Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Stathmin mediates neuroblastoma metastasis in a tubulin-independent manner via RhoA/ROCK signaling and enhanced transendothelial migration

Abstract

Neuroblastoma, the most common solid tumor of young children, frequently presents with aggressive metastatic disease and for these children the 5-year survival rates are dismal. Metastasis, the movement of cancer cells from one site to another, involves remodeling of the cytoskeleton including altered microtubule dynamics. The microtubule-destabilizing protein, stathmin, has recently been shown to mediate neuroblastoma metastasis although precise functions remain poorly defined. In this study we investigated stathmin’s contribution to the metastatic process and potential mechanism(s) by which it exerts these effects. Stathmin suppression significantly reduced neuroblastoma cell invasion of 3D tumor spheroids into an extracellular matrix. Moreover, inhibiting stathmin expression significantly reduced transendothelial migration in two different neuroblastoma cell lines in vitro. Inhibition of ROCK, a key regulator of cell migration, in neuroblastoma cells highlighted that stathmin regulates transendothelial migration through ROCK signaling. Reduced stathmin expression in neuroblastoma cells significantly increased the activation of the RhoA small GTPase. Notably, re-expression of either wild type or a phospho-mimetic stathmin mutant (4E) made defective in tubulin binding returned cell migration and transendothelial migration back to control levels, indicating that stathmin may influence these processes in neuroblastoma cells independent of tubulin binding. Finally, stathmin suppression in neuroblastoma cells significantly reduced whole body, lung, kidney and liver metastases in an experimental metastases mouse model. In conclusion, stathmin suppression interferes with the metastatic process via RhoA/ROCK signaling in neuroblastoma cells. These findings highlight the importance of stathmin to the metastatic process and its potential as a therapeutic target for the treatment of neuroblastoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Gutierrez JC, Fischer AC, Sola JE, Perez EA, Koniaris LG . Markedly improving survival of neuroblastoma: a 30-year analysis of 1,646 patients. Pediatr Surg Int 2007; 23: 637–646.

    Article  PubMed  Google Scholar 

  2. Maris JM . Recent advances in neuroblastoma. N Engl J Med 362: 2202–2211.

    Article  CAS  PubMed  Google Scholar 

  3. Steeg PS . Tumor metastasis: mechanistic insights and clinical challenges. Nat Med 2006; 12: 895–904.

    Article  CAS  PubMed  Google Scholar 

  4. Ara T, DeClerck YA . Mechanisms of invasion and metastasis in human neuroblastoma. Cancer Metastasis Rev 2006; 25: 645–657.

    Article  PubMed  Google Scholar 

  5. Hall A . Rho family GTPases. Biochem Soc Trans 2012; 40: 1378–1382.

    Article  CAS  PubMed  Google Scholar 

  6. Fife CM, McCarroll JA, Kavallaris M . Movers and shakers: cell cytoskeleton in cancer metastasis. Br J Pharmacol 2014; 171: 5507–5523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Feuerstein N, Cooper HL . Rapid protein phosphorylation induced by phorbol ester in HL-60 cells. Unique alkali-stable phosphorylation of a 17,000-dalton protein detected by two-dimensional gel electrophoresis. J Biol Chem 1983; 258: 10786–10793.

    CAS  PubMed  Google Scholar 

  8. Pasmantier R, Danoff A, Fleischer N, Schubart UK . P19, a hormonally regulated phosphoprotein of peptide hormone-producing cells: secretagogue-induced phosphorylation in AtT-20 mouse pituitary tumor cells and in rat and hamster insulinoma cells. Endocrinology 1986; 119: 1229–1238.

    Article  CAS  PubMed  Google Scholar 

  9. Hanash SM, Strahler JR, Kuick R, Chu EH, Nichols D . Identification of a polypeptide associated with the malignant phenotype in acute leukemia. J Biol Chem 1988; 263: 12813–12815.

    CAS  PubMed  Google Scholar 

  10. Schubart UK, Xu J, Fan W, Cheng G, Goldstein H, Alpini G et al. Widespread differentiation stage-specific expression of the gene encoding phosphoprotein p19 (metablastin) in mammalian cells. Differentiation 1992; 51: 21–32.

    Article  CAS  PubMed  Google Scholar 

  11. Koppel J, Boutterin MC, Doye V, Peyro-Saint-Paul H, Sobel A . Developmental tissue expression and phylogenetic conservation of stathmin, a phosphoprotein associated with cell regulations. J Biol Chem 1990; 265: 3703–3707.

    CAS  PubMed  Google Scholar 

  12. Curmi PA, Gavet O, Charbaut E, Ozon S, Lachkar-Colmerauer S, Manceau V et al. Stathmin and its phosphoprotein family: general properties, biochemical and functional interaction with tubulin. Cell Struct Funct 1999; 24: 345–357.

    Article  CAS  PubMed  Google Scholar 

  13. Chneiweiss H, Beretta L, Cordier J, Boutterin MC, Glowinski J, Sobel A . Stathmin is a major phosphoprotein and cyclic AMP-dependent protein kinase substrate in mouse brain neurons but not in astrocytes in culture: regulation during ontogenesis. J Neurochem 1989; 53: 856–863.

    Article  CAS  PubMed  Google Scholar 

  14. Bieche I, Maucuer A, Laurendeau I, Lachkar S, Spano AJ, Frankfurter A et al. Expression of stathmin family genes in human tissues: non-neural-restricted expression for SCLIP. Genomics 2003; 81: 400–410.

    Article  CAS  PubMed  Google Scholar 

  15. Sobel A, Boutterin MC, Beretta L, Chneiweiss H, Doye V, Peyro-Saint-Paul H . Intracellular substrates for extracellular signaling. Characterization of a ubiquitous, neuron-enriched phosphoprotein (stathmin). J Biol Chem 1989; 264: 3765–3772.

    CAS  PubMed  Google Scholar 

  16. Jin K, Mao XO, Cottrell B, Schilling B, Xie L, Row RH et al. Proteomic and immunochemical characterization of a role for stathmin in adult neurogenesis. FASEB J 2004; 18: 287–299.

    Article  CAS  PubMed  Google Scholar 

  17. Giampietro C, Luzzati F, Gambarotta G, Giacobini P, Boda E, Fasolo A et al. Stathmin expression modulates migratory properties of GN-11 neurons in vitro. Endocrinology 2005; 146: 1825–1834.

    Article  CAS  PubMed  Google Scholar 

  18. Delaloy C, Liu L, Lee JA, Su H, Shen F, Yang GY et al. MicroRNA-9 coordinates proliferation and migration of human embryonic stem cell-derived neural progenitors. Cell Stem Cell 2010; 6: 323–335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Belletti B, Baldassarre G . Stathmin: a protein with many tasks. New biomarker and potential target in cancer. Expert Opin Ther Targets 2011; 15: 1249–1266.

    Article  CAS  PubMed  Google Scholar 

  20. Steinmetz MO . Structure and thermodynamics of the tubulin-stathmin interaction. J Struct Biol 2007; 158: 137–147.

    Article  CAS  PubMed  Google Scholar 

  21. Beretta L, Dobransky T, Sobel A . Multiple phosphorylation of stathmin. Identification of four sites phosphorylated in intact cells and in vitro by cyclic AMP-dependent protein kinase and p34cdc2. J Biol Chem 1993; 268: 20076–20084.

    CAS  PubMed  Google Scholar 

  22. Budde PP, Kumagai A, Dunphy WG, Heald R . Regulation of Op18 during spindle assembly in Xenopus egg extracts. J Cell Biol 2001; 153: 149–158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Baldassarre G, Belletti B, Nicoloso MS, Schiappacassi M, Vecchione A, Spessotto P et al. p27(Kip1)-stathmin interaction influences sarcoma cell migration and invasion. Cancer Cell 2005; 7: 51–63.

    Article  CAS  PubMed  Google Scholar 

  24. Ozon S, Guichet A, Gavet O, Roth S, Sobel A . Drosophila stathmin: a microtubule-destabilizing factor involved in nervous system formation. Mol Biol Cell 2002; 13: 698–710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mistry SJ, Bank A, Atweh GF . Synergistic antiangiogenic effects of stathmin inhibition and taxol exposure. Mol Cancer Res 2007; 5: 773–782.

    Article  CAS  PubMed  Google Scholar 

  26. Belletti B, Nicoloso MS, Schiappacassi M, Berton S, Lovat F, Wolf K et al. Stathmin activity influences sarcoma cell shape, motility, and metastatic potential. Mol Biol Cell 2008; 19: 2003–2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hsieh SY, Huang SF, Yu MC, Yeh TS, Chen TC, Lin YJ et al. Stathmin1 overexpression associated with polyploidy, tumor-cell invasion, early recurrence, and poor prognosis in human hepatoma. Mol Carcinog 2010; 49: 476–487.

    CAS  PubMed  Google Scholar 

  28. Jeon TY, Han ME, Lee YW, Lee YS, Kim GH, Song GA et al. Overexpression of stathmin1 in the diffuse type of gastric cancer and its roles in proliferation and migration of gastric cancer cells. Br J Cancer 2010; 102: 710–718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Saal LH, Johansson P, Holm K, Gruvberger-Saal SK, She QB, Maurer M et al. Poor prognosis in carcinoma is associated with a gene expression signature of aberrant PTEN tumor suppressor pathway activity. Proc Natl Acad Sci USA 2007; 104: 7564–7569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Trovik J, Wik E, Stefansson IM, Marcickiewicz J, Tingulstad S, Staff AC et al. Stathmin overexpression identifies high-risk patients and lymph node metastasis in endometrial cancer. Clin Cancer Res 2011; 17: 3368–3377.

    Article  CAS  PubMed  Google Scholar 

  31. Singer S, Malz M, Herpel E, Warth A, Bissinger M, Keith M et al. Coordinated expression of stathmin family members by far upstream sequence element-binding protein-1 increases motility in non-small cell lung cancer. Cancer Res 2009; 69: 2234–2243.

    Article  CAS  PubMed  Google Scholar 

  32. Sadow PM, Rumilla KM, Erickson LA, Lloyd RV . Stathmin expression in pheochromocytomas, paragangliomas, and in other endocrine tumors. Endocr Pathol 2008; 19: 97–103.

    Article  CAS  PubMed  Google Scholar 

  33. Hailat N, Strahler J, Melhem R, Zhu XX, Brodeur G, Seeger RC et al. N-myc gene amplification in neuroblastoma is associated with altered phosphorylation of a proliferation related polypeptide (Op18). Oncogene 1990; 5: 1615–1618.

    CAS  PubMed  Google Scholar 

  34. Byrne FL, Yang L, Phillips PA, Hansford LM, Fletcher JI, Ormandy CJ et al. RNAi-mediated stathmin suppression reduces lung metastasis in an orthotopic neuroblastoma mouse model. Oncogene 2014; 33: 882–890.

    Article  CAS  PubMed  Google Scholar 

  35. Vinci M, Gowan S, Boxall F, Patterson L, Zimmermann M, Court W et al. Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation. BMC Biol 2012; 10: 29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Belletti B, Pellizzari I, Berton S, Fabris L, Wolf K, Lovat F et al. p27kip1 controls cell morphology and motility by regulating microtubule-dependent lipid raft recycling. Mol Cell Biol 2010; 30: 2229–2240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ng DC, Lin BH, Lim CP, Huang G, Zhang T, Poli V et al. Stat3 regulates microtubules by antagonizing the depolymerization activity of stathmin. J Cell Biol 2006; 172: 245–257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Verma NK, Dourlat J, Davies AM, Long A, Liu WQ, Garbay C et al. STAT3-stathmin interactions control microtubule dynamics in migrating T-cells. J Biol Chem 2009; 284: 12349–12362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Amayed P, Pantaloni D, Carlier MF . The effect of stathmin phosphorylation on microtubule assembly depends on tubulin critical concentration. J Biol Chem 2002; 277: 22718–22724.

    Article  CAS  PubMed  Google Scholar 

  40. Niethammer P, Bastiaens P, Karsenti E . Stathmin-tubulin interaction gradients in motile and mitotic cells. Science 2004; 303: 1862–1866.

    Article  CAS  PubMed  Google Scholar 

  41. Van Sluis GL, Niers TM, Esmon CT, Tigchelaar W, Richel DJ, Buller HR et al. Endogenous activated protein C limits cancer cell extravasation through sphingosine-1-phosphate receptor 1-mediated vascular endothelial barrier enhancement. Blood 2009; 114: 1968–1973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Maris JM, Hogarty MD, Bagatell R, Cohn SL . Neuroblastoma. Lancet 2007; 369: 2106–2120.

    Article  CAS  PubMed  Google Scholar 

  43. Etienne-Manneville S, Hall A . Rho GTPases in cell biology. Nature 2002; 420: 629–635.

    Article  CAS  PubMed  Google Scholar 

  44. Machacek M, Hodgson L, Welch C, Elliott H, Pertz O, Nalbant P et al. Coordination of Rho GTPase activities during cell protrusion. Nature 2009; 461: 99–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pertz O, Hodgson L, Klemke RL, Hahn KM . Spatiotemporal dynamics of RhoA activity in migrating cells. Nature 2006; 440: 1069–1072.

    Article  CAS  PubMed  Google Scholar 

  46. Kurokawa K, Matsuda M . Localized RhoA activation as a requirement for the induction of membrane ruffling. Mol Biol Cell 2005; 16: 4294–4303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kraynov VS, Chamberlain C, Bokoch GM, Schwartz MA, Slabaugh S, Hahn KM . Localized Rac activation dynamics visualized in living cells. Science 2000; 290: 333–337.

    Article  CAS  PubMed  Google Scholar 

  48. Nalbant P, Hodgson L, Kraynov V, Toutchkine A, Hahn KM . Activation of endogenous Cdc42 visualized in living cells. Science 2004; 305: 1615–1619.

    Article  CAS  PubMed  Google Scholar 

  49. Besson A, Gurian-West M, Schmidt A, Hall A, Roberts JM . p27Kip1 modulates cell migration through the regulation of RhoA activation. Genes Dev 2004; 18: 862–876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Belletti B, Nicoloso MS, Schiappacassi M, Chimienti E, Berton S, Lovat F et al. p27(kip1) functional regulation in human cancer: a potential target for therapeutic designs. Curr Med Chem 2005; 12: 1589–1605.

    Article  CAS  PubMed  Google Scholar 

  51. Goukassian D, Diez-Juan A, Asahara T, Schratzberger P, Silver M, Murayama T et al. Overexpression of p27(Kip1) by doxycycline-regulated adenoviral vectors inhibits endothelial cell proliferation and migration and impairs angiogenesis. FASEB J 2001; 15: 1877–1885.

    Article  CAS  PubMed  Google Scholar 

  52. Sun J, Marx SO, Chen HJ, Poon M, Marks AR, Rabbani LE . Role for p27(Kip1) in vascular smooth muscle cell migration. Circulation 2001; 103: 2967–2972.

    Article  CAS  PubMed  Google Scholar 

  53. Daniel C, Pippin J, Shankland SJ, Hugo C . The rapamycin derivative RAD inhibits mesangial cell migration through the CDK-inhibitor p27KIP1. Lab Invest 2004; 84: 588–596.

    Article  CAS  PubMed  Google Scholar 

  54. Ades EW, Candal FJ, Swerlick RA, George VG, Summers S, Bosse DC et al. HMEC-1: establishment of an immortalized human microvascular endothelial cell line. J Invest Dermatol 1992; 99: 683–690.

    Article  CAS  PubMed  Google Scholar 

  55. McCarroll JA, Gan PP, Liu M, Kavallaris M . BetaIII-tubulin is a multifunctional protein involved in drug sensitivity and tumorigenesis in non-small cell lung cancer. Cancer Res 2010; 70: 4995–5003.

    Article  CAS  PubMed  Google Scholar 

  56. McCarroll JA, Gan PP, Erlich RB, Liu M, Dwarte T, Sagnella SS et al. TUBB3/betaIII-tubulin acts through the PTEN/AKT signaling axis to promote tumorigenesis and anoikis resistance in non-small cell lung cancer. Cancer Res 2015; 75: 415–425.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Children’s Cancer Institute, which is affiliated with the University of New South Wales (UNSW Australia), and Sydney Children’s Hospital Network and by grants from the Cancer Council New South Wales (to MK), Kids Cancer Project (to MK), ARC Future Fellowship (to DCHN; FT120100193), Hope Funds for Cancer Research Fellowship (to FLB; HFCR-14-06-04), Cancer Institute NSW Career Development Fellowship (15/CDF/1-02) and NHMRC Senior Research Fellowships (to MK; APP1058299). MK and TPD are funded by the Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology (project number CE140100036). This research was supported by a Cancer Institute of New South Wales infrastructure award.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J A McCarroll or M Kavallaris.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fife, C., Sagnella, S., Teo, W. et al. Stathmin mediates neuroblastoma metastasis in a tubulin-independent manner via RhoA/ROCK signaling and enhanced transendothelial migration. Oncogene 36, 501–511 (2017). https://doi.org/10.1038/onc.2016.220

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.220

This article is cited by

Search

Quick links