Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The microRNA-182-PDK4 axis regulates lung tumorigenesis by modulating pyruvate dehydrogenase and lipogenesis

Subjects

Abstract

Reprogrammed metabolism is one of the hallmarks of cancer. The dysregulation of glycolysis in cancer has been heavily studied. However, it remains largely unclear how other metabolic processes are regulated in cancer cells. Here we show that microRNA-182 (miR-182) suppresses pyruvate dehydrogenase (PDH) kinase 4 (PDK4) and promotes lung tumorigenesis. miR-182 is dysregulated and inversely correlated with PDK4 in human lung adenocarcinomas. The miR-182-PDK4 axis regulates lung cancer cell growth by modulating the activity of PDH, the gatekeeping enzyme of pyruvate flux into acetyl-CoA, and subsequently de novo lipogenesis of cancer cells. Suppression of lipogenesis by silencing ATP citrate lyase (ACLY) and fatty acid synthase (FASN) or by chemical inhibitors diminishes the effects of miR-182-PDK4 in tumor growth. Alteration of de novo lipogenesis also affects reactive oxygen species (ROS) production and the downstream JNK signaling pathway. Hence, our work suggests that the miR-182-PDK4 axis is a crucial regulator of cancer cell metabolism and a potential target for antitumor therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  PubMed  Google Scholar 

  2. Warburg O . On the origin of cancer cells. Science 1956; 123: 309–314.

    Article  CAS  PubMed  Google Scholar 

  3. Vander Heiden MG, Cantley LC, Thompson CB . Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009; 324: 1029–1033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Levine AJ, Puzio-Kuter AM . The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science 2010; 330: 1340–1344.

    Article  CAS  PubMed  Google Scholar 

  5. Dupuy F, Tabaries S, Andrzejewski S, Dong Z, Blagih J, Annis MG et al. PDK1-dependent metabolic reprogramming dictates metastatic potential in breast cancer. Cell Metab 2015; 22: 577–589.

    Article  CAS  PubMed  Google Scholar 

  6. Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J, Hiller K et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 2012; 481: 380–384.

    Article  CAS  Google Scholar 

  7. Swinnen JV, Brusselmans K, Verhoeven G . Increased lipogenesis in cancer cells: new players, novel targets. Curr Opin Clin Nutr Metab Care 2006; 9: 358–365.

    Article  CAS  PubMed  Google Scholar 

  8. Willert K, Brown JD, Danenberg E, Duncan AW, Weissman IL, Reya T et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 2003; 423: 448–452.

    Article  CAS  PubMed  Google Scholar 

  9. Pepinsky RB, Zeng C, Wen D, Rayhorn P, Baker DP, Williams KP et al. Identification of a palmitic acid-modified form of human Sonic hedgehog. J Biol Chem 1998; 273: 14037–14045.

    Article  CAS  PubMed  Google Scholar 

  10. Nusse R . Wnts and Hedgehogs: lipid-modified proteins and similarities in signaling mechanisms at the cell surface. Development 2003; 130: 5297–5305.

    Article  CAS  PubMed  Google Scholar 

  11. Sabine JR, Abraham S, Chaikoff IL . Control of lipid metabolism in hepatomas: insensitivity of rate of fatty acid and cholesterol synthesis by mouse hepatoma BW7756 to fasting and to feedback control. Cancer Res 1967; 27: 793–799.

    CAS  PubMed  Google Scholar 

  12. Ookhtens M, Kannan R, Lyon I, Baker N . Liver and adipose tissue contributions to newly formed fatty acids in an ascites tumor. Am J Physiol 1984; 247: R146–R153.

    CAS  PubMed  Google Scholar 

  13. Kuhajda FP . Fatty-acid synthase and human cancer: new perspectives on its role in tumor biology. Nutrition 2000; 16: 202–208.

    Article  CAS  PubMed  Google Scholar 

  14. Singh PK, Mehla K, Hollingsworth MA, Johnson KR . Regulation of aerobic glycolysis by microRNAs in cancer. Mol Cell Pharmacol 2011; 3: 125–134.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen B, Li H, Zeng X, Yang P, Liu X, Zhao X et al. Roles of microRNA on cancer cell metabolism. J Transl Med 2012; 10: 228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fei X, Qi M, Wu B, Song Y, Wang Y, Li T . MicroRNA-195-5p suppresses glucose uptake and proliferation of human bladder cancer T24 cells by regulating GLUT3 expression. FEBS Lett 2012; 586: 392–397.

    Article  CAS  PubMed  Google Scholar 

  17. Horie T, Ono K, Nishi H, Iwanaga Y, Nagao K, Kinoshita M et al. MicroRNA-133 regulates the expression of GLUT4 by targeting KLF15 and is involved in metabolic control in cardiac myocytes. Biochem Biophys Res Commun 2009; 389: 315–320.

    Article  CAS  PubMed  Google Scholar 

  18. Guo W, Qiu Z, Wang Z, Wang Q, Tan N, Chen T et al. MiR-199a-5p is negatively associated with malignancies and regulates glycolysis and lactate production by targeting hexokinase 2 in liver cancer. Hepatology 2015; 62: 1132–1144.

    Article  CAS  PubMed  Google Scholar 

  19. Kim HR, Roe JS, Lee JE, Cho EJ, Youn HD . p53 regulates glucose metabolism by miR-34a. Biochem Biophys Res Commun 2013; 437: 225–231.

    Article  CAS  PubMed  Google Scholar 

  20. Park YY, Kim SB, Han HD, Sohn BH, Kim JH, Liang J et al. Tat-activating regulatory DNA-binding protein regulates glycolysis in hepatocellular carcinoma by regulating the platelet isoform of phosphofructokinase through microRNA 520. Hepatology 2013; 58: 182–191.

    Article  CAS  PubMed  Google Scholar 

  21. Liu AM, Xu Z, Shek FH, Wong KF, Lee NP, Poon RT et al. miR-122 targets pyruvate kinase M2 and affects metabolism of hepatocellular carcinoma. PLoS One 2014; 9: e86872.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wang J, Wang H, Liu A, Fang C, Hao J, Wang Z . Lactate dehydrogenase A negatively regulated by miRNAs promotes aerobic glycolysis and is increased in colorectal cancer. Oncotarget 2015; 6: 19456–19468.

    PubMed  PubMed Central  Google Scholar 

  23. Fang R, Xiao T, Fang Z, Sun Y, Li F, Gao Y et al. MicroRNA-143 (miR-143) regulates cancer glycolysis via targeting hexokinase 2 gene. J Biol Chem 2012; 287: 23227–23235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fong MY, Zhou W, Liu L, Alontaga AY, Chandra M, Ashby J et al. Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat Cell Biol 2015; 17: 183–194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fang Z, Tian W, Ji H . A network-based gene-weighting approach for pathway analysis. Cell Res 2012; 22: 565–580.

    Article  CAS  PubMed  Google Scholar 

  26. Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 2006; 9: 189–198.

    Article  CAS  PubMed  Google Scholar 

  27. Landi MT, Dracheva T, Rotunno M, Figueroa JD, Liu H, Dasgupta A et al. Gene expression signature of cigarette smoking and its role in lung adenocarcinoma development and survival. PLoS One 2008; 3: e1651.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Su LJ, Chang CW, Wu YC, Chen KC, Lin CJ, Liang SC et al. Selection of DDX5 as a novel internal control for Q-RT-PCR from microarray data using a block bootstrap re-sampling scheme. BMC Genomics 2007; 8: 140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tan X, Qin W, Zhang L, Hang J, Li B, Zhang C et al. A 5-microRNA signature for lung squamous cell carcinoma diagnosis and hsa-miR-31 for prognosis. Clin Cancer Res 2011; 17: 6802–6811.

    Article  CAS  PubMed  Google Scholar 

  30. Seo JS, Ju YS, Lee WC, Shin JY, Lee JK, Bleazard T et al. The transcriptional landscape and mutational profile of lung adenocarcinoma. Genome Res 2012; 22: 2109–2119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Segura MF, Hanniford D, Menendez S, Reavie L, Zou X, Alvarez-Diaz S et al. Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor. Proc Natl Acad Sci USA 2009; 106: 1814–1819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang WB, Chen PH, Hsu Ts, Fu TF, Su WC, Liaw H et al. Sp1-mediated microRNA-182 expression regulates lung cancer progression. Oncotarget 2014; 5: 740–753.

    PubMed  PubMed Central  Google Scholar 

  33. Rardin MJ, Wiley SE, Naviaux RK, Murphy AN, Dixon JE . Monitoring phosphorylation of the pyruvate dehydrogenase complex. Anal Biochem 2009; 389: 157–164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Grassian AR, Metallo CM, Coloff JL, Stephanopoulos G, Brugge JS . Erk regulation of pyruvate dehydrogenase flux through PDK4 modulates cell proliferation. Genes Dev 2011; 25: 1716–1733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Laber B, Amrhein N . Metabolism of 1-aminoethylphosphinate generates acetylphosphinate, a potent inhibitor of pyruvate dehydrogenase. Biochem J 1987; 248: 351–358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cairns RA, Harris IS, Mak TW . Regulation of cancer cell metabolism. Nat Rev Cancer 2011; 11: 85–95.

    Article  CAS  PubMed  Google Scholar 

  37. Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M . Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 2005; 120: 649–661.

    Article  CAS  PubMed  Google Scholar 

  38. Wei Q, Lei R, Hu G . Roles of miR-182 in sensory organ development and cancer. Thorac cancer 2015; 6: 2–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hanke M, Hoefig K, Merz H, Feller AC, Kausch I, Jocham D et al. A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol Oncol 2010; 28: 655–661.

    Article  CAS  PubMed  Google Scholar 

  40. Schaefer A, Jung M, Mollenkopf HJ, Wagner I, Stephan C, Jentzmik F et al. Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int J Cancer 2010; 126: 1166–1176.

    CAS  PubMed  Google Scholar 

  41. Wang PY, Gong HT, Li BF, Lv CL, Wang HT, Zhou HH et al. Higher expression of circulating miR-182 as a novel biomarker for breast cancer. Oncol Lett 2013; 6: 1681–1686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu H, Du L, Wen Z, Yang Y, Li J, Wang L et al. Up-regulation of miR-182 expression in colorectal cancer tissues and its prognostic value. Int J Colorectal Dis 2013; 28: 697–703.

    Article  PubMed  Google Scholar 

  43. Chiang CH, Hou MF, Hung WC . Up-regulation of miR-182 by beta-catenin in breast cancer increases tumorigenicity and invasiveness by targeting the matrix metalloproteinase inhibitor RECK. Biochim Biophys Acta 2013; 1830: 3067–3076.

    Article  CAS  PubMed  Google Scholar 

  44. Lei R, Tang J, Zhuang X, Deng R, Li G, Yu J et al. Suppression of MIM by microRNA-182 activates RhoA and promotes breast cancer metastasis. Oncogene 2014; 33: 1287–1296.

    Article  CAS  PubMed  Google Scholar 

  45. Guttilla IK, White BA . Coordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast cancer cells. J Biol Chem 2009; 284: 23204–23216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhu H, Fang J, Zhang J, Zhao Z, Liu L, Wang J et al. miR-182 targets CHL1 and controls tumor growth and invasion in papillary thyroid carcinoma. Biochem Biophys Res Commun 2014; 450: 857–862.

    Article  CAS  PubMed  Google Scholar 

  47. Qin J, Luo M, Qian H, Chen W . Upregulated miR-182 increases drug resistance in cisplatin-treated HCC cell by regulating TP53INP1. Gene 2014; 538: 342–347.

    Article  CAS  PubMed  Google Scholar 

  48. Sun J, Ji J, Huo G, Song Q, Zhang X . miR-182 induces cervical cancer cell apoptosis through inhibiting the expression of DNMT3a. Int J Clin Exp Pathol 2015; 8: 4755–4763.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Sun Y, Fang R, Li C, Li L, Li F, Ye X et al. Hsa-mir-182 suppresses lung tumorigenesis through down regulation of RGS17 expression in vitro. Biochem Biophys Res Commun 2010; 396: 501–507.

    Article  CAS  PubMed  Google Scholar 

  50. Zhang S, Hulver MW, McMillan RP, Cline MA, Gilbert ER . The pivotal role of pyruvate dehydrogenase kinases in metabolic flexibility. Nutr Metab 2014; 11: 10.

    Article  Google Scholar 

  51. Ma X, Li C, Sun L, Huang D, Li T, He X et al. Lin28/let-7 axis regulates aerobic glycolysis and cancer progression via PDK1. Nat Commun 2014; 5: 5212.

    Article  CAS  PubMed  Google Scholar 

  52. Kim JW, Tchernyshyov I, Semenza GL, Dang CV . HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 2006; 3: 177–185.

    Article  PubMed  Google Scholar 

  53. Korotchkina LG, Patel MS . Site specificity of four pyruvate dehydrogenase kinase isoenzymes toward the three phosphorylation sites of human pyruvate dehydrogenase. J Biol Chem 2001; 276: 37223–37229.

    Article  CAS  PubMed  Google Scholar 

  54. Gudi R, Bowker-Kinley MM, Kedishvili NY, Zhao Y, Popov KM . Diversity of the pyruvate dehydrogenase kinase gene family in humans. J Biol Chem 1995; 270: 28989–28994.

    Article  CAS  PubMed  Google Scholar 

  55. Sun W, Xie Z, Liu Y, Zhao D, Wu Z, Zhang D et al. JX06 selectively inhibits pyruvate dehydrogenase kinase pdk1 by a covalent cysteine modification. Cancer Res 2015; 75: 4923–4936.

    Article  CAS  PubMed  Google Scholar 

  56. Sutendra G, Michelakis ED . Pyruvate dehydrogenase kinase as a novel therapeutic target in oncology. Front Oncol 2013; 3: 38.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kroemer G, Pouyssegur J . Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell 2008; 13: 472–482.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Weihong Sun at the Tissue Bank of the Institute of Health Sciences for technical support. The study was funded by grants from the Ministry of Science and Technology of China (2011CB510105, 2012ZX09506-001-005 and 2013CB910904), National Natural Science Foundation of China (81430070, 81222032 and 31371409), Chinese Academy of Sciences (XDA01040402) and Science and Technology Commission of Shanghai Municipality (14431900800).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Q Wei or G Hu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Li, M., Hu, J. et al. The microRNA-182-PDK4 axis regulates lung tumorigenesis by modulating pyruvate dehydrogenase and lipogenesis. Oncogene 36, 989–998 (2017). https://doi.org/10.1038/onc.2016.265

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.265

This article is cited by

Search

Quick links