Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

p53 binds the mdmx mRNA and controls its translation

Abstract

MDMX and MDM2 are two nonredundant essential regulators of p53 tumor suppressor activity. MDM2 controls p53 expression levels, whereas MDMX is predominantly a negative regulator of p53 trans-activity. The feedback loops between MDM2 and p53 are well studied and involve both negative and positive regulation on transcriptional, translational and post-translational levels but little is known on the regulatory pathways between p53 and MDMX. Here we show that overexpression of p53 suppresses mdmx mRNA translation in vitro and in cell-based assays. The core domain of p53 binds the 5′ untranslated region (UTR) of the mdmx mRNA in a zinc-dependent manner that together with a trans-suppression domain located in p53 N-terminus controls MDMX synthesis. This interaction can be visualized in the nuclear and cytoplasmic compartment. Fusion of the mdmx 5′UTR to the ovalbumin open reading frame leads to suppression of ovalbumin synthesis. Interestingly, the transcription inactive p53 mutant R273H has a different RNA-binding profile compared with the wild-type p53 and differentiates the synthesis of MDMX isoforms. This study describes p53 as a trans-suppressor of the mdmx mRNA and adds a further level to the intricate feedback system that exist between p53 and its key regulatory factors and emphasizes the important role of mRNA translation control in regulating protein expression in the p53 pathway.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. de Oca Luna RM, Wagner DS, Lozano G . Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 1995; 378: 203–206.

    Article  CAS  Google Scholar 

  2. Jones SN, Roe AE, Donehower LA, Bradley A . Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 1995; 378: 206–208.

    Article  CAS  PubMed  Google Scholar 

  3. Parant J, Chavez-Reyes A, Little NA, Yan W, Reinke V, Jochemsen AG et al. Rescue of embryonic lethality in Mdm4-null mice by loss of Trp53 suggests a nonoverlapping pathway with MDM2 to regulate p53. Nat Genet 2001; 29: 92–95.

    Article  CAS  PubMed  Google Scholar 

  4. Wade M, Wong ET, Tang M, Stommel JM, Wahl GM . Hdmx modulates the outcome of p53 activation in human tumor cells. J Biol Chem 2006; 281: 33036–33044.

    Article  CAS  PubMed  Google Scholar 

  5. Gu J, Kawai H, Nie L, Kitao H, Wiederschain D, Jochemsen AG et al. Mutual dependence of MDM2 and MDMX in their functional inactivation of p53. J Biol Chem 2002; 277: 19251–19254.

    Article  CAS  PubMed  Google Scholar 

  6. Gajjar M, Candeias MM, Malbert-Colas L, Mazars A, Fujita J, Olivares-Illana V et al. The p53 mRNA-Mdm2 interaction controls Mdm2 nuclear trafficking and is required for p53 activation following DNA damage. Cancer Cell 2012; 21: 25–35.

    Article  CAS  PubMed  Google Scholar 

  7. Malbert-Colas L, Ponnuswamy A, Olivares-Illana V, Tournillon AS, Naski N, Fahraeus R . HDMX folds the nascent p53 mRNA following activation by the ATM kinase. Mol Cell 2014; 54: 500–511.

    Article  CAS  PubMed  Google Scholar 

  8. Naski N, Gajjar M, Bourougaa K, Malbert-Colas L, Fahraeus R, Candeias MM . The p53 mRNA-Mdm2 interaction. Cell Cycle 2009; 8: 31–34.

    Article  CAS  PubMed  Google Scholar 

  9. Pant V, Xiong S, Jackson JG, Post SM, Abbas HA, Quintas-Cardama A et al. The p53-Mdm2 feedback loop protects against DNA damage by inhibiting p53 activity but is dispensable for p53 stability, development, and longevity. Genes Dev 2013; 27: 1857–1867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Perry ME, Mendrysa SM, Saucedo LJ, Tannous P, Holubar M . p76(MDM2) inhibits the ability of p90(MDM2) to destabilize p53. J Biol Chem 2000; 275: 5733–5738.

    Article  CAS  PubMed  Google Scholar 

  11. Saucedo LJ, Myers CD, Perry ME . Multiple murine double minute gene 2 MDM2) proteins are induced by ultraviolet light. J Biol Chem 1999; 274: 8161–8168.

    Article  CAS  PubMed  Google Scholar 

  12. Tournillon AS, Lopez I, Malbert-Colas L, Naski N, Olivares-Illana V, Fahraeus R . The alternative translated MDMX(p60) isoform regulates MDM2 activity. Cell Cycle 2015; 14: 449–458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Phillips A, Teunisse A, Lam S, Lodder K, Darley M, Emaduddin M et al. HDMX-L is expressed from a functional p53-responsive promoter in the first intron of the HDMX gene and participates in an autoregulatory feedback loop to control p53 activity. J Biol Chem 2010; 285: 29111–29127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Oliner JD, Kinzler KW, Meltzer PS, George DL, Vogelstein B . Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 1992; 358: 80–83.

    Article  CAS  PubMed  Google Scholar 

  15. Gembarska A, Luciani F, Fedele C, Russell EA, Dewaele M, Villar S et al. MDM4 is a key therapeutic target in cutaneous melanoma. Nat Med 2012; 18: 1239–1247.

    Article  CAS  PubMed  Google Scholar 

  16. Oren M, Rotter V . Mutant p53 gain-of-function in cancer. Cold Spring Harb Perspect Biol 2010; 2: a001107.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Riley KJ, Maher LJ 3rd . p53 RNA interactions: new clues in an old mystery. RNA 2007; 13: 1825–1833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Galy B, Creancier L, Prado-Lourenco L, Prats AC, Prats H . p53 directs conformational change and translation initiation blockade of human fibroblast growth factor 2 mRNA. Oncogene 2001; 20: 4613–4620.

    Article  CAS  PubMed  Google Scholar 

  19. Galy B, Creancier L, Zanibellato C, Prats AC, Prats H . Tumour suppressor p53 inhibits human fibroblast growth factor 2 expression by a post-transcriptional mechanism. Oncogene 2001; 20: 1669–1677.

    Article  CAS  PubMed  Google Scholar 

  20. Miller SJ, Suthiphongchai T, Zambetti GP, Ewen ME . p53 binds selectively to the 5' untranslated region of cdk4, an RNA element necessary and sufficient for transforming growth factor beta- and p53-mediated translational inhibition of cdk4. Mol Cell Biol 2000; 20: 8420–8431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mosner J, Mummenbrauer T, Bauer C, Sczakiel G, Grosse F, Deppert W . Negative feedback regulation of wild-type p53 biosynthesis. EMBO J 1995; 14: 4442–4449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mlynarczyk C, Fahraeus R . Endoplasmic reticulum stress sensitizes cells to DNA damage-induced apoptosis through p53-dependent suppression of p21(CDKN1A). Nat Commun 2014; 5: 5067.

    Article  CAS  PubMed  Google Scholar 

  23. Lopez I, Tournillon AS, Nylander K, Fahraeus R . p53-mediated control of gene expression via mRNA translation during endoplasmic reticulum stress. Cell Cycle 2015; 14: 3373–3378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cassiday LA, Maher LJ 3rd . Having it both ways: transcription factors that bind DNA and RNA. Nucleic Acids Res 2002; 30: 4118–4126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hudson WH, Ortlund EA . The structure, function and evolution of proteins that bind DNA and RNA. Nat Rev Mol Cell Biol 2014; 15: 749–760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Suswam EA, Li YY, Mahtani H, King PH . Novel DNA-binding properties of the RNA-binding protein TIAR. Nucleic Acids Res 2005; 33: 4507–4518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Danovi D, Meulmeester E, Pasini D, Migliorini D, Capra M, Frenk R et al. Amplification of Mdmx or Mdm4) directly contributes to tumor formation by inhibiting p53 tumor suppressor activity. Mol Cell Biol 2004; 24: 5835–5843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mandke P, Wyatt N, Fraser J, Bates B, Berberich SJ, Markey MP . MicroRNA-34a modulates MDM4 expression via a target site in the open reading frame. PLoS One 2012; 7: e42034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pavletich NP, Chambers KA, Pabo CO . The DNA-binding domain of p53 contains the four conserved regions and the major mutation hot spots. Genes Dev 1993; 7: 2556–2564.

    Article  CAS  PubMed  Google Scholar 

  30. Kitayner M, Rozenberg H, Kessler N, Rabinovich D, Shaulov L, Haran TE et al. Structural basis of DNA recognition by p53 tetramers. Mol Cell 2006; 22: 741–753.

    Article  CAS  PubMed  Google Scholar 

  31. Grover R, Candeias MM, Fahraeus R, Das S . p53 and little brother p53/47: linking IRES activities with protein functions. Oncogene 2009; 28: 2766–2772.

    Article  CAS  PubMed  Google Scholar 

  32. Scrable H, Sasaki T, Maier B . DeltaNp53 or p44: priming the p53 pump. Int J Biochem Cell Biol 2005; 37: 913–919.

    Article  CAS  PubMed  Google Scholar 

  33. Yin Y, Stephen CW, Luciani MG, Fahraeus R . p53 Stability and activity is regulated by Mdm2-mediated induction of alternative p53 translation products. Nat Cell Biol 2002; 4: 462–467.

    Article  CAS  PubMed  Google Scholar 

  34. Kaustov L, Yi GS, Ayed A, Bochkareva E, Bochkarev A, Arrowsmith CH . p53 transcriptional activation domain: a molecular chameleon? Cell Cycle 2006; 5: 489–494.

    Article  CAS  PubMed  Google Scholar 

  35. Vise PD, Baral B, Latos AJ, Daughdrill GW . NMR chemical shift and relaxation measurements provide evidence for the coupled folding and binding of the p53 transactivation domain. Nucleic Acids Res 2005; 33: 2061–2077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lunde BM, Moore C, Varani G . RNA-binding proteins: modular design for efficient function. Nat Rev Mol Cell Biol 2007; 8: 479–490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Riley KJ, Cassiday LA, Kumar A, Maher LJ 3rd . Recognition of RNA by the p53 tumor suppressor protein in the yeast three-hybrid system. RNA 2006; 12: 620–630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by la Ligue Contre le Cancer and Inserm. A-ST is supported by PACRI. IL is supported by AXA Research Fund and Fondation pour la Recherche Médicale (FDT20150532276). BV was supported by GACR 16-07321S and BV and RF were supported by MEYS-NPS I-L01413 and MH CZ-DRO (MMCI, 00209805). We thank the IUH platform for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Fåhraeus.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tournillon, AS., López, I., Malbert-Colas, L. et al. p53 binds the mdmx mRNA and controls its translation. Oncogene 36, 723–730 (2017). https://doi.org/10.1038/onc.2016.236

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.236

This article is cited by

Search

Quick links