the treated vs untreated arms. The results of this study serve to warn that fruits and vegetables contain a whole range of biologically active substances and to choose one for dietary supplementation must be a carefully made decision based on good scientific data. One must therefore view with caution the potentially exciting results from the Karmanos Cancer Institute, Detroit.95 A prospective, single blind, placebo controlled, randomized study was performed where 15 of 26 men scheduled for radical prostatectomy for organ confined malignacy were given lycopene supplements, 15 mg twice a day (Lyc-O-MatoÔ, LycoRed, Beer-Sheva, Israel) for 3 weeks pre operatively. Serial measurements confirmed a 22% increase in plasma and tissue lycopene levels and a statistically significant fall in prostate specific antigen (PSA) over the 3 weeks in those taking lycopene. Those in the supplement arm were also found to have smaller volume tumours and surgical margins were less likely to be positive. Furthermore, analysis of the excised tissue showed that biomarkers of cellular proliferation decreased, whereas those of cellular differentiation, including connexin 43, and apoptosis increased in the intervention arm. Clearly this trial is too small in size to draw any real conclusions, however, it certainly adds fuel to the fire of debate. However, given the paucity of knowledge of the phamacokinetic properties of lycopene, of the potential risks of excess dietary intake and any hard scientific evidence as to its benefits, it is premature to recommend pharmacological supplementation of lycopene. Any dietary recommendations, therefore, should be based on those from the organizations listed above that emphasize the general benefits of diets high in a whole variety of vegetables and fruits, including tomatoes and tomato-based products.


1 Willet WC. Specific fatty acids and risks of breast and prostate cancer: dietary intake. Am J Clin Nutr 1997; 66: 1557-1563.

2 Giovannucci E. Epidemiologic characteristics of prostate cancer. Cancer 1995; 75: 1766-1777.

3 Haenszel W, Kurihara M. Studies of Japanese migrants. Mortality from cancer and other diseases among Japanese in the United States. J Natl Cancer Inst 1968; 40: 43-68. MEDLINE

4 Staszewski W, Haenszel W. Cancer mortality among Polish-born in the United States. J Natl Cancer Inst 1965; 35: 291-297. MEDLINE

5 Giovannucci E et al. Intake of carotenoids and retinol in relation to risk of prostate cancer. J Natl Cancer Inst 1995; 87: 1767-1776. MEDLINE

6 Stahl W, Sies H. Uptake of lycopene and its geometrical isomers is greater from heat processed than unprocessed tomato juice in humans. J Nutr 1992; 122: 265-277.

7 Parker RS. Absorption, metabolism and transport of carotenoids. FASEB J 1996; 10: 542-551. MEDLINE

8 Krinsky NI, Cornwell GD, Oncley JL. The transport of vitamin A and carotenoids in human plasma. Arch Biochem Biophys 1958; 73: 233-246.

9 Gross MD, Prouty CB, Jacobs DR. Stability of carotenoids and alpha-tocopherol during blood collection and processing procedures. Clin Chem 1995; 41: 943-944. MEDLINE

10 Comstock GW et al. Stability of ascorbic acid, carotenoids, retinol and tocopherols in plasma stored at -70°C for 4 y. Cancer Epidemiol Biomarkers Prev 1995; 4: 505-507. MEDLINE

11 Gerster H. The potential role of lycopene for human health. J Am Coll Nutr 1997; 16: 109-126. MEDLINE

12 Campbell DR et al. Plasma carotenoids as biomarkers of fruit and vegetable intake. Cancer Epidemiol Biomarkers Prev 1994; 3: 493-500. MEDLINE

13 Brady WE, Mares-Perlman JA, Bowen P, Stacewicz-Sapuntzakis M. Human serum carotenoid concentrations are related to physiologic and lifestyle factors. J Nutr 1996; 126: 129-137. MEDLINE

14 Stahl W, Shwartz W, Sundquist AR, Sties H. Cis-Trans isomers of lycopene and beta carotene in human serum and tissues. Arch Biochem Biophys 1992; 294: 173-177. MEDLINE

15 Carughi A, Hooper FG. Plasma carotenoid concentrations before and after supplementation with a carotenoid mixture. Am J Clin Nutr 1994; 59: 896-899. MEDLINE

16 Micozzi MS et al. Plasma carotenoid response to chronic intake of selected foods and beta-carotene supplements in men. Am J Clin Nutr 1992; 55: 1120-1125. MEDLINE

17 Ross MA et al. Plasma concentrations of carotenoids and antioxidant vitamins in Scottish males: influences of smoking. Eur J Clin Nutr 1995; 49: 861-865. MEDLINE

18 Peng YM et al. Concentrations and plasma-tissue-diet relationships of carotenoids, retinoids and tocopherols in humans. Nutr Cancer 1995; 23: 233-246. MEDLINE

19 Pamuk ER et al. Effect of smoking on serum nutrient concentrations in African-American women. Am J Clin Nutr 1994; 59: 581-585.

20 Olmedilla B, Granado F, Blanco I, Rojas-Hidalgo E. Seasonal and sex-related variations in six serum carotenoids, retinol and alpha tocopherol. Am J Clin Nutr 1994; 60: 106-110. MEDLINE

21 Rock CL, Swendseid ME, Jacob RA, McKee RW. Plasma carotenoid levels in human subjects fed a low carotenoid diet. J Nutr 1992; 122: 96-100. MEDLINE

22 Carughi A, Hooper FG. Plasma carotenoid concentrations before and after supplementation with a carotenoid mixture. Am J Clin Nutr 1994; 59: 896-899. MEDLINE

23 Micozzi MS et al. Plasma carotenoid response to chronic intake of selected foods and beta-carotene supplements in men. Am J Nutr 1992; 55: 1120-1125.

24 Clinton SK. Lycopene: chemistry, biology and implications for human health and disease. Nutrition Reviews 1998; 56: 35-51. MEDLINE

25 Kaplan LA, Lau JM, Stein EA. Carotenoid composition, concentrations and relationships in various human organs. Clin Physiol Biochem 1990; 8: 1-10. MEDLINE

26 Schmitz HH, Poor CL, Wellman RB, Erdman JW Jr. Concentrations of selected carotenoids and vitamin A in human liver, kidney and lung tissue. J Nutr 1991; 121: 1613-1621. MEDLINE

27 Nierenberg DW et al. Effects of 4-year oral supplementation with beta-carotene on serum concentrations of retinol, tocopherol and five carotenoids. Am J Clin Nutr 1997; 66: 315-319. MEDLINE

28 Clinton SK et al. Cis-trans lycopene isomers, carotenoids and retinol in the human prostate. Cancer Epidemiol Biomarkers Prev 1996; 5: 823-833. MEDLINE

29 Sanderson MJ, White KL, Drake IM, Schorah CJ. Vitamin E and carotenoids in gastric biopsies: the relation to plasma concentrations in patients with and without Helicobacter pylori gastritis. Am J Clin Nutr 1997; 65: 101-106. MEDLINE

30 Parker RS. Carotenoid and tocopherol composition in human adipose tissue. Am J Clin Nutr 1988; 47: 33-36. MEDLINE

31 Nguyen ML, Shwartz SJ. Carotenoid geometrical isomers in fresh and thermally processed fruits and vegetables. . Proceedings of the 2nd Karlsruhe Nutrition Symposium, Karlsruhe, Germany, 1997.

32 Yeum KJ et al. Human plasma carotenoid response to the ingestion of controlled diets high in fruit and vegetables. Am J Clin Nutr 1996; 64: 594-602. MEDLINE

33 Freeman VL et al. Prostatic levels of tocopherols, carotenoids and retinol in relation to plasma levels and self-reported usual dietary intake. Am J Epidemiology 2000; 151: 109-118.

34 Scott KJ, Hart DJ. Development and evaluation of an HPLC method for the analysis of carotenoids in foods, and the measurement of the carotenoid content of vegetables and fruits commonly consumed in the UK. Food Chem 1995; 54: 101-111.

35 Mangels AR et al. Carotenoid content of fruits and vegetables: an evaluation of analytical data. J Am Diet Assoc 1993; 93: 284-296. MEDLINE

36 Ong SSH, Tee ES. Natural sources of carotenoids from plants and oils. Methods Enzymol 1992; 213: 142-167.

37 Erdman JR Jr, Bierer TL, Gugger ET. Absorption and transport of carotenoids. In: Canfield LM, Krinsky NI, Olson JA (eds). Carotenoids in Human Health 691, New York Acadamy of Sciences: New York, 1993, 76-85.

38 Zhou JR, Gugger ET, Erdman JR Jr. The crystalline form of carotenes and the food matrix in carrot root decrease the relative bioavailability of beta and alpha carotene in the ferret model. J Am Coll Nutr 1996; 15: 84-91. MEDLINE

39 Gartner C, Stahl W, Sies H. Lycopene is more bioavailable from tomato paste than from fresh tomatoes. Am J Clin Nutr 1997; 66: 116-122. MEDLINE

40 Bazzarre T. Comparative evaluation of methods of collecting food intake data for epidemiological studies. Nutr Cancer 1983; 5: 201-214. MEDLINE

41 Siggelbout AM et al. Development and relative validity of a food questionnaire for the estimation of intake of retinol and beta-carotene. Nutr Cancer 1989; 12: 289-299. MEDLINE

42 Nutrient Coordinating Centre. . Nutrient data system release 2.9. MN: University of Minnesota, 1998.

43 Tucker K et al. Carotenoid intakes, assessed by dietary questionnaire, are associated with plasma carotenoid concentrations in an elderly population. J Nutr 1998; 129: 438-445.

44 Kristal AR, Cohen H. Invited commentary: tomatoes, lycopene and prostate cancer. How strong is the evidence? Am J Epidemiol 2000; 151: 124-127. MEDLINE

45 Ripple MO, Henry WF, Rago RP, Wilding G. Pro-oxidant-antioxidant shift induced by androgen treatment of human prostate carcinoma cells. J Natl Cancer Inst 1997; 89: 40-48. MEDLINE

46 Malins DC, Polissar NL, Gunselman SJ. Models of DNA structure achieve almost perfect discrimination between normal prostate, benign prostatic hyperplasia and adenocarcinoma and have a high potential for predicting BPH and prostate cancer. Proc Natl Acad Sci USA 1997; 94: 259-264. MEDLINE

47 Mayne ST. Beta-carotene, carotenoids and cancer prevention. In: DeVita VT, Hellman S, Rosenberg SA (eds). Cancer Principles and Practice of Oncology 12, Lippincott-Raven: New Jersey, USA, 1998, 2-15.

48 Miller NJ et al. Antioxidant activities of carotenes and xanthophylls. FEBS letters 1996; 384: 240-246. Article MEDLINE

49 Bohm F, Tinkler JH, Truscott TG. Carotenoids protect against cell membrane damage by the nitrogen dioxide radical. Nature Med 1995; 1: 98-99. MEDLINE

50 Lu Y et al. A new carotenoid, hydrogen peroxide oxidation products from lycopene. Biosci Biotech Biochem 1995; 59: 2153-2155.

51 Woodall AA et al. Oxidation of carotenoids by free radicals: relationship between structure and reactivity. Biochim Biophys Acta (Netherlands), 1997, 1336, 33-42.

52 Tinkler JH, Boehm F, Schalch W, Truscott TG. Dietary carotenoids protect human cells from damage. J Photochem Photobiol 1994; 26: 283-285.

53 Stahl W, Sies H. Lycopene: a biologically important carotenoid for humans? Arch Biochem Biophys 1996; 336: 1-9. Article MEDLINE

54 Zhang LX, Cooney RV, Bertram JS. Carotenoids upregulate connexin 43 gene expression independent of their provitamin A or antioxidant properties. Cancer Res 1992; 52: 5707-5712. MEDLINE

55 Bankson DD, Countryman CJ, Collins SJ. Potentiation of the retinoic acid-induced differentiation of HL-60 cells by lycopene. Am J Clin Nutr 1991; 53: (Suppl) 13.

56 Matsushima-Nishiwaki R et al. Suppression by carotenoids of microcystin-induced morphological changes in mouse hepatocytes. Lipids 1995; 30: 1029-1034. MEDLINE

57 Levy J et al. Lycopene is a more potent inhibitor of human cancer cell proliferation than either alpha-carotene or beta-carotene. Nutr Cancer 1995; 24: 257-266. MEDLINE

58 Nagasawa H, Mitamura T, Sakamoto S, Yamamoto K. Effects of lycopene on spontaneous mammary tumour development in SHN virgin mice. Anticancer Res 1997; 15: 118-123.

59 Sharoni Y, Giron E, Rise M, Levy J. Effects of lycopene-enriched oleoresin on 7,12-dimethyl-benz[a]anthracene-induced rat mammary tumours. Cancer Detect Prev 1997; 21: 118-123. MEDLINE

60 Pastori M, Pfander H, Boscoboinik D, Azzi A. Lycopene in association with alpha-tocopherol inhibits at physiological concentrations proliferation of prostate cancer cells. Biochem Biophys Res Commun 1998; 250: 582-585. Article MEDLINE

61 Chan JM et al. Plasma insulin like growth factor 1 and prostate cancer risk; a prospective study. Science 1998; 279: 563-566. Article MEDLINE

62 Mucci LA et al. Are dietary influences on the risk of prostate cancer mediated through the insulin-like growth factor system? BJU International 2001; 87: 814-820. Article MEDLINE

63 US National Research Council . Committee on diet and health: implications for reducing chronic disease risk. National Academy Press: Washington (DC), 1989.

64 National Cancer Institute. . Diet, nutrition and cancer prevention: a guide to food choices. . US Govt Print Off: Washington (DC), 1987.

65 World Cancer Research Fund American Institute for Cancer Research. . Food, nutrition and the prevention of cancer: a global prospective. American Institute for Cancer Research: Washington (DC), 1997.

66 Committee on Medical Aspects of Food and Nutrition Policy . (COMA). 1998, Annual Report, UK. Published in 1999 by the Department of Health (UK).

67 Diet, nutrition and the prevention of chronic diseases. Technical Report Series 797 WHO: Geneva, 1990.

68 Ohno Y et al. Dietary beta-carotene and cancer of the prostate: a case-control study in Kyoto, Japan. Cancer Res 1988; 48: 1331-1336. MEDLINE

69 Hsing AW et al. Diet, tobacco use and fatal prostate cancer: results from the Lutheran Brotherhood Cohort Study. Cancer Res 1990; 50: 6836-6840. MEDLINE

70 La Vecchia C et al. Dairy products and the risk of prostate cancer. Oncology 1991; 48: 406-410. MEDLINE

71 Le Merchand L et al. Vegetable and fruit consumption in relation to prostate cancer risk in Hawaii: a re-evaluation of the effect of dietary beta-carotene. Am J Epidemiol 1991; 133: 215-219. MEDLINE

72 Ross RK et al. Case-control study of prostate cancer in blacks and whites in Southern California. J Natl Cancer Inst 1987; 78: 869-874. MEDLINE

73 Key T et al. A case-control study of diet and prostate cancer. Br J Cancer 1997; 76: 678-687. MEDLINE

74 Kolonel LN et al. Relationship of dietary vitamin A and ascorbic acid intake to the risk of cancers of the lung, bladder and prostate in Hawaii. Natl Cancer Inst Monogr 1985; 69: 127-142.

75 Kolonel LN, Hankin JH, Yoshizawa CN. Vitamin A and prostate cancer in elderly men: enhancement of risk. Cancer Res 1987; 47: 2982-2985. MEDLINE

76 Oishi K et al. A case control study of prostate cancer with reference to dietary habits. Prostate 1988; 12: 179-190. MEDLINE

77 Mettlin C et al. Beta-carotene and animal fats and their relationship to prostate cancer risk: a case-control study. Cancer 1989; 64: 605-612. MEDLINE

78 West DW et al. Adult dietary intake and prostate cancer risk in Utah: a case-control study with special emphasis on aggressive tumours. Cancer Causes Control 1991; 2: 85-94. MEDLINE

79 Rohan TE et al. Dietary fibre, vitamins A, C and E and risk of breast cancer: a cohort study. Cancer Causes Control 1993; 4: 29-37. MEDLINE

80 Andersson S et al. Energy, nutrient intake and prostate cancer risk: a population based case control study in Sweden. Int J Cancer 1996; 68: 716-722. Article MEDLINE

81 Daviglus M et al. Dietary beta-carotene, vitamin C and the risk of prostate cancer: results from Western Electric Study. Epidemiology 1996; 7: 472-477. MEDLINE

82 Ghadirian P et al. Nutritional factors and prostate cancer: a case-control study of French Canadians in Montreal, Canada. Cancer Causes Control 1996; 7: 428-436. MEDLINE

83 Meyer F et al. Dietary energy and nutrients in relation to preclinical prostate cancer. Nutr Cancer 1997; 29: 120-126. MEDLINE

84 Tzonou A et al. Diet and cancer of the prostate: a case-control study in Greece. Int J Cancer 1999; 80: 149-155.

85 Mills PK et al. Cohort study of diet, lifestyle and prostate cancer in Adventist men. Cancer 1989; 64: 598-604. MEDLINE

86 Norrish AE, Jackson RT, Sharpe SJ, Murray Skeaff C. Prostate cancer and dietary carotenoids. Am J Epidemiol 2000; 151: 119-123. MEDLINE

87 Schuman L, Mandel J, Radke A. Some selected features of the epidemiology of prostate cancer: Minneapolis-St Paul, Minnesota case-control study, 1976-1979. In: Magnus K, (ed). Trends in Cancer Incidence: Causes and Implications Hemisphere Publishing Corporation: Washington, DC, 1982, 345-354.

88 Schuurman AG et al. Vegetable and fruit consumption and prostate cancer risk: a cohort study in the Netherlands. Cancer Epidemiol Biomarkers Prev 1998; 7: 673-680. MEDLINE

89 Hsing AW et al. Serologic precursors of cancer. Retinol, carotenoids and tocopherol and risk of prostate cancer. J Natl Cancer Inst 1990; 82: 941-946. MEDLINE

90 Gann P et al. Lower prostate cancer risk in men with elevated plasma lycopene: results of a prospective analysis. Cancer Res 1999; 59: 1225-1230. MEDLINE

91 Rao AV, Fleschner G, Agarwal A. Serum and tissue lycopene and biomarkers of oxidation in prostate cancer patients: a case-control study. Nutr and Cancer 1999; 33: 159-164.

92 Nomura AM et al. Serum micronutrients and prostate cancer in Japanese Americans in Hawaii. Cancer Epidemiol Biomarkers Prev 1997; 6: 487-491. MEDLINE

93 Omenn GS et al. Effects of a combination of beta-carotene and vitamin A on lung cancer and cardiovascular disease. New Engl J Med 1996; 334: 1150-1155. MEDLINE

94 The Alpha Tocopherol, Beta-Carotene Cancer Prevention Study Group. . The effect of vitamin E and beta-carotene on the incidence of lung cancer and other cancers in male smokers. New Engl J Med 1994; 330: 1029-1035. MEDLINE

95 Kucuk O et al. Phase II randomized clinical trial of lycopene supplementation before radical prostatectomy. Cancer Epidemiology, Biomarkers and Prevention 2001; 10: 861-868. MEDLINE


Figure 1 Front page of a booklet produced by HJ Heinz Co. Ltd as a promotion for the potential health properties of lycopene through consumption of their tomato based products. In the UK this company is now stating on their tomato ketchup bottles a lycopene content of of '2 mg lycopene per 10 mg serving'.

Figure 2 Structure of al-trans-lycopene and some of its cis-isomers.


Table 1 The lycopene content of common foods (24)

Received 24 July 2001; revised 8 October 2001; accepted 1 November 2001
2002, Volume 5, Number 1, Pages 6-12
Table of contents    Previous  Article  Next    [PDF]