Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Junk DNA and the long non-coding RNA twist in cancer genetics

Subjects

Abstract

The central dogma of molecular biology states that the flow of genetic information moves from DNA to RNA to protein. However, in the last decade this dogma has been challenged by new findings on non-coding RNAs (ncRNAs) such as microRNAs (miRNAs). More recently, long non-coding RNAs (lncRNAs) have attracted much attention due to their large number and biological significance. Many lncRNAs have been identified as mapping to regulatory elements including gene promoters and enhancers, ultraconserved regions and intergenic regions of protein-coding genes. Yet, the biological function and molecular mechanisms of lncRNA in human diseases in general and cancer in particular remain largely unknown. Data from the literature suggest that lncRNA, often via interaction with proteins, functions in specific genomic loci or use their own transcription loci for regulatory activity. In this review, we summarize recent findings supporting the importance of DNA loci in lncRNA function and the underlying molecular mechanisms via cis or trans regulation, and discuss their implications in cancer. In addition, we use the 8q24 genomic locus, a region containing interactive SNPs, DNA regulatory elements and lncRNAs, as an example to illustrate how single-nucleotide polymorphism (SNP) located within lncRNAs may be functionally associated with the individual’s susceptibility to cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A et al. Landscape of transcription in human cells. Nature 2012; 489: 101–108.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Comings DE . The structure and function of chromatin. Adv Hum Genet 1972; 3: 237–431.

    CAS  PubMed  Google Scholar 

  3. Calin GA, Croce CM . MicroRNA signatures in human cancers. Nat Rev Cancer 2006; 6: 857–866.

    Article  CAS  PubMed  Google Scholar 

  4. Ling H, Fabbri M, Calin GA . MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov 2013; 12: 847–865.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Esteller M . Non-coding RNAs in human disease. Nat Rev Genet 2011; 12: 861–874.

    CAS  PubMed  Google Scholar 

  6. Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 2012; 22: 1775–1789.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang KC, Chang HY . Molecular mechanisms of long noncoding RNAs. Mol Cell 2011; 43: 904–914.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Schmitz KM, Mayer C, Postepska A, Grummt I . Interaction of noncoding RNA with the rDNA promoter mediates recruitment of DNMT3b and silencing of rRNA genes. Gene Dev 2010; 24: 2264–2269.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Chu C, Qu K, Zhong FL, Artandi SE, Chang HY . Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol Cell 2011; 44: 667–678.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci USA 2009; 106: 9362–9367.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Ulitsky I, Shkumatava A, Jan CH, Sive H, Bartel DP . Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell 2011; 147: 1537–1550.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Fatica A, Bozzoni I . Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet 2014; 15: 7–21.

    CAS  PubMed  Google Scholar 

  13. Batista PJ, Chang HY . Long noncoding RNAs: cellular address codes in development and disease. Cell 2013; 152: 1298–1307.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Wapinski O, Chang HY . Long noncoding RNAs and human disease. Trends Cell Biol 2011; 21: 354–361.

    CAS  PubMed  Google Scholar 

  15. Mercer TR, Mattick JS . Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol 2013; 20: 300–307.

    CAS  PubMed  Google Scholar 

  16. Geisler S, Coller J . RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts. Nat Rev Mol Cell Biol 2013; 14: 699–712.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang L, Froberg JE, Lee JT . Long noncoding RNAs: fresh perspectives into the RNA world. Trends Biochem Sci 2014; 39: 35–43.

    PubMed  Google Scholar 

  18. Cech TR, Steitz JA . The noncoding RNA revolution-trashing old rules to forge new ones. Cell 2014; 157: 77–94.

    CAS  PubMed  Google Scholar 

  19. Ulitsky I, Bartel DP . lincRNAs: genomics, evolution, and mechanisms. Cell 2013; 154: 26–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee JT, Bartolomei MS . X-inactivation, imprinting, and long noncoding RNAs in health and disease. Cell 2013; 152: 1308–1323.

    CAS  PubMed  Google Scholar 

  21. Kim HS, Minna JD, White MA . GWAS meets TCGA to illuminate mechanisms of cancer predisposition. Cell 2013; 152: 387–389.

    CAS  PubMed  Google Scholar 

  22. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2002; 99: 15524–15529.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Gong C, Maquat LE . lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3' UTRs via Alu elements. Nature 2011; 470: 284–288.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Mariner PD, Walters RD, Espinoza CA, Drullinger LF, Wagner SD, Kugel JF et al. Human Alu RNA is a modular transacting repressor of mRNA transcription during heat shock. Mol Cell 2008; 29: 499–509.

    CAS  PubMed  Google Scholar 

  25. Levine M, Tjian R . Transcription regulation and animal diversity. Nature 2003; 424: 147–151.

    CAS  PubMed  Google Scholar 

  26. Core LJ, Waterfall JJ, Lis JT . Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 2008; 322: 1845–1848.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Seila AC, Calabrese JM, Levine SS, Yeo GW, Rahl PB, Flynn RA et al. Divergent transcription from active promoters. Science 2008; 322: 1849–1851.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hung T, Wang Y, Lin MF, Koegel AK, Kotake Y, Grant GD et al. Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet 2011; 43: 621–629.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Blackwood EM, Kadonaga JT . Going the distance: a current view of enhancer action. Science 1998; 281: 60–63.

    CAS  PubMed  Google Scholar 

  30. Orom UA, Shiekhattar R . Long noncoding RNAs usher in a new era in the biology of enhancers. Cell 2013; 154: 1190–1193.

    PubMed  PubMed Central  Google Scholar 

  31. Kim TK, Hemberg M, Gray JM, Costa AM, Bear DM, Wu J et al. Widespread transcription at neuronal activity-regulated enhancers. Nature 2010; 465: 182–187.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Orom UA, Derrien T, Beringer M, Gumireddy K, Gardini A, Bussotti G et al. Long noncoding RNAs with enhancer-like function in human cells. Cell 2010; 143: 46–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Koch F, Fenouil R, Gut M, Cauchy P, Albert TK, Zacarias-Cabeza J et al. Transcription initiation platforms and GTF recruitment at tissue-specific enhancers and promoters. Nat Struct Mol Biol 2011; 18: 956–963.

    CAS  PubMed  Google Scholar 

  34. Feng J, Bi C, Clark BS, Mady R, Shah P, Kohtz JD . The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Gene Dev 2006; 20: 1470–1484.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang KC, Yang YW, Liu B, Sanyal A, Corces-Zimmerman R, Chen Y et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 2011; 472: 120–124.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Yang L, Lin C, Jin C, Yang JC, Tanasa B, Li W et al. lncRNA-dependent mechanisms of androgen-receptor-regulated gene activation programs. Nature 2013; 500: 598–602.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Bejerano G, Pheasant M, Makunin I, Stephen S, Kent WJ, Mattick JS et al. Ultraconserved elements in the human genome. Science 2004; 304: 1321–1325.

    CAS  PubMed  Google Scholar 

  38. Calin GA, Liu CG, Ferracin M, Hyslop T, Spizzo R, Sevignani C et al. Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas. Cancer Cell 2007; 12: 215–229.

    CAS  PubMed  Google Scholar 

  39. Braconi C, Valeri N, Kogure T, Gasparini P, Huang N, Nuovo GJ et al. Expression and functional role of a transcribed noncoding RNA with an ultraconserved element in hepatocellular carcinoma. Proc Natl Acad Sci USA 2011; 108: 786–791.

    CAS  PubMed  Google Scholar 

  40. Ferdin J, Nishida N, Wu X, Nicoloso MS, Shah MY, Devlin C et al. HINCUTs in cancer: hypoxia-induced noncoding ultraconserved transcripts. Cell Death Differ 2013; 20: 1675–1687.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ling H, Spizzo R, Atlasi Y, Nicoloso M, Shimizu M, Redis RS et al. CCAT2, a novel noncoding RNA mapping to 8q24, underlies metastatic progression and chromosomal instability in colon cancer. Genome Res 2013; 23: 1446–1461.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Liz J, Portela A, Soler M, Gomez A, Ling H, Michlewski G et al. Regulation of pri-miRNA processing by a long noncoding RNA transcribed from an ultraconserved region. Mol Cell 2014; 55: 138–147.

    CAS  PubMed  Google Scholar 

  43. Katayama S, Tomaru Y, Kasukawa T, Waki K, Nakanishi M, Nakamura M et al. Antisense transcription in the mammalian transcriptome. Science 2005; 309: 1564–1566.

    PubMed  Google Scholar 

  44. Wang XJ, Gaasterland T, Chua NH . Genome-wide prediction and identification of cis-natural antisense transcripts in Arabidopsis thaliana. Genome Biol 2005; 6: R30.

    PubMed  PubMed Central  Google Scholar 

  45. Faghihi MA, Wahlestedt C . Regulatory roles of natural antisense transcripts. Nat Rev Mol Cell Biol 2009; 10: 637–643.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Yu W, Gius D, Onyango P, Muldoon-Jacobs K, Karp J, Feinberg AP et al. Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature 2008; 451: 202–206.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Pasmant E, Laurendeau I, Heron D, Vidaud M, Vidaud D, Bieche I . Characterization of a germ-line deletion, including the entire INK4/ARF locus, in a melanoma-neural system tumor family: identification of ANRIL, an antisense noncoding RNA whose expression coclusters with ARF. Cancer Res 2007; 67: 3963–3969.

    CAS  PubMed  Google Scholar 

  48. Yap KL, Li S, Munoz-Cabello AM, Raguz S, Zeng L, Mujtaba S et al. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell 2010; 38: 662–674.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Beltran M, Puig I, Pena C, Garcia JM, Alvarez AB, Pena R et al. A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial-mesenchymal transition. Gene Dev 2008; 22: 756–769.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 2007; 129: 1311–1323.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science 2010; 329: 689–693.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 2010; 142: 409–419.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Lee JT . Lessons from X-chromosome inactivation: long ncRNA as guides and tethers to the epigenome. Gene Dev 2009; 23: 1831–1842.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Bertani S, Sauer S, Bolotin E, Sauer F . The noncoding RNA Mistral activates Hoxa6 and Hoxa7 expression and stem cell differentiation by recruiting MLL1 to chromatin. Mol Cell 2011; 43: 1040–1046.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Di Ruscio A, Ebralidze AK, Benoukraf T, Amabile G, Goff LA, Terragni J et al. DNMT1-interacting RNAs block gene-specific DNA methylation. Nature 2013; 503: 371–376.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Jeon Y, Lee JT . YY1 tethers Xist RNA to the inactive X nucleation center. Cell 2011; 146: 119–133.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Simon MD, Pinter SF, Fang R, Sarma K, Rutenberg-Schoenberg M, Bowman SK et al. High-resolution Xist binding maps reveal two-step spreading during X-chromosome inactivation. Nature 2013; 504: 465–469.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Maenner S, Blaud M, Fouillen L, Savoye A, Marchand V, Dubois A et al. 2-D structure of the A region of Xist RNA and its implication for PRC2 association. PLoS Biol 2010; 8: e1000276.

    PubMed  PubMed Central  Google Scholar 

  59. Nagano T, Mitchell JA, Sanz LA, Pauler FM, Ferguson-Smith AC, Feil R et al. The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science 2008; 322: 1717–1720.

    CAS  PubMed  Google Scholar 

  60. Lee JT, Davidow LS, Warshawsky D . Tsix, a gene antisense to Xist at the X-inactivation centre. Nat Genet 1999; 21: 400–404.

    CAS  PubMed  Google Scholar 

  61. Sun BK, Deaton AM, Lee JT . A transient heterochromatic state in Xist preempts X inactivation choice without RNA stabilization. Mol Cell 2006; 21: 617–628.

    CAS  PubMed  Google Scholar 

  62. Ogawa Y, Sun BK, Lee JT . Intersection of the RNA interference and X-inactivation pathways. Science 2008; 320: 1336–1341.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Lai F, Orom UA, Cesaroni M, Beringer M, Taatjes DJ, Blobel GA et al. Activating RNAs associate with Mediator to enhance chromatin architecture and transcription. Nature 2013; 494: 497–501.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Melo CA, Drost J, Wijchers PJ, van de Werken H, de Wit E, Oude Vrielink JA et al. eRNAs are required for p53-dependent enhancer activity and gene transcription. Mol Cell 2013; 49: 524–535.

    CAS  PubMed  Google Scholar 

  65. Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA 2009; 106: 11667–11672.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Sanford JR, Wang X, Mort M, Vanduyn N, Cooper DN, Mooney SD et al. Splicing factor SFRS1 recognizes a functionally diverse landscape of RNA transcripts. Genome Res 2009; 19: 381–394.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang X, Rice K, Wang Y, Chen W, Zhong Y, Nakayama Y et al. Maternally expressed gene 3 (MEG3) noncoding ribonucleic acid: isoform structure, expression, and functions. Endocrinology 2010; 151: 939–947.

    CAS  PubMed  Google Scholar 

  68. Novikova IV, Hennelly SP, Sanbonmatsu KY . Structural architecture of the human long non-coding RNA, steroid receptor RNA activator. Nucleic Acids Res 2012; 40: 5034–5051.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Plath K, Fang J, Mlynarczyk-Evans SK, Cao R, Worringer KA, Wang H et al. Role of histone H3 lysine 27 methylation in X inactivation. Science 2003; 300: 131–135.

    CAS  PubMed  Google Scholar 

  70. Allen TA, Von Kaenel S, Goodrich JA, Kugel JF . The SINE-encoded mouse B2 RNA represses mRNA transcription in response to heat shock. Nat Struct Mol Biol 2004; 11: 816–821.

    CAS  PubMed  Google Scholar 

  71. Yakovchuk P, Goodrich JA, Kugel JF . B2 RNA and Alu RNA repress transcription by disrupting contacts between RNA polymerase II and promoter DNA within assembled complexes. Proc Natl Acad Sci USA 2009; 106: 5569–5574.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Ning S, Zhao Z, Ye J, Wang P, Zhi H, Li R et al. LincSNP: a database of linking disease-associated SNPs to human large intergenic non-coding RNAs. BMC Bioinformatics 2014; 15: 152.

    PubMed  PubMed Central  Google Scholar 

  73. Pasmant E, Sabbagh A, Vidaud M, Bieche I . ANRIL, a long, noncoding RNA, is an unexpected major hotspot in GWAS. FASEB J 2011; 25: 444–448.

    CAS  PubMed  Google Scholar 

  74. Pasmant E, Sabbagh A, Masliah-Planchon J, Ortonne N, Laurendeau I, Melin L et al. Role of noncoding RNA ANRIL in genesis of plexiform neurofibromas in neurofibromatosis type 1. J Natil Cancer Inst 2011; 103: 1713–1722.

    CAS  Google Scholar 

  75. Matouk IJ, DeGroot N, Mezan S, Ayesh S, Abu-lail R, Hochberg A et al. The H19 non-coding RNA is essential for human tumor growth. PloS one 2007; 2: e845.

    PubMed  PubMed Central  Google Scholar 

  76. Zhang L, Yang F, Yuan JH, Yuan SX, Zhou WP, Huo XS et al. Epigenetic activation of the MiR-200 family contributes to H19-mediated metastasis suppression in hepatocellular carcinoma. Carcinogenesis 2013; 34: 577–586.

    PubMed  Google Scholar 

  77. Verhaegh GW, Verkleij L, Vermeulen SH, den Heijer M, Witjes JA, Kiemeney LA . Polymorphisms in the H19 gene and the risk of bladder cancer. Eur Urol 2008; 54: 1118–1126.

    CAS  PubMed  Google Scholar 

  78. Easton DF, Pooley KA, Dunning AM, Pharoah PD, Thompson D, Ballinger DG et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 2007; 447: 1087–1093.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Liu Y, Pan S, Liu L, Zhai X, Liu J, Wen J et al. A genetic variant in long non-coding RNA HULC contributes to risk of HBV-related hepatocellular carcinoma in a Chinese population. PloS one 2012; 7: e35145.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Gray JW, Waldman F et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 1992; 258: 818–821.

    CAS  PubMed  Google Scholar 

  81. Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J et al. The landscape of somatic copy-number alteration across human cancers. Nature 2010; 463: 899–905.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Sur I, Tuupanen S, Whitington T, Aaltonen LA, Taipale J . Lessons from functional analysis of genome-wide association studies. Cancer Res 2013; 73: 4180–4184.

    CAS  PubMed  Google Scholar 

  83. Huppi K, Pitt JJ, Wahlberg BM, Caplen NJ . The 8q24 gene desert: an oasis of non-coding transcriptional activity. Front Genet 2012; 3: 69.

    PubMed  PubMed Central  Google Scholar 

  84. Jia L, Landan G, Pomerantz M, Jaschek R, Herman P, Reich D et al. Functional enhancers at the gene-poor 8q24 cancer-linked locus. PLoS Genet 2009; 5: e1000597.

    PubMed  PubMed Central  Google Scholar 

  85. Xiang JF, Yin QF, Chen T, Zhang Y, Zhang XO, Wu Z et al. Human colorectal cancer-specific CCAT1-L lncRNA regulates long-range chromatin interactions at the MYC locus. Cell Res 2014; 24: 513–531.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Kim T, Cui R, Jeon YJ, Lee JH, Lee JH, Sim H et al. Long-range interaction and correlation between MYC enhancer and oncogenic long noncoding RNA CARLo-5. Proc Natl Acad Sci USA 2014; 111: 4173–4178.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Tseng YY, Moriarity BS, Gong W, Akiyama R, Tiwari A, Kawakami H et al. PVT1 dependence in cancer with MYC copy-number increase. Nature 2014; 512: 82–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Prensner JR, Iyer MK, Balbin OA, Dhanasekaran SM, Cao Q, Brenner JC et al. Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nat Biotechnol 2011; 29: 742–749.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Li L, Sun R, Liang Y, Pan X, Li Z, Bai P et al. Association between polymorphisms in long non-coding RNA PRNCR1 in 8q24 and risk of colorectal cancer. J Exp Clin Cancer Res 2013; 32: 104.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Gaudet MM, Kirchhoff T, Green T, Vijai J, Korn JM, Guiducci C et al. Common genetic variants and modification of penetrance of BRCA2-associated breast cancer. PLoS Genet 2010; 6: e1001183.

    PubMed  PubMed Central  Google Scholar 

  91. Eeles RA, Kote-Jarai Z, Giles GG, Olama AA, Guy M, Jugurnauth SK et al. Multiple newly identified loci associated with prostate cancer susceptibility. Nat Genet 2008; 40: 316–321.

    CAS  PubMed  Google Scholar 

  92. Chung S, Nakagawa H, Uemura M, Piao L, Ashikawa K, Hosono N et al. Association of a novel long non-coding RNA in 8q24 with prostate cancer susceptibility. Cancer Sci 2011; 102: 245–252.

    CAS  PubMed  Google Scholar 

  93. Tuupanen S, Turunen M, Lehtonen R, Hallikas O, Vanharanta S, Kivioja T et al. The common colorectal cancer predisposition SNP rs6983267 at chromosome 8q24 confers potential to enhanced Wnt signaling. Nat Genet 2009; 41: 885–890.

    CAS  PubMed  Google Scholar 

  94. Pomerantz MM, Ahmadiyeh N, Jia L, Herman P, Verzi MP, Doddapaneni H et al. The 8q24 cancer risk variant rs6983267 shows long-range interaction with MYC in colorectal cancer. Nat Genet 2009; 41: 882–884.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Ghoussaini M, Song H, Koessler T, Al Olama AA, Kote-Jarai Z, Driver KE et al. Multiple loci with different cancer specificities within the 8q24 gene desert. J Natl Cancer Inst 2008; 100: 962–966.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Bertucci F, Lagarde A, Ferrari A, Finetti P, Charafe-Jauffret E, Van Laere S et al. 8q24 Cancer risk allele associated with major metastatic risk in inflammatory breast cancer. PloS one 2012; 7: e37943.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Sur IK, Hallikas O, Vaharautio A, Yan J, Turunen M, Enge M et al. Mice lacking a Myc enhancer that includes human SNP rs6983267 are resistant to intestinal tumors. Science 2012; 338: 1360–1363.

    CAS  PubMed  Google Scholar 

  98. Cancer Genome Atlas N. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012; 487: 330–337.

    Google Scholar 

  99. Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-Andre V, Sigova AA et al. Super-enhancers in the control of cell identity and disease. Cell 2013; 155: 934–947.

    CAS  PubMed  Google Scholar 

  100. Kumar V, Westra HJ, Karjalainen J, Zhernakova DV, Esko T, Hrdlickova B et al. Human disease-associated genetic variation impacts large intergenic non-coding RNA expression. PLoS Genet 2013; 9: e1003201.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Prensner JR, Chen W, Iyer MK, Cao Q, Ma T, Han S et al. PCAT-1, a long noncoding RNA, regulates BRCA2 and controls homologous recombination in cancer. Cancer Res 2014; 74: 1651–1660.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 2010; 464: 1071–1076.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Gutschner T, Diederichs S . The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol 2012; 9: 703–719.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Yildirim E, Kirby JE, Brown DE, Mercier FE, Sadreyev RI, Scadden DT et al. Xist RNA is a potent suppressor of hematologic cancer in mice. Cell 2013; 152: 727–742.

    CAS  PubMed  Google Scholar 

  105. Ji P, Diederichs S, Wang W, Boing S, Metzger R, Schneider PM et al. MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 2003; 22: 8031–8041.

    PubMed  Google Scholar 

  106. Yang Z, Zhou L, Wu LM, Lai MC, Xie HY, Zhang F et al. Overexpression of long non-coding RNA HOTAIR predicts tumor recurrence in hepatocellular carcinoma patients following liver transplantation. Ann Surgical Oncol 2011; 18: 1243–1250.

    Google Scholar 

  107. Kogo R, Shimamura T, Mimori K, Kawahara K, Imoto S, Sudo T et al. Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res 2011; 71: 6320–6326.

    CAS  PubMed  Google Scholar 

  108. Niinuma T, Suzuki H, Nojima M, Nosho K, Yamamoto H, Takamaru H et al. Upregulation of miR-196a and HOTAIR drive malignant character in gastrointestinal stromal tumors. Cancer Res 2012; 72: 1126–1136.

    CAS  PubMed  Google Scholar 

  109. Kim K, Jutooru I, Chadalapaka G, Johnson G, Frank J, Burghardt R et al. HOTAIR is a negative prognostic factor and exhibits pro-oncogenic activity in pancreatic cancer. Oncogene 2013; 32: 1616–1625.

    CAS  PubMed  Google Scholar 

  110. Redis RS, Sieuwerts AM, Look MP, Tudoran O, Ivan C, Spizzo R et al. CCAT2, a novel long non-coding RNA in breast cancer: expression study and clinical correlations. Oncotarget 2013; 4: 1748–1762.

    PubMed  PubMed Central  Google Scholar 

  111. Du Z, Fei T, Verhaak RG, Su Z, Zhang Y, Brown M et al. Integrative genomic analyses reveal clinically relevant long noncoding RNAs in human cancer. Nat Struct Mol Biol 2013; 20: 908–913.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Ren S, Wang F, Shen J, Sun Y, Xu W, Lu J et al. Long non-coding RNA metastasis associated in lung adenocarcinoma transcript 1 derived miniRNA as a novel plasma-based biomarker for diagnosing prostate cancer. Eur J Cancer 2013; 49: 2949–2959.

    CAS  PubMed  Google Scholar 

  113. Rittenhouse H, Blase A, Shamel B, Schalken J, Groskopf J . The long and winding road to FDA approval of a novel prostate cancer test: our story. Clin Chem 2013; 59: 32–34.

    CAS  PubMed  Google Scholar 

  114. Wojcik SE, Rossi S, Shimizu M, Nicoloso MS, Cimmino A, Alder H et al. Non-codingRNA sequence variations in human chronic lymphocytic leukemia and colorectal cancer. Carcinogenesis 2010; 31: 208–215.

    CAS  PubMed  Google Scholar 

  115. Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 2010; 141: 129–141.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Martin L, Meier M, Lyons SM, Sit RV, Marzluff WF, Quake SR et al. Systematic reconstruction of RNA functional motifs with high-throughput microfluidics. Nat Methods 2012; 9: 1192–1194.

    CAS  PubMed  Google Scholar 

  117. Paige JS, Wu KY, Jaffrey SR . RNA mimics of green fluorescent protein. Science 2011; 333: 642–646.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Srikantan V, Zou Z, Petrovics G, Xu L, Augustus M, Davis L et al. PCGEM1, a prostate-specific gene, is overexpressed in prostate cancer. Proc Natl Acad Sci USA 2000; 97: 12216–12221.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Fu X, Ravindranath L, Tran N, Petrovics G, Srivastava S . Regulation of apoptosis by a prostate-specific and prostate cancer-associated noncoding gene, PCGEM1. DNA Cell Biol 2006; 25: 135–141.

    PubMed  Google Scholar 

  120. Xue Y, Wang M, Kang M, Wang Q, Wu B, Chu H et al. Association between lncrna PCGEM1 polymorphisms and prostate cancer risk. Prost Cancer Prost Dis 2013; 16: 139–144, S131.

    CAS  Google Scholar 

  121. Du Y, Kong G, You X, Zhang S, Zhang T, Gao Y et al. Elevation of highly up-regulated in liver cancer (HULC) by hepatitis B virus X protein promotes hepatoma cell proliferation via down-regulating p18. J Biol Chem 2012; 287: 26302–26311.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Tomlinson I, Webb E, Carvajal-Carmona L, Broderick P, Kemp Z, Spain S et al. A genome-wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21. Nat Genet 2007; 39: 984–988.

    CAS  PubMed  Google Scholar 

  123. Yeager M, Orr N, Hayes RB, Jacobs KB, Kraft P, Wacholder S et al. Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat Genet 2007; 39: 645–649.

    CAS  PubMed  Google Scholar 

  124. Chen D, Zhang Z, Mao C, Zhou Y, Yu L, Yin Y et al. ANRIL inhibits p15(INK4b) through the TGFbeta1 signaling pathway in human esophageal squamous cell carcinoma. Cell Immunol 2014; 289: 91–96.

    CAS  PubMed  Google Scholar 

  125. Gutschner T, Hammerle M, Eissmann M, Hsu J, Kim Y, Hung G et al. The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res 2013; 73: 1180–1189.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

HL is an Odyssey Fellow, and his work is supported in part by the Odyssey Program at The University of Texas MD Anderson Cancer Center. GAC is The Alan M. Gewirtz Leukemia & Lymphoma Society Scholar. Work in Dr Calin's laboratory is supported in part by the NIH/NCI grants 1UH2TR00943-01 and 1 R01 CA182905-01, the UT MD Anderson Cancer Center SPORE in Melanoma grant from NCI (P50 CA093459), Aim at Melanoma Foundation and the Miriam and Jim Mulva research funds, the Brain SPORE (2P50CA127001), the Center for radiation Oncology Research Project, the Center for Cancer Epigenetics Pilot project, a 2014 Knowledge GAP MDACC grant, a CLL Moonshot pilot project, the UT MD Anderson Cancer Center Duncan Family Institute for Cancer Prevention and Risk Assessment, a SINF grant in colon cancer, the Laura and John Arnold Foundation, the RGK Foundation and the Estate of C. G. Johnson, Jr. MP is supported by an Erwin-Schroedinger Scholarship of the Austrian Science Funds (project no. J3389-B23). IBN is a Fulbright Scholar at MD Anderson Cancer Center. FS was supported by NIH grants CA131301 and CA157749. We apologize to all colleagues whose work was not cited because of space restrictions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G A Calin.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ling, H., Vincent, K., Pichler, M. et al. Junk DNA and the long non-coding RNA twist in cancer genetics. Oncogene 34, 5003–5011 (2015). https://doi.org/10.1038/onc.2014.456

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.456

This article is cited by

Search

Quick links