Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Clinical prospects of long noncoding RNAs as novel biomarkers and therapeutic targets in prostate cancer

Abstract

Background:

The lack of sensitive and specific biomarkers for prostate cancer (PCa) has led to over-diagnosis and overtreatment with uncertain benefit. Therefore, biomarkers for early diagnosis that can distinguish aggressive from indolent tumors and that can detect metastatic or recurrent disease are needed. Long noncoding RNAs (lncRNAs) are non-protein-coding RNA species. lncRNAs are dysregulated in many diseases including PCa and are emerging as major players in cancer development. lncRNAs have several features that make then suitable as both biomarkers and therapeutics, and lncRNAs regulate critical cancer hallmarks in prostate epithelial cells including proliferation and survival.

Methods:

The PubMed database was searched using the terms 'long noncoding RNA', 'biomarker' and 'prostate cancer'. Known lncRNAs implicated as biomarkers and potential therapeutic targets in PCa are reviewed.

Results:

We comprehensively review several lncRNAs with potential as biomarkers for PCa. lncRNAs including PCA3, PCATs, SChLAP1, SPRY4-IT1 and TRPM2-AS are upregulated in PCa and are cancer specific; they are, therefore, attractive lead candidate biomarkers for clinical application. Several lncRNA therapeutics are currently being investigated by several companies for the treatment of various cancers including PCa. Small interfering RNAs, antisense oligonucleotides, ribozymes, deoxyribozymes and aptemers are few promising technologies for future lncRNA bases therapeutics.

Conclusion:

lncRNA expression is altered in cancer. Aberrant regulation promotes tumor formation, progression and metastasis. lncRNAs can use as tumor markers for PCa and may be attractive novel therapeutic targets for the diagnosis and treatment of PCa.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Richard J. Rebello, Christoph Oing, … Robert G. Bristow

References

  1. Klotz L . Prostate cancer overdiagnosis and overtreatment. Curr Opin Endocrinol Diabetes Obes 2013; 20: 204–209.

    Article  CAS  PubMed  Google Scholar 

  2. Sartori DA, Chan DW . Biomarkers in prostate cancer: what's new? Curr Opin Oncol 2014; 26: 259–264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Crawford ED, Ventii K, Shore ND . New biomarkers in prostate cancer. Oncology (Williston Park) 2014; 28: 135–142.

    Google Scholar 

  4. Beltran H, Rubin MA . New strategies in prostate cancer: translating genomics into the clinic. Clin Cancer Res 2013; 19: 517–523.

    Article  CAS  PubMed  Google Scholar 

  5. Beltran H, Yelensky R, Frampton GM, Park K, Downing SR, MacDonald TY et al. Targeted next-generation sequencing of advanced prostate cancer identifies potential therapeutic targets and disease heterogeneity. Eur Urol 2013; 63: 920–926.

    Article  CAS  PubMed  Google Scholar 

  6. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J et al. Initial sequencing and analysis of the human genome. Nature 2001; 409: 860–921.

    Article  CAS  PubMed  Google Scholar 

  7. Chung CC, Hsing AW, Edward Y, Biritwum R, Tettey Y, Adjei A et al. A comprehensive resequence-analysis of 250kb region of 8q24.21 in men of African ancestry. Prostate 2014; 74: 579–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A et al. Landscape of transcription in human cells. Nature 2012; 489: 101–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Iyer MK, Niknafs YS, Malik R, Singhal U, Sahu A, Hosono Y et al. The landscape of long noncoding RNAs in the human transcriptome. Nat Genet 2015; 47: 199–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Qi P, Du X . The long non-coding RNAs, a new cancer diagnostic and therapeutic gold mine. Mod Pathol 2013; 26: 155–165.

    Article  CAS  PubMed  Google Scholar 

  11. Prensner JR, Chinnaiyan AM . The emergence of lncRNAs in cancer biology. Cancer Discov 2011; 1: 391–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang L, Froberg JE, Lee JT . Long noncoding RNAs: fresh perspectives into the RNA world. Trends Biochem Sci 2014; 39: 35–43.

    Article  PubMed  Google Scholar 

  13. Bolton EM, Tuzova AV, Walsh AL, Lynch T, Perry AS . Noncoding RNAs in prostate cancer: the long and the short of it. Clin Cancer Res 2014; 20: 35–43.

    Article  CAS  PubMed  Google Scholar 

  14. Cheetham SW, Gruhl F, Mattick JS, Dinger ME . Long noncoding RNAs and the genetics of cancer. Br J Cancer 2013; 108: 2419–2425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ronnau CG, Verhaegh GW, Luna-Velez MV, Schalken JA . Noncoding RNAs as novel biomarkers in prostate cancer. BioMed Res Int 2014; 2014: 591703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li CH, Chen Y . Targeting long non-coding RNAs in cancers: progress and prospects. Int J Biochem Cell Biol 2013; 45: 1895–1910.

    Article  CAS  PubMed  Google Scholar 

  17. Qiu MT, Hu JW, Yin R, Xu L . Long noncoding RNA: an emerging paradigm of cancer research. Tumour Biol 2013; 34: 613–620.

    Article  CAS  PubMed  Google Scholar 

  18. Pennisi E . Cell biology. Lengthy RNAs earn respect as cellular players. Science 2014; 344: 1072.

    Article  CAS  PubMed  Google Scholar 

  19. Deng G, Sui G, Noncoding RNA . in oncogenesis: a new era of identifying key players. Int J Mol Sci 2013; 14: 18319–18349.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Prensner JR, Chen W, Iyer MK, Cao Q, Ma T, Han S et al. PCAT-1, a long noncoding RNA, regulates BRCA2 and controls homologous recombination in cancer. Cancer Res 2014; 74: 1651–1660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pickl JM, Heckmann D, Ratz L, Klauck SM, Sultmann H . Novel RNA markers in prostate cancer: functional considerations and clinical translation. BioMed Res Int 2014; 2014: 765207.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Orfanelli U, Jachetti E, Chiacchiera F, Grioni M, Brambilla P, Briganti A et al. Antisense transcription at the TRPM2 locus as a novel prognostic marker and therapeutic target in prostate cancer. Oncogene 2014; 34: 2094–2102.

    Article  PubMed  Google Scholar 

  23. Petrovics G, Zhang W, Makarem M, Street JP, Connelly R, Sun L et al. Elevated expression of PCGEM1, a prostate-specific gene with cell growth-promoting function, is associated with high-risk prostate cancer patients. Oncogene 2004; 23: 605–611.

    Article  CAS  PubMed  Google Scholar 

  24. Liu D, Xu B, Chen S, Yang Y, Zhang X, Liu J et al. Long non-coding RNAs and prostate cancer. J Nanosci Nanotechnol 2013; 13: 3186–3194.

    Article  CAS  PubMed  Google Scholar 

  25. Clark MB, Johnston RL, Inostroza-Ponta M, Fox AH, Fortini E, Moscato P et al. Genome-wide analysis of long noncoding RNA stability. Genome Res 2012; 22: 885–898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tomlins SA . Urine PCA3 and TMPRSS2:ERG using cancer-specific markers to detect cancer. Eur Urol 2014; 65: 543–545.

    Article  CAS  PubMed  Google Scholar 

  27. Hessels D, Schalken JA . The use of PCA3 in the diagnosis of prostate cancer. Nat Rev Urol 2009; 6: 255–261.

    Article  CAS  PubMed  Google Scholar 

  28. Wei JT, Feng Z, Partin AW, Brown E, Thompson I, Sokoll L et al. Can urinary PCA3 supplement PSA in the early detection of prostate cancer? J Clin Oncol 2014; 32: 4066–4072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Evaluation of Genomic Applications in Practice and Prevention (EGAPP) Working Group. Recommendations from the EGAPP Working Group: does PCA3 testing for the diagnosis and management of prostate cancer improve patient health outcomes? Genet Med 2014; 16: 338–346.

    Article  Google Scholar 

  30. Prensner JR, Chen W, Han S, Iyer MK, Cao Q, Kothari V et al. The long non-coding RNA PCAT-1 promotes prostate cancer cell proliferation through cMyc. Neoplasia 2014; 16: 900–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Du Z, Fei T, Verhaak RG, Su Z, Zhang Y, Brown M et al. Integrative genomic analyses reveal clinically relevant long noncoding RNAs in human cancer. Nat Struct Mol Biol 2013; 20: 908–913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Crea F, Watahiki A, Quagliata L, Xue H, Pikor L, Parolia A et al. Identification of a long non-coding RNA as a novel biomarker and potential therapeutic target for metastatic prostate cancer. Oncotarget 2014; 5: 764–774.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yang L, Lin C, Jin C, Yang JC, Tanasa B, Li W et al. lncRNA-dependent mechanisms of androgen-receptor-regulated gene activation programs. Nature 2013; 500: 598–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Parolia A, Crea F, Xue H, Wang Y, Mo F, Ramnarine VR et al. The long non-coding RNA PCGEM1 is regulated by androgen receptor activity in vivo. Mol Cancer 2015; 14: 46.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Prensner JR, Sahu A, Iyer MK, Malik R, Chandler B, Asangani IA et al. The IncRNAs PCGEM1 and PRNCR1 are not implicated in castration resistant prostate cancer. Oncotarget 2014; 5: 1434–1438.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hung CL, Wang LY, Yu YL, Chen HW, Srivastava S, Petrovics G et al. A long noncoding RNA connects c-Myc to tumor metabolism. Proc Natl Acad Sci USA 2014; 111: 18697–18702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. He JH, Zhang JZ, Han ZP, Wang L, Lv YB, Li YG . Reciprocal regulation of PCGEM1 and miR-145 promote proliferation of LNCaP prostate cancer cells. J Exp Clin Cancer Res 2014; 33: 72.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Prensner JR, Iyer MK, Sahu A, Asangani IA, Cao Q, Patel L et al. The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex. Nat Genet 2013; 45: 1392–1398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Prensner JR, Zhao S, Erho N, Schipper M, Iyer MK, Dhanasekaran SM et al. RNA biomarkers associated with metastatic progression in prostate cancer: a multi-institutional high-throughput analysis of SChLAP1. Lancet Oncol 2014; 15: 1469–1480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lee B, Mazar J, Aftab MN, Qi F, Shelley J, Li JL et al. Long noncoding RNAs as putative biomarkers for prostate cancer detection. J Mol Diagn 2014; 16: 615–626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ren S, Liu Y, Xu W, Sun Y, Lu J, Wang F et al. Long noncoding RNA MALAT-1 is a new potential therapeutic target for castration resistant prostate cancer. J Urol 2013; 190: 2278–2287.

    Article  CAS  PubMed  Google Scholar 

  42. Wang F, Ren S, Chen R, Lu J, Shi X, Zhu Y et al. Development and prospective multicenter evaluation of the long noncoding RNA MALAT-1 as a diagnostic urinary biomarker for prostate cancer. Oncotarget 2014; 5: 11091–11102.

    PubMed  PubMed Central  Google Scholar 

  43. Ho TT, Zhou N, Huang J, Koirala P, Xu M, Fung R et al. Targeting non-coding RNAs with the CRISPR/Cas9 system in human cell lines. Nucleic Acids Res 2015; 43: e17.

    Article  PubMed  Google Scholar 

  44. Shechner DM, Hacisuleyman E, Younger ST, Rinn JL . Multiplexable, locus-specific targeting of long RNAs with CRISPR-Display. Nat Methods 2015; 12: 664–670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Workman P, Al-Lazikani B . Drugging cancer genomes. Nat Rev Drug Discov 2013; 12: 889–890.

    Article  CAS  PubMed  Google Scholar 

  46. Vlaeminck-Guillem V, Ruffion A, Andre J, Devonec M, Paparel P . Urinary prostate cancer 3 test: toward the age of reason? Urology 2010; 75: 447–453.

    Article  PubMed  Google Scholar 

  47. Lee GL, Dobi A, Srivastava S . Prostate cancer: diagnostic performance of the PCA3 urine test. Nature Rev Urol 2011; 8: 123–124.

    Article  Google Scholar 

  48. Kotake Y, Nakagawa T, Kitagawa K, Suzuki S, Liu N, Kitagawa M et al. Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene. Oncogene 2011; 30: 1956–1962.

    Article  CAS  PubMed  Google Scholar 

  49. Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell 2010; 39: 925–938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Prensner JR, Iyer MK, Balbin OA, Dhanasekaran SM, Cao Q, Brenner JC et al. Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nat Biotechnol 2011; 29: 742–749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chung S, Nakagawa H, Uemura M, Piao L, Ashikawa K, Hosono N et al. Association of a novel long non-coding RNA in 8q24 with prostate cancer susceptibility. Cancer Sci 2011; 102: 245–252.

    Article  CAS  PubMed  Google Scholar 

  52. Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP . A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 2010; 465: 1033–1038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mazar J, Zhao W, Khalil AM, Lee B, Shelley J, Govindarajan SS et al. The functional characterization of long noncoding RNA SPRY4-IT1 in human melanoma cells. Oncotarget 2014; 5: 8959–8969.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R J Perera.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mouraviev, V., Lee, B., Patel, V. et al. Clinical prospects of long noncoding RNAs as novel biomarkers and therapeutic targets in prostate cancer. Prostate Cancer Prostatic Dis 19, 14–20 (2016). https://doi.org/10.1038/pcan.2015.48

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/pcan.2015.48

This article is cited by

Search

Quick links