Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Metformin and prostate cancer stem cells: a novel therapeutic target

Subjects

Abstract

Prostate cancer is the second most frequently diagnosed cancer in the world. Localized disease can be effectively treated with radiation therapy or radical prostatectomy. However, advanced prostate cancer is more difficult to treat and if metastatic, is incurable. There is a need for more effective therapy for advanced prostate cancer. One potential target is the cancer stem cell (CSC). CSCs have been described in several solid tumors, including prostate cancer, and contribute to therapeutic resistance and tumor recurrence. Metformin, a common oral biguanide used to treat type 2 diabetes, has been demonstrated to have anti-neoplastic effects. Specifically, metformin targets CSCs in breast cancer, pancreatic cancer, glioblastoma and colon cancer. Metformin acts directly on the mitochondria to inhibit oxidative phosphorylation and reduce mitochondrial ATP production. This forces tumor cells to compensate by increasing the rate of glycolysis. CSCs rely heavily on mitochondrial oxidative phosphorylation for energy production. The glycolytic switch results in an energy crisis in these cells. Metformin could be used to exploit this metabolic weakness in CSCs. This would increase CSC sensitivity to conventional cancer therapies, circumventing treatment resistance and enhancing treatment efficacy. This review will explore the characteristics of prostate CSCs, their role in tumor propagation and therapeutic resistance and the role of metformin as a potential prostate CSC sensitizer to current anticancer therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Abate-Shen C, Shen MM . Molecular genetics of prostate cancer. Genes Dev 2000; 14: 2410–2434.

    Article  CAS  PubMed  Google Scholar 

  2. Maitland NJ, Collins AT . Prostate cancer stem cells: a new target for therapy. J Clin Oncol 2008; 26: 2862–2870.

    Article  PubMed  Google Scholar 

  3. Feldman BJ, Feldman D . The development of androgen-independent prostate cancer. Nat Rev Cancer 2001; 1: 34–45.

    Article  CAS  PubMed  Google Scholar 

  4. Li H, Tang DG . Prostate cancer stem cells and their potential roles in metastasis. J Surg Oncol 2011; 103: 558–562.

    Article  PubMed  Google Scholar 

  5. Heidenreich A, Bastian PJ, Bellmunt J, Bolla M, Joniau S, van der Kwast T et al. EAU guidelines on prostate cancer. Part II: treatment of advanced, relapsing, and castration-resistant prostate cancer. Eur Urol 2014; 65: 467–479.

    Article  CAS  PubMed  Google Scholar 

  6. Shen MM, Abate-Shen C . Molecular genetics of prostate cancer: new prospects for old challenges. Genes Dev 2010; 24: 1967–2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen X, Rycaj K, Liu X, Tang DG . New insights into prostate cancer stem cells. Cell Cycle 2013; 12: 579–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Visvader JE, Lindeman GJ . Cancer stem cells: current status and evolving complexities. Cell Stem Cell 2012; 10: 717–728.

    Article  CAS  PubMed  Google Scholar 

  9. Bao B, Ahmad A, Azmi AS, Ali S, Sarkar FH . Cancer stem cells (CSCs) and mechanisms of their regulation: implications for cancer therapy. Curr Protoc Pharmacol 2013; Chapter 14; Unit 14.25.

  10. Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL et al. Cancer stem cells—perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 2006; 66: 9339–9344.

    Article  CAS  PubMed  Google Scholar 

  11. Ning X, Shu J, Du Y, Ben Q, Li Z . Therapeutic strategies targeting cancer stem cells. Cancer Biol Ther 2013; 14: 295–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tang DG, Patrawala L, Calhoun T, Bhatia B, Choy G, Schneider-Broussard R et al. Prostate cancer stem/progenitor cells: identification, characterization and implications. Mol Carcinog 2007; 46: 1–14.

    Article  CAS  PubMed  Google Scholar 

  13. Bonnet D, Dick JE . Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3: 730–737.

    CAS  PubMed  Google Scholar 

  14. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF . Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100: 3983–3988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li C, Lee CJ, Simeone DM . Identification of human pancreatic cancer stem cells. Methods Mol Biol 2009; 568: 161–173.

    Article  CAS  PubMed  Google Scholar 

  16. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C et al. Identification and expansion of human colon-cancer-initiating cells. Nature 2007; 445: 111–115.

    CAS  PubMed  Google Scholar 

  17. Wang P, Gao Q, Zhenhe S, Munthe E, Solberg S, Ma L et al. Identification and characterization of cells with cancer stem cell properties in human primary lung cancer cell lines. PLoS One 2013; 8: e57020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T et al. Identification of human brain tumour intiating cells. Nature 2004; 432: 396–401.

    Article  CAS  PubMed  Google Scholar 

  19. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ . Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 2005; 65: 10946–10951.

    Article  CAS  PubMed  Google Scholar 

  20. Song CW, Lee H, Dings RPM, Williams B, Powers J, Dos Santos T et al. Metformin kills and radiosensitizes cancer cells and preferentially kills cancer stem cells. Sci Rep 2012; 2: 1–9.

    Google Scholar 

  21. Hirsch HA, Iliopoulos D, Tsichlis PN, Struhl K . Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res 2009; 69: 7507–7511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang Y, Guan M, Zheng Z, Zhang Q, Gao F, Xue Y . Effects of metformin on CD133+ colorectal cancer cells in diabetic patients. PLoS One 2013; 8: e81264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nangia-Makker P, Yu Y, Vasudevan A, Farhana L, Rajendra SG, Lei E et al. Metformin: a potential therapeutic agent for recurrent colon cancer. PLoS One 2014; 9: e84369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lawson DA, Witte ON . Stem cells in prostate cancer initiation and progression. J Clin Invest 2007; 117: 2044–2050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Collins AT, Habib FK, Maitland NJ, Neal DE . Identification and isolation of human prostate epithelial stem cells based on alpha1beta1-integrin expression. J Cell Sci 2001; 114: 3865–3872.

    CAS  PubMed  Google Scholar 

  26. Richardson GD, Robson CN, Lang SH, Neal DE, Maitland NJ, Collins AT . CD133, a novel marker for human prostatic epithelial stem cells. J Cell Sci 2004; 117: 3539–3545.

    Article  CAS  PubMed  Google Scholar 

  27. Leong KG, Wang BE, Johnson L, Gao WQ . Generation of a prostate from a single adult stem cell. Nature 2008; 456: 804–810.

    Article  CAS  PubMed  Google Scholar 

  28. Ousset M, Van Keymeulen A, Bouvencourt G, Sharma N, Achouri Y, Simons BD et al. Multipotent and unipotent progenitors contribute to prostate postnatal development. Nat Cell Biol 2012; 14: 1131–1138.

    Article  CAS  PubMed  Google Scholar 

  29. Wang J, Zhu HH, Chu M, Liu Y, Zhang C, Liu G et al. Symmetrical and assymetrical division analysis provides evidence for a hierarchy of prostate epithelial cell lineages. Nat Commun 2014; 5: 4758.

    Article  CAS  PubMed  Google Scholar 

  30. Visvader JE, Lindeman GJ . Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 2008; 8: 755–768.

    Article  CAS  PubMed  Google Scholar 

  31. Kreso A, Dick JE . Evolution of the cancer stem cell model. Cell Stem Cell 2014; 14: 275–291.

    Article  CAS  PubMed  Google Scholar 

  32. Colombel M, Eaton CL, Hamdy F, Ricci E, van der Pluijm G, Cecchini M et al. Increased expression of putative cancer stem cell markers in primary prostate cancer is associated with progression of bone metastases. Prostate 2012; 72: 713–720.

    Article  CAS  PubMed  Google Scholar 

  33. Ricci E, Mattei E, Dumontet C, Eaton CL, Hamdy F, van der Pluijm G et al. Increased expression of putative cancer stem cell markers in the bone marrow of prostate cancer patients is associated with bone metastasis progression. Prostate 2013; 73: 1738–1746.

    Article  CAS  PubMed  Google Scholar 

  34. Domingo-Domenech J, Vidal SJ, Rodriguez-Bravo V, Castillo-Martin M, Quinn SA, Rodriguez-Barrueco R et al. Suppression of acquired docetaxel resistance in prostate cancer through depletion of notch- and hedgehog-dependent tumor-initiating cells. Cancer Cell 2012; 22: 373–388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zong Y, Goldstein AS . Adaptation or selection-mechanisms of castration-resistant prostate cancer. Nat Rev Urol 2013; 10: 90–98.

    Article  CAS  PubMed  Google Scholar 

  36. Guzel E, Karatas OF, Duz MB, Solak M, Ittmann M, Ozen M . Differential expression of stem cell markers and ABCG2 in recurrent prostate cancer. Prostate 2014; 74: 1498–1505.

    Article  CAS  PubMed  Google Scholar 

  37. Visvader JE . Cells of origin in cancer. Nature 2011; 469: 314–322.

    Article  CAS  PubMed  Google Scholar 

  38. Magee JA, Piskounova E, Morrison SJ . Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell 2012; 21: 283–296.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Collins AT, Maitland NJ . Prostate cancer stem cells. Eur J Cancer 2006; 42: 1213–1218.

    Article  CAS  PubMed  Google Scholar 

  40. Tang DG . Understanding cancer stem cell heterogeneity and plasticity. Cell Res 2012; 22: 457–472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Klonisch T, Wiechec E, Hombach-Klonisch S, Ande SR, Wesselborg S, Schulze-Osthoff K et al. Cancer stem cell markers in common cancers-therapeutic implications. Trends Mol Med 2008; 14: 450–460.

    Article  CAS  PubMed  Google Scholar 

  42. Guzman-Ramirez N, Voller M, Wetterwald A, Germann M, Cross NA, Rentsch CA et al. In vitro propagation and characterization of neoplastic stem/progenitor-like cells from human prostate cancer tissue. Prostate 2009; 69: 1683–1693.

    Article  CAS  PubMed  Google Scholar 

  43. Patrawala L, Calhoun-Davis T, Schneider-Broussard R, Tang DG . Hierarchical organization of prostate cancer cell sin xenograft tumors: the CD44+α2β1+ cell population is enriched in tumor initiating cells. Cancer Res 2007; 67: 6796–6805.

    Article  CAS  PubMed  Google Scholar 

  44. Patrawala L, Calhoun T, Schneider-Broussard R, Li H, Bhatia B, Tang S et al. Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 2006; 25: 1696–1708.

    Article  CAS  PubMed  Google Scholar 

  45. Hurt EM, Kawasaki BT, Klarmann GJ, Thomas SB, Farrar WL . CD44+CD24(-) prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis. Br J Cancer 2008; 98: 756–765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li T, Su Y, Leng Q, Leng B, Liu Z, Stass SA et al. ALDH1A1 is a marker for malignant prostate stem cells and predictor of prostate cancer patients' outcome. Lab Invest 2010; 90: 234–244.

    Article  CAS  PubMed  Google Scholar 

  47. van den Hoogen C, van der Horst G, Cheung H, Buijs JT, Lippitt JM, Guzman-Ramirez N et al. High aldehyde dehydrogenase activity identifies tumor-initiating and metastasis-intiating cells in human prostate cancer. Cancer Res 2010; 70: 5162–5173.

    Article  CAS  Google Scholar 

  48. Qin J, Liu X, Laffin B, Chen X, Choy G, Jeter CR et al. The PSA(-/lo) prostate cancer cell population harbors self-renewing long-term tumor-propagating cells that resist castration. Cell Stem Cell 2012; 10: 556–569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Foster BA, Gangavarapu KJ, Mathew G, Azabdaftari G, Morrison CD, Miller A et al. Human prostate side population cells demonstrate stem cell properties in recombination with urogenital sinus mesenchyme. PLoS One 2013; 8: e55062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gangavarapu KJ, Azabdaftari G, Morrison CD, Miller A, Foster BA, Huss WJ . Aldehyde dehydrogenase and ATP binding cassette transporter G2 (ABCG2) functional assays isolate different populations of prostate stem cells where ABCG2 function selects for cells with increased stem cell activity. Stem Cell Res Ther 2013; 4: 132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jeter CR, Liu B, Liu X, Chen X, Liu C, Calhoun-Davis T et al. NANOG promotes cancer stem cell characteristics and prostate cancer resistance to androgen deprivation. Oncogene 2011; 30: 3833–3845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gu G, Yuan J, Wills M, Kasper S . Prostate cancer cells with stem cell characteristics reconstitute the original human tumor in vivo. Cancer Res 2007; 67: 4807–4815.

    Article  CAS  PubMed  Google Scholar 

  53. Rybak AP, Tang D . SOX2 plays a critical role in EGFR-mediated self-renewal of human prostate cancer stem-like cells. Cell Signal 2013; 25: 2734–2742.

    Article  CAS  PubMed  Google Scholar 

  54. Sharpe B, Beresford M, Bowen R, Mitchard J, Chalmers AD . Searching for prostate cancer stem cells: markers and methods. Stem Cell Rev 2013; 9: 721–730.

    Article  CAS  Google Scholar 

  55. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006; 444: 756–760.

    Article  CAS  PubMed  Google Scholar 

  56. Duru N, Fan M, Candas D, Menaa C, Liu HC, Nantajit D et al. HER2-associated radioresistance of breast cancer stem cells isolated from HER2-negative breast cancer cells. Clin Cancer Res 2012; 18: 6634–6647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Seiler D, Zheng J, Liu G, Wang S, Yamashiro J, Reiter RE et al. Enrichment of putative prostate cancer stem cells after androgen deprivation: upregulation of pluripotency transactivators concurs with resistance to androgen deprivation in LNCaP cell lines. Prostate 2013; 73: 1378–1390.

    Article  CAS  PubMed  Google Scholar 

  58. Tang Y, Hamburger AW, Wang L, Khan MA, Hussain A . Androgen deprivation and stem cell markers in prostate cancers. Int J Clin Exp Pathol 2009; 3: 128–138.

    PubMed  PubMed Central  Google Scholar 

  59. Abdullah LN, Chow EK . Mechanisms of chemoresistance in cancer stem cells. Clin Trans Med 2013; 2: 3.

    Article  Google Scholar 

  60. Chen K, Huang YH, Chen JL . Understanding and targeting cancer stem cells: therapeutic implications and challenges. Acta Pharmacol Sin 2013; 34: 732–740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hirschmann-Jax C, Foster AE, Wulf GG, Nuchtern JG, Jax JG, Gobel U et al. A distinct ‘side population’ of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA 2004; 101: 14228–14233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang L, Jiao M, Li L, Wu D, Wu K, Li X et al. Tumorspheres derived from prostate cancer cells possess chemoresistant and cancer stem cell properties. J Cancer Res Clin Oncol 2012; 138: 675–686.

    Article  PubMed  Google Scholar 

  63. Pollak MN . Investigating metformin for cancer prevention and treatment: the end of the beginning. Cancer Discov 2012; 2: 778–790.

    Article  CAS  PubMed  Google Scholar 

  64. Kourelis TV, Siegel RD . Metformin and cancer: new applications for an old drug. Med Oncol 2012; 29: 1314–1327.

    Article  CAS  PubMed  Google Scholar 

  65. Evans JMM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD . Metformin and reduced risk of cancer in diabetic patients. Br Med J 2005; 330: 1304–1305.

    Article  Google Scholar 

  66. Zakikhani M, Blouin MJ, Piura E, Pollak MN . Metformin and rapamycin have distinct effects on the AKT pathway and proliferation in breast cancer cells. Breast Cancer Res Treat 2010; 123: 271–279.

    Article  CAS  PubMed  Google Scholar 

  67. Alimova IN, Liu B, Fan Z, Edgerton SM, Dillon T, Lind SE et al. Metformin inhibits breast cancer cell growth, colony formation, and induces cell cycle arrest in vitro. Cell Cycle 2009; 8: 909–915.

    Article  CAS  PubMed  Google Scholar 

  68. Rattan R, Giri S, Hartmann LC, Shridhar V . Metformin attenuates ovarian cancer cell growth in an AMP-kinase dispensible manner. J Cell Mol Med 2011; 15: 166–178.

    Article  CAS  PubMed  Google Scholar 

  69. Kisfalvi K, Moro A, Sinnett-Smith J, Eibl G, Rozengurt E . Metformin inhibits the growth of human pancreatic cancer xenografts. Pancreas 2013; 42: 781–785.

    Article  CAS  PubMed  Google Scholar 

  70. Sahra IB, Laurent K, Loubat A, Giorgietti-Peraldi S, Colosetti P, Auberger P et al. The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level. Oncogene 2008; 27: 3576–3586.

    Article  CAS  PubMed  Google Scholar 

  71. Preston MA, Riis AH, Ehrenstein V, Breau RH, Batista JL, Olumi AF et al. Metformin use and prostate cancer risk. Eur Urol 2014; 66: 1012–1020.

    Article  CAS  PubMed  Google Scholar 

  72. Margel D, Urbach DR, Lipscombe LL, Bell CM, Kulkarni G, Austin PC et al. Metformin use and all-cause and prostate cancer-specific mortality among men with diabetes. J Clin Oncol 2013; 31: 3069–3075.

    Article  CAS  PubMed  Google Scholar 

  73. Yu H, Yin L, Jiang X, Sun X, Wu J, Tian H et al. Effect of metformin on cancer risk and treatment outcome of prostate cancer: a meta-analysis of epidemiological observational studies. PLoS One 2014; 9: e116327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Iliopoulos D, Hirsch HA, Struhl K . Metformin decreases the dose of chemotherapy for prolonging tumor remission in mouse xenografts involving multiple cancer cell types. Cancer Res 2011; 71: 3196–3201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bao B, Wang Z, Ali S, Ahmad A, Azmi AS, Sarkar SH et al. Metformin inhibits cell proliferation, migration and invasion by attenuating CSC function mediated by deregulating miRNAs in pancreatic cancer cells. Cancer Prev Res (Phila) 2012; 5: 355–364.

    Article  CAS  Google Scholar 

  76. Gou S, Cui P, Li X, Shi P, Liu T, Wang C . Low concentrations of metformin selectively inhibit CD133+ cell proliferation in pancreatic cancer and have anticancer action. PLoS One 2013; 8: e63969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mohammed A, Janakiram NB, Brewer M, Ritchie RL, Marya A, Lightfoot S et al. Antidiabetic drug metformin prevents progression of pancreatic cancer by targeting in part cancer stem cells and mTOR signaling. Transl Oncol 2013; 6: 649–659.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Lonardo E, Cioffi M, Sancho P, Sanchez-Ripoli Y, Trabulo SM, Dorado J et al. Metformin targets the metabolic achilles heel of human pancreatic cancer stem cells. PLoS One 2013; 8: e76518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wurth R, Pattarozzi A, Gatti M, Bajetto A, Corsaro A, Parodi A et al. Metformin selectively affects human glioblastoma tumor-initiating cell viability: a role for metformin-induced inhibition of Akt. Cell Cycle 2013; 12: 145–156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pollak M . Potential applications for biguanides in oncology. J Clin Invest 2013; 123: 3693–3700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Andrzejewski S, Gravel SP, Pollak M, St-Pierre J . Metformin directly acts on mitochondria to alter cellular bioenergetics. Cancer Metab 2014; 2: 12.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Owen MR, Doran E, Halestrap AP . Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J 2000; 348 (Pt 3): 607–614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wheaton WW, Weinberg SE, Hamanaka RB, Soberanes S, Sullivan LB, Anso E et al. Metformin inhibits mitochondrial complex 1 of cancer cells to reduce tumorigenesis. Elife 2014; 3: e02242.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Madiraju AK, Erion DM, Rahimi Y, Zhang XM, Braddock DT, Albright RA et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 2014; 510: 542–546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Foretz M, Guigas B, Bertrand L, Pollak M, Viollet B . Metformin: from mechanisms of action to therapies. Cell Metab 2014; 20: 953–966.

    Article  CAS  PubMed  Google Scholar 

  86. Sahra IB, Regazzetti C, Robert G . Metformin, independent of AMPK, induces mTOR inhibition and cell-cyle arrest through REDD1. Cancer Res 2011; 71: 4366–4372.

    Article  CAS  PubMed  Google Scholar 

  87. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  PubMed  Google Scholar 

  88. Hardie DG . The LKB1-AMPK pathway-friend or foe in cancer? Cancer Cell 2013; 23: 131–132.

    Article  CAS  PubMed  Google Scholar 

  89. Colquhoun AJ, Venier NA, Vandersluis AD, Besla R, Sugar LM, Kiss A et al. Metformin enhances the antiproliferative and apoptotic effect of bicalutamide in prostate cancer. Prostate Cancer Prostatic Dis 2012; 15: 346–352.

    Article  CAS  PubMed  Google Scholar 

  90. Nguyen HG, Yang JC, Kung HJ, Shi XB, Tilki D, Lara PNJ et al. Targeting autophagy overcomes Enzalutamide resistance in castration-resistant prostate cancer cells and improves therapeutic response in a xenograft model. Oncogene 2014; 33: 4521–4530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zannella VE, Dal Pra A, Muaddi H, McKee TD, Stapleton S, Sykes J et al. Reprogramming metabolism with metformin improves tumor oxygenation and radiotherapy response. Clin Cancer Res 2013; 19: 6741–6750.

    Article  CAS  PubMed  Google Scholar 

  92. Finones RR, Yeargin J, Lee M, Kaur AP, Cheng C, Sun P et al. Early human prostate adenocarcinomas harbor androgen-independent cancer cells. PLoS One 2013; 8: e74438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Jiao J, Hindoyan A, Wang S, Tran LM, Goldstein AS, Lawson D et al. Identification of CD166 as a surface marker for enriching prostate stem/progenitor and cancer initiating cells. PLoS One 2012; 7: e42564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tokar EJ, Ancrile BB, Cunha GR, Webber MM . Stem/progenitor and intermediate cell types and the origin of human prostate cancer. Differentiation 2005; 73: 463–473.

    Article  CAS  PubMed  Google Scholar 

  95. Lawson DA, Xin L, Lukacs R, Xu Q, Cheng D, Witte ON . Prostate stem cells and prostate cancer. Cold Spring Harb Symp Quant Biol 2005; 70: 187–196.

    Article  CAS  PubMed  Google Scholar 

  96. Xin L, Lawson DA, Witte ON . The Sca-1 cell surface marker enriches for a prostate-regenerating cell subpopulation that can initiate prostate tumorigenesis. Proc Natl Acad Sci USA 2005; 102: 6942–6947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V Venkateswaran.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayer, M., Klotz, L. & Venkateswaran, V. Metformin and prostate cancer stem cells: a novel therapeutic target. Prostate Cancer Prostatic Dis 18, 303–309 (2015). https://doi.org/10.1038/pcan.2015.35

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/pcan.2015.35

This article is cited by

Search

Quick links