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An expression signature at diagnosis to estimate prostate cancer
patients’ overall survival
Z Peng1, L Skoog1,2, H Hellborg3, G Jonstam4, I-L Wingmo2, M Hjälm-Eriksson1,4, U Harmenberg1,4, GC Cedermark1,4,
K Andersson5, L Ährlund-Richter6, S Pramana7, Y Pawitan7, M Nistér1,2, S Nilsson1,4 and C Li1,4

BACKGROUND: This study aimed to identify biomarkers for estimating the overall and prostate cancer (PCa)-specific survival
in PCa patients at diagnosis.
METHODS: To explore the importance of embryonic stem cell (ESC) gene signatures, we identified 641 ESC gene predictors
(ESCGPs) using published microarray data sets. ESCGPs were selected in a stepwise manner, and were combined with reported
genes. Selected genes were analyzed by multiplex quantitative polymerase chain reaction using prostate fine-needle aspiration
samples taken at diagnosis from a Swedish cohort of 189 PCa patients diagnosed between 1986 and 2001. Of these patients, there
was overall and PCa-specific survival data available for 97.9%, and 77.9% were primarily treated by hormone therapy only.
Univariate and multivariate Cox proportional hazard ratios and Kaplan–Meier plots were used for the survival analysis, and
a k-nearest neighbor (kNN) algorithm for estimating overall survival.
RESULTS: An expression signature of VGLL3, IGFBP3 and F3 was shown sufficient to categorize the patients into high-,
intermediate- and low-risk subtypes. The median overall survival times of the subtypes were 3.23, 4.00 and 9.85 years, respectively.
The difference corresponded to hazard ratios of 5.86 (95% confidence interval (CI): 2.91–11.78, Po0.001) for the high-risk subtype
and 3.45 (95% CI: 1.79–6.66, Po0.001) for the intermediate-risk compared with the low-risk subtype. The kNN models that included
the gene expression signature outperformed the one designed on clinical parameters alone.
CONCLUSIONS: The expression signature can potentially be used to estimate overall survival time. When validated in future
studies, it could be integrated in the routine clinical diagnostic and prognostic procedure of PCa for an optimal treatment decision
based on the estimated survival benefit.
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INTRODUCTION
An estimation of overall survival with or without treatment at the
time of prostate cancer (PCa) diagnosis is of the utmost
importance for selecting the most appropriate treatment.1–4 The
currently available clinical prognostic tools demonstrate an
accuracy of 70–80% for the prediction of biochemical or PSA
recurrence, but these tools are less effective at predicting cancer-
specific survival and even less accurate at predicting overall
survival.1–6 It is known that PSA recurrence-free survival cannot be
used as a reliable surrogate for PCa-specific or overall survival, as
the clinical outcomes of recurrence can be highly variable. This is
largely due to the variability in the survival benefit conferred by
hormone or castration therapy.2

Currently, a primary treatment decision after the diagnosis is
based on an overall evaluation of both tumor and patient risk
factors. Tumor factors include serum PSA level, biopsy Gleason
score and clinical stage, and patient factors include age,
performance status and other diseases, that is, comorbidity. The
challenge is to identify the most effective treatment that the
patient can tolerate. Even though currently available clinical
prognostic tools for the prediction of biochemical recurrence are

valuable in clinical practice, a tool for estimating overall survival
would improve the treatment decision.
Whole-genome expression analyses of tumor samples may

identify new biomarkers that could improve the accuracy of
survival prediction. However, most previous studies have identi-
fied biomarkers that only predict PSA recurrence-free survival,
mainly due to limited clinical follow-up. Only a few recent studies
have identified genomic markers associated with lethal forms
of PCa.7–11 This inability to predict overall survival is also due to
the fact that the primary focus has been on tumor biological
aggressiveness or tumor risk factors. However, it has been shown
that about 50% of the patients can die of causes other than PCa.
The observation underlines that the patient risk factors have the
same importance as the tumor risk factors.
Several studies have demonstrated the use of embryonic stem

cell (ESC) gene expression signatures for determining subtype
classification and prognosis of various cancers, including PCa, as
discussed in the review by Glinsky.8 We have further developed
this concept into a hypothesis of ESC gene predictors (ESCGPs)
with the following reasoning: (1) Embryonic stem cells are the
origin of tissue differentiated cells, tissue stem cells and cancer
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stem cells. (2) Genes that are important in maintaining ESC
status and regulating differentiation are also important in
maintaining cancer stem cell status and abnormal differentiation
(dedifferentiation). (3) Genes with significant expression variations
among different ES cell lines are not important in this respect. (4)
Genes that show consistently high or consistently low expression
levels across various ES cell lines are equally important in
maintaining ESC status. Different expression patterns of these
genes determine the development of different normal or cancer
tissue. These genes are here named as ESCGPs. (5) These ESCGPs
may be expressed not only in cancer stem cells but also cancer
cells and their expressions can be measured by microarray, reverse
transcription-polymerase chain reaction (RT-PCR) or quantitative
PCR (qPCR). (6) Different expression patterns of these ESCGPs
measured in the cancer tissues can reflect cancer’s biological

aggressiveness, and predict the efficacy of treatment and patient
survival.12–14

To evaluate this hypothesis experimentally, we analyzed fine-
needle aspiration (FNA) biopsy samples from 189 PCa patients
with nearly complete follow-up data. The cohort is unique in that
it contains high-quality fresh–frozen tumor samples and complete
survival data. The majority of the patients were not treated
radically, such as radical surgery or radiation. The clinical
outcomes of these patients may closely resemble the natural
course of development and outcome of PCa (i.e. natural history of
PCa). We report that an ESCGPs expression signature at diagnosis
could indeed estimate overall, PCa-specific and non-PCa-specific
survival in this cohort. If our findings can be validated with
concurrent cohorts dominated with radical surgery or radiation
therapy, the signature may become an important complement in
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Figure 1. Outline of a stepwise gene selection process. (a) Identification of 641 embryonic stem cell gene predictors (ESCGPs) by bioinformatic
analysis. Previously published data sets of whole-genome complementary DNA microarrays derived from five human ESC lines and 115
human normal tissues from various organs were retrieved from the Stanford Microarray Database (SMD). After a data-centering process, a sub-
data set with expression profile of 24 361 genes in the ESC lines was isolated from the combined whole data set. A single-class significance
analysis of microarray (SAM) was performed and a SAM plot was generated. The 328 genes with the highest expression levels and 313 genes
with the lowest expression levels were identified, in total 641 ESCGPs. (b) Identification of 258 ESCGPs in prostate cancer (PCa). PCa ESCGPs
were identified by matching the list of the 641 ESCGPs and the list of 5513 genes published by Lapointe et al.9 When clustering the 112 PCa
tissue samples and comparing the cluster results when using all 5513 genes and when using only the 258 ESCGPs present in the data set,
nearly identical results were obtained. Sample labeling: PL, lymph node metastasis; PN, normal prostate tissue; PT, prostate tumor. Three cases
(marked green) were placed in different classification positions and two cases (purple) were consistently misclassified. (c) Selection of
important candidate ESCGPs for clinical survival correlation. Of 258 PCa ESCGPs, 34 genes were selected by their high-ranking order in the
SAM analysis identifying significant genes for the subtype classification or for the discriminating between tumor and normal samples. Of
these 34 ESCGPs, 19 were selected based on their markedly different expression patterns and robust performances in RT-PCR reactions
(Supplementary Figure S1). The 19 ESCGPs and the 5 reported genes were included in the optimization of the 4-plex qPCR method using
RNAs from PCa cell lines. (d) Identification of the ESCGP signature in Subset 1. After the 4-plex qPCR optimization, the method was used to
analyze 36 fresh–frozen fine-needle aspiration (FNA) biopsies taken from PCa patients (Subset 1). RNAs could be extracted in 28 biopsies. A
series of cluster analyses using different gene combinations revealed that the ESCGP signature VGLL3, IGFBP3 and F3 classified Subset 1
samples into three subtypes with strong survival correlations. The level of gene expression increases from blue to red, whereas the delta Ct
value decreases from blue to red. Gray areas represent missing qPCR data.
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the process of selecting therapeutic modality for each individual
patient.

MATERIALS AND METHODS
Written approval from the local ethics committee was obtained for the
molecular analysis of biological samples from PCa patients. This study was
conducted in a stepwise manner. The procedure for selecting and verifying
genes is outlined in Figure 1 and described in detail as follows.

Identification of candidate ESCGPs
Previously published data sets of whole-genome cDNA microarrays
derived from five human ESC lines15 and 115 human normal tissues
from various organs16 were retrieved from the SMD (Stanford Microarray
Database) (Figure 1a). Initially we combined these two retrieved data sets,
the data set of normal tissues was used to normalize the subset of ESC
lines by a data-centering process15,16, afterwards a sub-data set with
whole-genome expression profile of the 24 361 genes in the ESC lines was
isolated from the combined whole data set. A single-class significance
analysis of microarrays (SAM)17 was performed using the subset of the ESC
lines only, whereby all genes were ranked according to the consistency
(without significant variations) of their expression levels across the ESC
lines, assuming that genes with significant expression variation between
ESC lines would not be critical for maintaining stem cell-like status.
Significant genes were selected at delta 0.23 and q-value p0.05.

Selection of candidate ESCGPs in PCa
An independent data set9 with 112 prostate tissue samples was used to
verify the ESCGP findings and to select ESCGPs for PCa (Figure 1b). The list
of genes in the published data set was matched to the list of the candidate
ESCGPs identified in Step 1. This resulted in a shorter list of genes and the
expression data of these genes were used to repeat the cluster analysis.
The result was compared with the original cluster.

Refining ESCGPs selection using RT-PCR and multiplex qPCR
analyses of three PCa cell lines
A SAM analysis was performed using the list of PCa ESCGPs identified in
Step 2 (Figure 1c). The high-ranking ESCGPs and an additional five
reported genes were selected for further analysis. A 4-plex qPCR method
was optimized for the quantification of these genes by using RNAs from
three PCa cell lines (LNCaP, DU145, PC-3). The procedures used for the
isolation of total RNA from cell cultures and FNA cytology smears, cDNA
synthesis, RT-PCR and multiplex qPCR analysis are described in the
Supplementary Information file, Supplementary Tables S1–S3 and
Supplementary Figures S1 and S2. For the qPCR analysis, the expression
level of each gene in a sample was normalized to that of GAPDH
(glyceraldehyde 3-phosphate dehydrogenase) and was presented as the
delta Ct value, which is inversely correlated to the gene expression
level.18,19 This delta Ct value was centered by the median value across all
samples, and the centered delta Ct value was then used for the statistical
and k-nearest neighbor (kNN) analyses.

Establishing of the clinical importance
FNA samples. The FNA samples were collected according to the routine
procedure used at the Clinical Pathology/Cytology unit at Karolinska
University Hospital in Stockholm, Sweden20 (Figure 1d). Multiple cytology
smears were obtained by prostate FNA procedure in each patient at the
time of diagnosis. The representative smear was identified by examination
of Giemsa-stained slides and was used for the clinical cytological diagnosis.
The remaining fresh smears on glass slides that were duplicates of the
Giemsa-stained slide used for diagnosis were freshly frozen and kept
at –70 1C. We found that at least 80% of all cells collected from most of the
PCa FNA samples were cancer cells. Of the 241 FNA samples that were
collected from the patients, we obtained good-quality total RNAs from 193
samples; 189 of these samples were from patients with a diagnosis of PCa.
The researcher who performed the 4-plex qPCR analyses of the FNA
samples was not informed of the relevant clinical data until the complete
data set was constructed from both the qPCR results and the clinical data.

Table 1. Characteristics of the patients

Subset 1 Subset 2 Subset 3 Complete set

FNA biopsies, n 36 65 88 189
Mortality, n

Overall 35 64 86 185
Death due to prostate cancer 13 40 45 98
Death due to other causes 19 21 25 65
Alive 3 3 16 22
Missing 1 1 2 4

Survival (years), median (range) 7.7 (0.1–17.8) 4.0 (0.2–15.7) 4.3 (0.2–15.1) 4.3 (0.1–17.8)
Age (years), mean±s.d. 70.4±7.8 72.1±8.7 73.8±8.9 72.6±8.7

Missing, n 1 1 2 4

PSA (ngml� 1)a, n (%)
p20 9 (32.1) 16 (31.2) 23 (28.7) 48 (29.8)
4 20 andp50 9 (32.1) 14 (26.4) 23 (28.7) 46 (28.6)
4 50 10 (35.7) 23 (43.4) 34 (42.5) 67 (41.6)
Missing 8 12 8 28

Clinical stageb, n (%)
Localized 19 (59.4) 27 (45.8) 33 (39.3) 79 (45.1)
Advanced 13 (40.6) 32 (54.2) 51 (60.7) 96 (54.9)
Missing 4 6 4 14

WHO tumor grade, n (%) (level of differentiation)
Well/moderately 22 (61.1) 31 (50.0) 33 (37.9) 86 (46.5)
Poorly 14 (38.9) 31 (50.0) 54 (62.1) 99 (53.5)
Missing 0 3 1 4

Treatment, n (%)
Never treated 6 (19.4) 2 (3.3) 4 (4.9) 12 (7.0)
Hormone, orchiectomy 19 (61.3) 53 (88.3) 62 (76.5) 134 (77.9)
Radiation 5 (16.1) 2 (3.3) 11 (13.6) 18 (10.5)
Radical prostatectomy 1 (3.2) 3 (5.0) 4 (4.9) 8 (4.7)
Missing 5 5 7 17

Abbreviations: FNA, fine-needle aspiration; WHO, World Health Organization.
Advanced clinical stage was defined as TXT3 or N1 or M1 or PSA 4100 ngml� 1.
aPSA levels in serum were measured at the time of diagnosis (before treatment).
bLocalized clinical stage was defined as ToT3 and N0/Nx and M0/MX and PSA p100 ngml� 1.
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Clinical characteristics of the cohort. The 189 PCa patients were diagnosed
between 1986 and 2001. During this time period in Sweden, PCa diagnoses
were mainly confirmed by prostate FNA cytology rather than by
performing a multiple-core biopsy of the prostate.20 Elderly men without
lower urinary tract symptoms were seldom tested for their serum PSA
levels. The average PSA level at the time of PCa diagnosis was therefore
higher during this study than the level currently observed. In this cohort,
very few patients had an indolent cancer, over 50% of patients had high-
grade, advanced cancer, and hormone therapy was the primary treatment
for 77.9% of the patients (Table 1). With regard to comorbidity, 40% of the
patients had cardiovascular disease and 9% diabetes. An internship doctor
who was not informed of the results of the molecular analyses collected
the relevant clinical data under the supervision of an oncologist.
Information with regard to the date of diagnosis, the date of death and
the cause of death for all patients was first obtained from regional or
national registries and was then verified by examining the medical
journals. Diagnosis and cause of death were coded according to the
International Classification of Diseases (ICD9 and ICD10) recommended by
the World Health Organization.21 PCa-specific mortality was assigned to
cases where PCa or metastases were the primary or secondary cause of
death. Death causes of patients are described in Supplementary Table S8.
By 31 December 2008, 22 of the original 189 patients were still alive, 163
were deceased and 4 could not be found in the registries (Table 1).

Statistical analysis
Sample size and design of the subsets. The details for these procedures
are provided in the Supplementary Information file. The patient cohort was
divided into three subsets, according to the diagnoses and the
experimental time order (Table 1). For Subset 1, we evaluated the strongest
candidate genes from the ESCGP list. For Subset 2, we evaluated the most
significant genes from Subset 1 and selected genes (reported genes) from

the literature. For Subset 3, we tested the genes that demonstrated
significance in Subset 2 and a limited number of genes that showed
significance in Subset 1 but were not tested in Subset 2. A summary of the
genes tested in the different subsets and complete set is shown in Table 2.
Two major factors determined that not all candidate genes could be tested
in every sample, that is, insufficient amount of total RNAs isolated from
most FNA samples and fixed gene combinations by 4-plex qPCR.

Definition of important parameters. The details and references for the
parameters are provided in the Supplementary Information file.

Survival analysis. The univariate and multivariate hazard ratios were
calculated according to the Cox proportional hazard model using Stata
statistics software (version 10.1; StataCorp LP, College Station, TX, USA). The
Kaplan–Meier plots and statistical box plots were made using JMP statistics
software (version 8.0.1; SAS Institute, Cary, NC, USA).

Cluster analysis. Gene expression data were evaluated using the
unsupervised hierarchical clustering method and the gene median-
centered delta Ct values, results were visualized using Treeview software
(Eisen Lab, University of California at Berkeley, CA, USA).22 Unsupervised
hierarchical clustering is based on similarity measures and identifies
clusters as groups of patterns.

Parametric model design. A first-order polynomial model using the
selected genes was designed based on the assumption of the Weibull
distribution in Stata statistics software (StataCorp LP). Of the 95 patients for
whom there was data with regard to expression pattern of the ESCGP
signature, 87 had expression data and clinical information that could be
used for Weibull regression survival prediction. Two models were made,
one using clinical parameters alone and one combining clinical parameters
and ESCGP signature. The clinical parameters included PSA level (450 vs
p50 ngml� 1), clinical disease stage (advanced vs localized), tumor grade
(poorly vs well/moderately differentiated) and age at the time of diagnosis.
A first-order polynomial model using the selected genes was designed in
Stata statistics software (StataCorp LP).

kNN modeling. The data set was randomly divided into a training set
(70% of the data set, n¼ 139) for model development and a test set (30%
of the data set, n¼ 50) for model verification. Four different kNN models
estimating overall survival were designed and optimized on the training
set data (Table 5). One of the models had only clinical parameters, one had
only the ESCGP signature and two had combinations of clinical parameters
and ESCGP signature. In all cases, models were applied only to cases
without missing data, Euclidian distance measures were used and the
average survival time for the three nearest neighbors was calculated as
output. The scaling of the parameters of each model was determined
through an exhaustive search of all combinations of the scaling factors 1, 3
and 9. A random number generator with a similar distribution as the
overall survival in the data set was used as the reference for random guess
of overall survival. For all models and the random number generator, the
prediction performance of the kNN models was evaluated by comparing
the average and variance of the absolute prediction error. kNN is a pattern
based classification tool that assigns an unknown case to the same group
as the most similar reference cases, meaning that kNN can be capable of
classifying data sets where there is no simple univariate relationship
between gene expression and patient outcome.

RESULTS
Identification of the ESCGP signature by a stepwise process
Identification of candidate ESCGPs. The SAM analysis of public data
identified 328 genes with consistently high levels of expression and
313 genes with consistently low levels of expression in ESCs (Figure 1
and Supplementary Table S1), that is, 641 genes in total (Figure 1a).

Selection of candidate ESCGPs in PCa. The ability of the 641 genes
to classify tumor subtype was verified on an independent data set
of PCa samples,9 wherein the clustering result was almost identical
when comparing the complete original data set of 5513 genes and
the 258 PCa-related ESCGPs isolated from the same original data
set. Therefore, the 641 genes were defined as ESCGPs (Figure 1b).

Table 2. Number of patients’ samples for gene expression profiling

Na

Feature
Subset

1
Subset

2
Subset

3
Complete

set

Total 36 65 88 189

CTGF 36 — 67 103
FBP1 36 — 46 82
EGR1 26 65 88 179
CYR61 36 — 46 82
WNT5B 36 — 56 92
LRP4 28 — — 28
CDH1 36 — — 36
BASP1 28 65 88 181
PTN 28 — — 28
COL12A1 28 64 88 180
VGLL3 28 40 88 156
METTL7A 36 — — 36
F3 28 — 67 95
GREM1 36 — — 36
ERBB3 36 — 56 92
LRNN1 36 62 88 186
THBS1 28 — — 28
IGFBP3 26 59 88 173
WNT11 28 65 88 181
c-MAF-a 26 64 88 178
c-MAF-b 26 — 46 72
AZGP1 — 63 88 151
AMACR — 63 88 151
MUC1 — 58 88 146
EZH2 — 59 88 147
The ESCGP
signatureb

28 — 67 95

Abbreviation: ESCGP, embryonic stem cell gene predictors.
aThe number of samples varies between genes because not all genes were
profiled across all samples.
bThe ESCGP signature includes the expression levels of VGLL3, IGFBP3 and F3.
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Refining ESCGPs selection using RT-PCR and multiplex qPCR analyses
of three PCa cell lines. Within the 258 verified PCa ESCGPs, the 34
genes of highest ranking order in SAM analyses for the

discrimination between tumor and normal samples and between
different tumor subtypes were selected for follow-up analysis. In
addition, five reported genes based on previously published

Table 3. Cox proportional hazards analysis of ESCGPs and various clinical parameters (univariate analysis)

Feature n (%) Na Overall survival PCa-specific survival

Hazard ratio (95% CI) P-value Hazard ratio (95% CI) P-value

PSA (ngml� 1)
p50 94 (58%) 161 1.00 (reference) 1.00 (reference)
450 67 (42%) 161 2.34 (1.65–3.31) o0.0001 2.61 (1.68–4.05) o0.0001

WHO tumor grade (level of differentiation)
Well/moderately 85 (47%) 181 1.00 (reference) 1.00 (reference)
Poorly 96 (53%) 181 1.59 (1.16–2.18) 0.004 1.94 (1.28–2.94) 0.002

Clinical stageb

Localized 79 (45%) 175 1.00 (reference) 1.00 (reference)
Advanced 96 (55%) 175 1.70 (1.23–2.35) 0.001 2.20 (1.44–3.38) o0.0001

Agec 185 1.04 (1.02–1.06) o0.0001 1.03 (1.00–1.05) 0.035
PSA (ngml� 1)d 161 1.00 (1.00–1.00) 0.005 1.00 (1.00–1.00) 0.004
F3e 92 1.11 (1.04–1.17) 0.001 1.14 (1.06–1.22) o0.0001
WNT5Be 89 1.14 (1.04–1.25) 0.004 1.26 (1.11–1.42) o0.0001
VGLL3e 152 1.09 (1.04–1.15) o0.0001 1.08 (1.02–1.15) 0.014
c-MAF-ae 174 1.09 (1.02–1.16) 0.008 1.09 (1.01–1.19) 0.036
CTGFe 100 1.13 (1.03–1.23) 0.008 1.15 (1.02–1.29) 0.023
IGFBP3e 169 1.05 (0.99–1.12) 0.078 1.10 (1.02–1.18) 0.013
c-MAF-be 69 1.13 (0.96–1.33) 0.134 1.28 (1.04–1.57) 0.019
EZH2e 144 0.93 (0.83–1.04) 0.208 0.85 (0.74–0.97) 0.018
AMACRe 148 1.09 (1.02–1.16) 0.009 1.08 (1.00–1.17) 0.049
MUC1e 143 1.07 (1.01–1.14) 0.025 1.06 (0.99–1.15) 0.109

Abbreviations: CI, confidence interval; ESCGP, embryonic stem cell gene predictors; PCa, prostate cancer; WHO, World Health Organization.
aThe number of samples varies between ESCGPs because not all ESCGPs were profiled across all samples.
bLocalized clinical stage was defined as ToT3 and N0/Nx and M0/MX and PSA p100 ngml� 1. Advanced clinical stage was defined as TXT3 or N1 or M1 or
PSA4100 ngml� 1.
cAge was modeled as a continuous variable. The hazard ratio is for each 1.0 year increase in age.
dPSA was modeled as a continuous variable. The hazard ratio is for each 1.0 ngml� 1 PSA increase in serum.
eThe centered delta Ct value for gene expression was modeled as a continuous variable. It is inversely correlated to the gene’s expression level. The hazard
ratio is for each increase of 1.0 unit in centered delta Ct value.

Table 4. Cox proportional hazards analysis of the ESCGP signature and various clinical parameters (univariate and multivariate analyses)

Feature n (%) Na Overall survival PCa-specific survival

Univariate analysis Multivariate analysis Univariate analysis Multivariate analysis

Hazard ratio
(95% CI)

P-value Hazard ratio
(95% CI)

P-value Hazard ratio
(95% CI)

P-value Hazard ratio
(95% CI)

P-value

The ESCGP signatureb

Group 3 26 (30%) 87 1.00 (reference) 1.00 (reference) 1.00 (reference) 1.00 (reference)
Group 2 32 (37%) 87 3.45 (1.79–6.66) o0.0001 2.51 (1.21–5.21) 0.013 3.99 (1.65–9.64) 0.002 2.96 (1.11–7.87) 0.030
Group 1 29 (33%) 87 5.86 (2.91–11.78) o0.0001 4.77 (2.27–10.01) o0.0001 7.67 (3.04–19.36) o0.0001 7.12 (2.56–19.85) o0.0001

PSA (ngml� 1)
p50 48 (55%) 87 1.00 (reference) 1.00 (reference) 1.00 (reference) 1.00 (reference)
450 39 (45%) 87 2.93 (1.76–4.86) o0.0001 2.09 (1.10–3.94) 0.023 3.33 (1.73–6.41) o0.0001 1.76 (0.77–4.03) 0.183

WHO tumor grade (level of differentiation)
Well/
moderately

35 (40%) 87 1.00 (reference) 1.00 (reference) 1.00 (reference) 1.00 (reference)

Poorly 52 (60%) 87 1.65 (1.03–2.66) 0.039 1.17 (0.69–2.00) 0.556 1.93 (1.04–3.57) 0.038 1.20 (0.61–2.39) 0.596

Clinical stagec

Localized 37 (43%) 87 1.00 (reference) 1.00 (reference) 1.00 (reference) 1.00 (reference)
Advanced 50 (57%) 87 2.13 (1.32–3.45) 0.002 1.68 (0.91–3.08) 0.097 3.87 (1.94–7.70) o0.0001 3.62 (1.55–8.45) 0.003
Aged 87 1.06

(1.03–1.09)
o0.0001 1.03

(1.00–1.06)
0.048 1.06

(1.02–1.10)
0.003 1.03

(0.99–1.08)
0.108

Abbreviations: CI, confidence interval; ESCGP, embryonic stem cell gene predictors; PCa, prostate cancer; WHO, World Health Organization.
aEighty-seven out of the 95 clustered samples had all clinical information including age at diagnosis, PSA value, WHO tumor grade and clinical stage.
Univariate and multivariate analyses included these 87 samples.
bThe ESCGP signature includes the expression levels of VGLL3, IGFBP3 and F3, and classified samples into three tumor subtypes (Group 1, Group 2 and
Group 3) by Cluster analysis (Figure 2a). It was modeled as a non-continuous variable with three categories according to the tumor subtype.
cLocalized clinical stage was defined as ToT3 and N0/Nx and M0/MX and PSA p100 ngml� 1. Advanced clinical stage was defined as TXT3 or N1 or M1 or
PSA4100 ngml� 1.
dAge was modeled as a continuous variable. The hazard ratio is for each 1.0 year increase in age.
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studies9,23–32 were included in the same set, both to serve
as a positive reference and to make possible the investigation if
these known genes could improve the predictive power of the
final gene signature. Of the 34 ESCGPs, 19 had both robust

performances in RT-PCR reactions and clearly different expre-
ssion patterns in PCa cell lines (Figure 1c and Supplementary
Figure S1). The 19 ESCGPs and 5 reported genes (Table 2) were
included in an optimization of 4-plex qPCR using RNAs from PCa

Table 5. Analysis of classification error of kNN model performance.

Model Parameters [scale] Training set (n¼ 139)
classification error (overall

survival, years)

Test set (n¼ 50)
classification error (overall

survival, years)

P-value (is
random)

Average
error

Standard
deviation

Average
error

Standard
deviation

RND Random numbers 3.85 3.18
1 Age, WHO, CS, log-PSA [1,9,3,9] 2.97 2.14 3.44 2.93 0.2300
2 IGFBP3, VGLL3, F3, min(3G), max(3G) [1,9,1,3,1] 2.82 2.36 3.14 2.71 0.0373
3 Age, log-PSA, IGFBP3, VGLL3, F3, min(3G), max(3G)

[1,3,1,9,3,3,1]
2.85 2.05 2.69 2.34 0.0024

4 Age, WHO, CS, log-PSA, IGFBP3, VGLL3, F3, min(3G),
max(3G) [1,9,9,3,1,9,1,3,1]

2.81 1.76 2.72 2.41 0.0038

Abbreviations: CS, clinical stage; 3G, IGFBP3, VGLL3, F3; kNN, k-nearest neighbor; WHO, World Health Organization tumor grading.
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Figure 2. Clear survival difference according to tumor subtypes classification based on the embryonic stem cell gene predictor (ESCGP)
signature (VGLL3, IGFBP3 and F3). Data were available for evaluation of the ESCGP signature for 95 of the 189 patients. (a) Fine-needle
aspiration (FNA) samples from the 95 patients were used to create three tumor subtypes (group 1, red tree; group 2, yellow tree; group 3, blue
tree) according to the ESCGP signature. The expression data was evaluated using the unsupervised hierarchical clustering method and the
gene median-centered delta Ct values; the results were visualized using Treeview software. The gene expression level increases from blue to
red, whereas the delta Ct value decreases from blue to red. Missing data are represented by the gray color. The clinical parameters of each
patient are marked by various squares. Empty squares represent a longer survival period, lower PSA level, localized PCa clinical disease stage
and a well or moderately differentiated tumor grade. Squares with various fill colors represent a shorter survival period, higher PSA level,
advanced clinical disease stage and poorly differentiated tumor grade. (b–d) The overall, PCa-specific and non-PCa-specific survival analyses
of the three subtypes were presented by Kaplan–Meier curves. X and Y axis presents actual time as diagnosis and survival rate, respectively.
The P-values for differences between each of the three tumor subtypes were calculated using a log-rank test, and the
P-values marked with stars represent statistical significance (P-valueo0.05). Besides the most significant difference between subtypes 1
and 3 shown in the figure, the other P-values between each two subtypes were P1–2¼ 0.063, P2–3o0.001 (b); P1–2¼ 0.063, P2–3o0.001
(c); P1–2¼ 0.523, P2–3¼ 0.070 (d).

Biomarkers at diagnosis estimate prostate cancer overall survival
Z Peng et al

86

Prostate Cancer and Prostatic Disease (2014), 81 – 90 & 2014 Macmillan Publishers Limited



cell lines. One gene (MAF) has two different mRNA transcripts
(c-MAF-a and c-MAF-b), and both were included. After the
optimization, the 4-plex qPCR method was ready to use for the
analysis of FNA samples taken from PCa patients.

Establishing of the clinical importance. Finally, the potential
additive or synergistic effects by different combinations of the
10 significant genes identified in the univariate analysis were
explored (Table 3). Using the data of 36 patient samples in the
pilot subset (Subset 1), a series of cluster analyses were performed
using 120 different gene combinations by the selection of k
(2pkp10) different genes each time. Of these 120 different
combinations, the ESCGP signature VGLL3, IGFBP3 and F3 was the
best for tumor subtype classification in correlation to survival
differences (Figure 1d). The risk of false discovery by multiple
testing is reduced as survival difference was correlated to the
ESCGP signature as observed in cluster analysis, univariate and
multivariate analyses also after inclusion of two additional subsets
of patients (Subset 2 with 65 patients and Subset 3 with 88
patients, Table 2).
The resulting gene expression data for the complete cohort was

subjected to analysis with respect to overall and PCa-specific
survival. In the univariate analysis, all of the clinical parameters
were significantly correlated with both overall and PCa-specific
survival (Table 3 and Supplementary Figures S3 and S4). Of the 25
gene expression markers, 10 (F3, WNT5B, VGLL3, CTGF, IGFBP3,
c-MAF-a, c-MAF-b, AMACR, MUC1 and EZH2) were significantly
correlated with either overall or PCa-specific survival. Two of these
markers (F3 and WNT5B) presented a more significant P-value
than did PSA when they were used as continuous variables, and
this level of significance remained after a stringent Bonferroni
correction was performed for the multiple testing of 30 variables
(Pob¼ 0.0016667; Table 3 and Supplementary Table S5). A
multivariate analysis was performed to evaluate the influence of
clinical parameters on the significance of each gene variable. The
number of patients included in the multivariate analysis was
smaller than that included in the univariate analysis because
several parameters had missing data. In summary, four markers,
F3, IGFBP3, CTGF and AMACR, showed correlations with both
overall and PCa-specific survival, which were independent of any
of the clinical parameters evaluated (Supplementary Tables S6 and
S7). Three of these genes (F3, IGFBP3, CTGF) are ESCGPs.
Of the 189 patients evaluated, 87 had data available for all

clinical parameters (mainly patients in Subsets 1 and 3) and could
be classified into subtypes according to the expression signatures
of VGLL3, IGFBP3 and F3. The multivariate analysis for overall and
PCa-specific survival revealed that the tumor subtype classification
defined by the ESCGP signature was the most powerful survival
indicator and further independent of age, PSA level, tumor grade
and clinical stage (Table 4). The median overall survival time was
3.23 years for patients with the high-risk subtype, 4.00 years for
the intermediate-risk subtype and 9.85 years for the low-risk
subtype (Figure 2), and these values corresponded to hazard ratios
of 5.86 (95% confidence interval (CI): 2.91–11.78, Po0.001) for the
high-risk subtype and 3.45 (95% CI: 1.79–6.66, Po0.001) for the
intermediate-risk subtype compared with the low-risk subtype
(Table 4 and Figure 2). Kaplan–Meier plots further indicated a clear
survival difference between the three subtypes classified using the
ESCGP signature (Figure 2 and Supplementary Figures S4 and S5).
The difference in overall survival was attributed to both PCa-
specific and non-PCa-specific survival (Figure 2). Interestingly, the
survival difference between the three tumor subtypes was
maintained when only patients treated with hormone therapy
were analyzed, and these differences were independent of all
other clinical parameters (Figure 3 and Supplementary Figure S5).
Results from separate analysis of the subgroup of patients with
cardiovascular disease were in agreement with the results from
the complete cohort.
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Figure 3. Survival difference between the three tumor subtypes
classified according to the embryonic stem cell gene predictor (ESCGP)
signature in patients primarily treated with castration therapy. Of the
95 patients shown in Figure 2, 65 received castration therapy as their
primary treatment. Within this group, clear survival differences could
still be observed according to the three tumor subtypes classified
based on the ESCGP signature. The overall (upper panel), PCa-specific
(middle panel) and non-PCa-specific (lower panel) survival analyses of
the three subtypes are shown by the Kaplan–Meier curves. The P-
values for differences between each of the three tumor subtypes were
calculated using a log-rank test. Besides the most significant difference
between subtypes 1 and 3 shown in the figure, the other P-values
between each two subtypes were P1–2¼ 0.037*, P2–3¼ 0.001*
(a); P1–2¼ 0.009*, P2–3¼ 0.006* (b); P1–2¼ 0.955, P2–3¼ 0.076 (c). The
overall survival rates at 5 years of follow-up were 13.6%, 36.0% and
77.8% for groups 1, 2 and 3, respectively.
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Survival predictions with the combined use of the ESCGP
signature and various clinical parameters
To assess the predictive performance of the selected ESCGP
genes, different kNN classification algorithms were developed
using the training set to estimate the overall survival.33 When
evaluated on the test set (Table 5), the performance of the kNN
model using only clinical parameters was similar to the random
model, whereas all kNN models including the selected ESCGP
genes were significantly (Po0.04) better than the random model.
Another illustration of predictive performance was obtained using
a parametric model. This model was used to estimate whether the
use of tumor subtype classification,34 according to the expression
signature of VGLL3, IGFBP3 and F3, could improve the prediction
of survival beyond that estimated using the available clinical
parameters (Figure 4). Compared with the prediction model that
used only the clinical parameters, the addition of the tumor
subtype classification improved sensitivity and specificity of the
overall survival prediction from 0.775 to 0.800, and from 0.660 to
0.766, respectively (at 5 years; Figure 4). Receiver operating
characteristic curves at 5-year survival were estimated to show the
sensitivity and the specificity of survival prediction. The area under
the receiver operating characteristic curve value was increased
from 0.755 to 0.815 in overall survival prediction, from 0.726 to
0.793 in PCa-specific survival prediction and from 0.730 to 0.793 in
non-PCa-specific survival prediction, respectively (Figure 4).

DISCUSSION
This report discusses the ability to estimate the overall and cancer-
specific survival using gene expression levels in PCa samples. If
such a measure would become available, it would provide an
important and orthogonal complement to the currently available
data used in the decision process for selecting treatment for
individual patients.
Numerous attempts to produce prognostic methods for PCa use

surrogate end points like biochemical relapse or even cancer-
specific mortality.35 This is probably due to the fact that data sets
for surrogate end points are more easily obtained. However, it has
been shown that nearly 50% of the patients die of diseases other
than PCa.36 The identification of biomarkers that correlate with
overall survival of PCa is rare. Our results demonstrate that PCa
tumor subtypes classified by the gene expression signature of
VGLL3, IGFBP3 and F3 at the time of diagnosis are clearly correlated
with overall and cancer-specific survival in the evaluated cohort.
The gene expression signature was independent of age, PSA

level, World Health Organization tumor grade and clinical stage.
Furthermore, as shown through the kNN model and the
parametric prediction model, this signature demonstrated clear
prognostic value and a potential to further improve the prognostic
accuracy of conventional clinical parameters. Following validation
on additional cohorts, this ESCGP signature could be particularly
beneficial in the clinical management of early-stage PCa. In such
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Figure 4. Receiver operating characteristic (ROC) curves for 5-year
survival prediction. Prediction of survival time was modeled using a
parametric model based on the assumption of the Weibull
distribution. ROC curves at 5-year survival prediction show the
sensitivity and the specificity of survival prediction. Overall (upper
panel), PCa-specific (middle panel) and non-PCa-specific survival
(bottom panel) predictions at 5 years were determined by the
clinical parameters alone (black lines), and by both clinical
parameters and the tumor subtypes classified by embryonic stem
cell gene predictor (ESCGP) signature (red lines). The area under the
curve (AUC) values of overall, PCa-specific and non-PCa-specific
survival predictions were all increased by adding ESCGP signature.
Positive predictive value (PPV) and negative predictive value (NPV)
both increased.
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cases, the accuracy of conventional clinical parameters for the
prediction of cancer-specific and overall survival are limited by a
relatively low PSA level, localized disease stage and insufficient
tumor material for Gleason scoring.1–4,37 When evaluating such
small tumor samples, the ESCGP has a potential to improve the
assessment.
Overall survival is the real lifetime determined by the aggres-

siveness of PCa and patient’s other conditions or comorbidities.2

The ability to estimate overall survival by the ESCGP signature may
reflect the biological functions of the three genes. Both F3 and
IGFBP3 have been shown associated with metastasis development
in prostate and other cancers. They have also been shown
important in the development of many non-cancer diseases of
the coagulatory, cardiovascular and metabolic systems, diseases
that are common causes of death in PCa patients.28,38 The positive
correlation between prolonged survival and increased expression of
F3 was unexpected and may suggest that PCa cells with higher
levels of F3 are strongly androgen-dependent and sensitive to
castration treatment.9,24,39,40 The functions of VGLL3 have yet to be
studied. VGLL3 shows clear correlation with the age at diagnosis
(Supplementary Tables S6 and S7), which is an important patient
risk factor that strongly influences the patient overall survival and
treatment decision. We suggest that the expression of VGLL3 may
reflect the patient’s biological age that currently can be estimated
only by physician’s subjective observation. Therefore, the combina-
tion of these three genes could provide a molecular classification
sufficient to estimate overall survival.
Several reported gene markers (AMACR, EZH2, c-MAF-a, c-MAF-

b and MUC1) selected from previous studies were also validated in
our FNA cohort (Supplementary Table S5); however, they were not
as strong as the ESCGP signature when estimating overall survival.
Owing to the limited RNA quantity present in the FNA samples,
the previously reported ‘stemness’ gene signature8 could not be
compared with our ESCGP signature, although this comparison
would be warranted in future studies.
The present study was driven by the stem cell hypothesis,

whereby ESC gene expression signatures are thought to be
associated with the prognosis of various cancers. Our results
demonstrate that the 258 ESCGPs could classify an independent
PCa data set in a nearly identical manner as compared with using
the complete 5513 genes identified in a previous study
(Figure 1b). Furthermore, PCa tumor subtypes classified by the
ESCGP signature of VGLL3, IGFBP3 and F3 at the time of diagnosis
clearly correlated with overall and PCa-specific survival. These two
results support the stem cell hypothesis.
The stepwise procedure implemented in the current study has

both advantages and disadvantages. We find it advantageous to
use an initially wide concept and incrementally narrow the scope
through use of independent historic data sets and new measure-
ments, as illustrated in Figure 1. The drawback is that Subset 1 of
the patient database was part of selecting the ESCGP signature,
leaving a smaller set of patient material for validation. In our case,
the limited availability of FNA samples prevented us from dividing
them into one discovery set and one validation set. On the other
hand, the availability of a series of high-quality, fresh–frozen
FNA samples with nearly complete survival data made it possible
to complete this study. Currently, evaluation of Gleason score
using transrectal ultrasound-guided prostate biopsy samples has
become the major diagnostic procedure for PCa. A direct
comparison and correlation between this signature and Gleason
score needs to be established using biopsy samples. All in all,
before implementing the ESCGP signature in clinical practice, it
has to be validated in an independent data set using sample
material readily available in pathology laboratories. Such a
validation study has been initiated in our laboratory.
In conclusion, the ESCGP signature is a promising biomarker

combination suitable for estimating the survival of PCa
patients. After validation in an independent large cohort study,

it would provide an important and orthogonal complement to
the currently clinical parameters routinely used in the process
of treatment decision for individual patients, in particular for
early-stage PCas.

CONFLICT OF INTEREST
CL is one of the co-founders and a stockowner of Chundsell Medicals AB, an
innovative start-up company financed by both private investors and the govern-
mental innovation support agency Almi aiming to develop a molecular test kit based
on the gene expression signature identified in this study. ZP started as a scientific
consultant of this company after the manuscript was finished. These innovative
associations have no influence on the scientific research ethics and quality of this
study. The other authors declare no conflict of interest.

ACKNOWLEDGEMENTS
We thank the American Journal Experts and Dr Nigel Tooke for providing professional
English editing of the manuscript. This work was supported by The Swedish Cancer
Society, the Stockholm County Council, Konung Gustaf V:s Jubileumsfond, Cancer och
Allergifonden, the KID funding of Karolinska Institutet and the Swedish Society of
Medicine.

REFERENCES
1 Albertsen PC. Treatment of localized prostate cancer: when is active surveillance

appropriate? Nat Rev Clin Oncol 2010; 7: 394–400.
2 Hellerstedt BA, Pienta KJ. The current state of hormonal therapy for prostate

cancer. CA Cancer J Clin 2002; 52: 154–179.
3 Shariat SF, Karakiewicz PI, Roehrborn CG, Kattan MW. An updated catalog of

prostate cancer predictive tools. Cancer 2008; 113: 3075–3099.
4 Wilkins A, Parker C. Treating prostate cancer with radiotherapy. Nat Rev Clin Oncol

2010; 7: 583–589.
5 Ayala GE, Muezzinoglu B, Hammerich KH, Frolov A, Liu H, Scardino PT et al.

Determining prostate cancer-specific death through quantification of stromo-
genic carcinoma area in prostatectomy specimens. Am J Pathol 2011; 178: 79–87.

6 Cuzick J, Fisher G, Kattan MW, Berney D, Oliver T, Foster CS et al. Long-term
outcome among men with conservatively treated localised prostate cancer.
Br J Cancer 2006; 95: 1186–1194.

7 Cheville JC, Karnes RJ, Therneau TM, Kosari F, Munz JM, Tillmans L et al. Gene
panel model predictive of outcome in men at high-risk of systemic progression
and death from prostate cancer after radical retropubic prostatectomy. J Clin
Oncol 2008; 26: 3930–3936.

8 Glinsky GV. ‘Stemness’ genomics law governs clinical behavior of human cancer:
implications for decision making in disease management. J Clin Oncol 2008; 26:
2846–2853.

9 Lapointe J, Li C, Higgins JP, van de Rijn M, Bair E, Montgomery K et al. Gene
expression profiling identifies clinically relevant subtypes of prostate cancer. Proc
Natl Acad Sci USA 2004; 101: 811–816.

10 Liu W, Xie CC, Thomas CY, Kim ST, Lindberg J, Egevad L et al. Genetic markers
associated with early cancer-specific mortality following prostatectomy. Cancer
2013; 119: 2405–2412.

11 Sboner A, Demichelis F, Calza S, Pawitan Y, Setlur SR, Hoshida Y et al. Molecular
sampling of prostate cancer: a dilemma for predicting disease progression. BMC
Med Genom 2010; 3: 8.

12 Clevers H. Stem cells, asymmetric division and cancer. Nat Genet 2005; 37:
1027–1028.

13 Ratajczak MZ, Shin DM, Liu R, Marlicz W, Tarnowski M, Ratajczak J et al. Epiblast/
germ line hypothesis of cancer development revisited: lesson from the presence
of Oct-4þ cells in adult tissues. Stem Cell Rev 2010; 6: 307–316.

14 Visvader JE. Cells of origin in cancer. Nature 2011; 469: 314–322.
15 Sperger JM, Chen X, Draper JS, Antosiewicz JE, Chon CH, Jones SB et al. Gene

expression patterns in human embryonic stem cells and human pluripotent germ
cell tumors. Proc Natl Acad Sci USA 2003; 100: 13350–13355.

16 Shyamsundar R, Kim YH, Higgins JP, Montgomery K, Jorden M, Sethuraman A
et al. A DNA microarray survey of gene expression in normal human tissues.
Genome Biol 2005; 6: R22.

17 Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the
ionizing radiation response. Proc Natl Acad Sci USA 2001; 98: 5116–5121.

18 Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T)
method. Nat Protoc 2008; 3: 1101–1108.

19 Wittwer CT, Herrmann MG, Gundry CN, Elenitoba-Johnson KS. Real-time multiplex
PCR assays. Methods 2001; 25: 430–442.

20 Andersson L, Hagmar B, Ljung BM, Skoog L. Fine needle aspiration biopsy for
diagnosis and follow-up of prostate cancer. Consensus Conference on Diagnosis

Biomarkers at diagnosis estimate prostate cancer overall survival
Z Peng et al

89

& 2014 Macmillan Publishers Limited Prostate Cancer and Prostatic Disease (2014), 81 – 90



and Prognostic Parameters in Localized Prostate Cancer. Stockholm, Sweden, May
12–13, 1993. Scand J Urol Nephrol Suppl 1994; 162: 43–49, discussion 115-27.

21 World Health Organization. International Statistical Classification of Diseases and
Related Health Problems, Tenth Revision. World Health Organization: Geneva,
Switzerland, 1992.

22 Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of
genome-wide expression patterns. Proc Natl Acad Sci USA 1998; 95: 14863–14868.

23 de Melo Martins PC, Parise Junior O, Pereira Hors C, Villela Miguel RE, da Costa
Andrade VC, Garicochea B. C8orf4/TC-1 (thyroid cancer-1) gene expression in
thyroid cancer and goiter. J Otorhinolaryngol Relat Spec 2007; 69: 127–130.

24 Kasthuri RS, Taubman MB, Mackman N. Role of tissue factor in cancer. J Clin Oncol
2009; 27: 4834–4838.

25 Li C, Berx G, Larsson C, Auer G, Aspenblad U, Pan Y et al. Distinct deleted regions
on chromosome segment 16q23–24 associated with metastases in prostate
cancer. Genes Chromosomes Cancer 1999; 24: 175–182.

26 Lin SH, Cheng CJ, Lee YC, Ye X, Tsai WW, Kim J et al. A 45-kDa ErbB3 secreted by
prostate cancer cells promotes bone formation. Oncogene 2008; 27: 5195–5203.

27 Mackman N. The many faces of tissue factor. J Thromb Haemost 2009; 7(Suppl 1):
136–139.

28 Mehta HH, Gao Q, Galet C, Paharkova V, Wan J, Said J et al. IGFBP-3 is a metastasis
suppression gene in prostate cancer. Cancer Res 2011; 71: 5154–5163.

29 Rubin MA, Zhou M, Dhanasekaran SM, Varambally S, Barrette TR, Sanda MG et al.
Alpha-methylacyl coenzyme A racemase as a tissue biomarker for prostate cancer.
JAMA 2002; 287: 1662–1670.

30 Saitoh T, Katoh M. Expression and regulation of WNT5A and WNT5B in human
cancer: up-regulation of WNT5A by TNFalpha in MKN45 cells and up-regulation of
WNT5B by beta-estradiol in MCF-7 cells. Int J Mol Med 2002; 10: 345–349.

31 Strawbridge RJ, Nister M, Brismar K, Gronberg H, Li C. MUC1 as a putative
prognostic marker for prostate cancer. Biomark Insights 2008; 3: 303–315.

32 Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG
et al. The polycomb group protein EZH2 is involved in progression of prostate
cancer. Nature 2002; 419: 624–629.

33 Parry RM, Jones W, Stokes TH, Phan JH, Moffitt RA, Fang H et al. k-Nearest
neighbor models for microarray gene expression analysis and clinical outcome
prediction. Pharmacogenom J 2010; 10: 292–309.

34 David W, Hosmer J, Stanley L, Susanne M. Applied Survival Analysis: Regression
Modeling of Time to Event Data. 2nd edn (Wiley: New York), 2008, pp 244–285.

35 Teeter AE, Presti Jr. JC, Aronson WJ, Terris MK, Kane CJ, Amling CL et al. Do
nomograms designed to predict biochemical recurrence (BCR) do a better job of
predicting more clinically relevant prostate cancer outcomes than BCR? A report
from the SEARCH database group. Urology 2013; 82: 53–59.

36 Epstein MM, Edgren G, Rider JR, Mucci LA, Adami HO. Temporal trends in cause of
death among Swedish and US men with prostate cancer. J Natl Cancer Inst 2012;
104: 1335–1342.

37 Bast Jr. RC, Lilja H, Urban N, Rimm DL, Fritsche H, Gray J et al. Translational
crossroads for biomarkers. Clin Cancer Res 2005; 11: 6103–6108.

38 Yeap BB, Chubb SA, McCaul KA, Ho KK, Hankey GJ, Norman PE et al. Associations
of IGF1 and IGFBPs 1 and 3 with all-cause and cardiovascular mortality in older
men: the Health In Men Study. Eur J Endocrinol 2011; 164: 715–723.

39 Brodin E, Vikan T, Hansen JB, Svartberg J. Testosterone, hemostasis, and cardio-
vascular diseases in men. Semin Thromb Hemost 2011; 37: 87–94.

40 Mitchell S, Abel P, Madaan S, Jeffs J, Chaudhary K, Stamp G et al. Androgen-
dependent regulation of human MUC1 mucin expression. Neoplasia 2002; 4: 9–18.

This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of

this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

Supplementary Information accompanies the paper on the Prostate Cancer and Prostatic Diseases website (http://www.nature.com/pcan)

Biomarkers at diagnosis estimate prostate cancer overall survival
Z Peng et al

90

Prostate Cancer and Prostatic Disease (2014), 81 – 90 & 2014 Macmillan Publishers Limited

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.nature.com/pcan

	An expression signature at diagnosis to estimate prostate cancer patients’ overall survival
	Introduction
	Materials and methods
	Identification of candidate ESCGPs
	Selection of candidate ESCGPs in PCa
	Refining ESCGPs selection using RT-PCR and multiplex qPCR analyses of three PCa cell lines
	Establishing of the clinical importance
	FNA samples
	Clinical characteristics of the cohort
	Statistical analysis


	Results
	Identification of the ESCGP signature by a stepwise process
	Identification of candidate ESCGPs
	Selection of candidate ESCGPs in PCa
	Refining ESCGPs selection using RT-PCR and multiplex qPCR analyses of three PCa cell lines
	Establishing of the clinical importance

	Survival predictions with the combined use of the ESCGP signature and various clinical parameters

	Discussion
	Acknowledgements
	Note
	References




