Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Hypoxic lung cancer-secreted exosomal miR-23a increased angiogenesis and vascular permeability by targeting prolyl hydroxylase and tight junction protein ZO-1

Abstract

Hypoxia plays a critical role during the evolution of malignant cells and tumour microenvironment (TME).Tumour-derived exosomes contain informative microRNAs involved in the interaction of cancer and stromal cells, thus contributing to tissue remodelling of tumour microenvironment. This study aims to clarify how hypoxia affects tumour angiogenesis through exosomes shed from lung cancer cells. Lung cancer cells produce more exosomes under hypoxic conditions than do parental cells under normoxic conditions. miR-23a was significantly upregulated in exosomes from lung cancer under hypoxic conditions. Exosomal miR-23a directly suppressed its target prolyl hydroxylase 1 and 2 (PHD1 and 2), leading to the accumulation of hypoxia-inducible factor-1 α (HIF-1 α) in endothelial cells. Consequently, hypoxic lung cancer cells enhanced angiogenesis by exosomes derived from hypoxic cancer under both normoxic and hypoxic conditions. In addition, exosomal miR-23a also inhibits tight junction protein ZO-1, thereby increasing vascular permeability and cancer transendothelial migration. Inhibition of miR-23a by inhibitor administration decreased angiogenesis and tumour growth in a mouse model. Furthermore, elevated levels of circulating miR-23a are found in the sera of lung cancer patients, and miR-23a levels are positively correlated with proangiogenic activities. Taken together, our study reveals the clinical relevance and prognostic value of cancer-derived exosomal miR-23a under hypoxic conditions, and investigates a unique intercellular communication, mediated by cancer-derived exosomes, which modulates tumour vasculature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A . Cancer statistics, 2015. CA Cancer J Clin 2015; 65: 5–29.

    Article  PubMed  Google Scholar 

  2. Wu YC, Tang SJ, Sun GH, Sun KH . CXCR7 mediates TGF[beta]1-promoted EMT and tumor-initiating features in lung cancer. Oncogene 2016; 35: 2123–2132.

    Article  CAS  PubMed  Google Scholar 

  3. Quail DF, Joyce JA . Microenvironmental regulation of tumor progression and metastasis. Nat Med 2013; 19: 1423–1437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Arjaans M, Schröder CP, Oosting SF, Dafni U, Kleibeuker JE, de Vries EGE . VEGF pathway targeting agents, vessel normalization and tumor drug uptake: from bench to bedside. Oncotarget 2016; 7: 21247–22158.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhou W, Fong MY, Min Y, Somlo G, Liu L, Palomares MR et al. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell 2014; 25: 501–515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schumacher D, Strilic B, Sivaraj Kishor K, Wettschureck N, Offermanns S . Platelet-derived nucleotides promote tumor-cell transendothelial migration and metastasis via P2Y2 receptor. Cancer Cell 2013; 24: 130–137.

    Article  CAS  PubMed  Google Scholar 

  7. Rankin EB, Giaccia AJ . Hypoxic control of metastasis. Science 2016; 352: 175–180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hu J, Sun T, Wang H, Chen Z, Wang S, Yuan L et al. MiR-215 is induced post-transcriptionally via HIF-Drosha complex and mediates glioma-initiating cell adaptation to hypoxia by targeting KDM1B. Cancer Cell 2016; 29: 49–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang T, Gilkes DM, Takano N, Xiang L, Luo W, Bishop CJ et al. Hypoxia-inducible factors and RAB22A mediate formation of microvesicles that stimulate breast cancer invasion and metastasis. Proc Natl Acad Sci USA 2014; 111: E3234–E3242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pientka FK, Hu J, Schindler SG, Brix B, Thiel A, Jöhren O et al. Oxygen sensing by the prolyl-4-hydroxylase PHD2 within the nuclear compartment and the influence of compartmentalisation on HIF-1 signalling. J Cell Sci 2012; 125: 5168–5176.

    Article  CAS  PubMed  Google Scholar 

  11. Song D, Li LS, Arsenault PR, Tan Q, Bigham AW, Heaton-Johnson KJ et al. Defective Tibetan PHD2 binding to p23 links high altitude adaption to altered oxygen sensing. J Biol Chem 2014; 289: 14656–14665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. del Peso L, Castellanos MC, Temes E, Martin-Puig S, Cuevas Y, Olmos G et al. The von Hippel Lindau/hypoxia-inducible factor (HIF) pathway regulates the transcription of the HIF-proline hydroxylase genes in response to low oxygen. J Biol Chem 2003; 278: 48690–48695.

    Article  CAS  PubMed  Google Scholar 

  13. Foster JG, Wong SC, Sharp TV . The hypoxic tumor microenvironment: driving the tumorigenesis of non-small-cell lung cancer. Future Oncol 2014; 10: 2659–2674.

    Article  CAS  PubMed  Google Scholar 

  14. Wang SW, Liu SC, Sun HL, Huang TY, Chan CH, Yang CY et al. CCL5/CCR5 axis induces vascular endothelial growth factor-mediated tumor angiogenesis in human osteosarcoma microenvironment. Carcinogenesis 2015; 36: 104–114.

    Article  PubMed  Google Scholar 

  15. Wang Q, Hu DF, Rui Y, Jiang AB, Liu ZL, Huang LN . Prognosis value of HIF-1α expression in patients with non-small cell lung cancer. Gene 2014; 541: 69–74.

    Article  CAS  PubMed  Google Scholar 

  16. Zhao H, Yang L, Baddour J, Achreja A, Bernard V, Moss T et al. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. Elife 2016; 5: e10250.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Pefanis E, Wang J, Rothschild G, Lim J, Kazadi D, Sun J et al. RNA exosome-regulated long non-coding RNA transcription controls super-enhancer activity. Cell 2015; 161: 774–789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hosseini-Beheshti E, Choi W, Weiswald LB, Kharmate G, Ghaffari M, Roshan-Moniri M et al. Exosomes confer pro-survival signals to alter the phenotype of prostate cells in their surrounding environment. Oncotarget 2016; 7: 14639–14658.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Li L, Li C, Wang S, Wang Z, Jiang J, Wang W et al. Exosomes derived from hypoxic oral squamous cell carcinoma cells deliver miR-21 to normoxic cells to elicit a prometastatic phenotype. Cancer Res 2016; 76: 1770–1780.

    Article  CAS  PubMed  Google Scholar 

  20. Sánchez CA, Andahur EI, Valenzuela R, Castellón EA, Fullá JA, Ramos CG et al. Exosomes from bulk and stem cells from human prostate cancer have a differential microRNA content that contributes cooperatively over local and pre-metastatic niche. Oncotarget 2016; 7: 3993–4008.

    Article  PubMed  Google Scholar 

  21. Anderson JD, Johansson HJ, Graham CS, Vesterlund M, Pham MT, Bramlett CS et al. Comprehensive proteomic analysis of mesenchymal stem cell exosomes reveals modulation of angiogenesis via nuclear factor-kappaB signaling. Stem Cells 2016; 34: 601–613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Borges FT, Melo SA, Özdemir BC, Kato N, Revuelta I, Miller CA et al. TGF-β1-containing exosomes from injured epithelial cells activate fibroblasts to initiate tissue regenerative responses and fibrosis. J Am Soc Nephrol 2013; 24: 385–392.

    Article  CAS  PubMed  Google Scholar 

  23. Kulshreshtha R, Ferracin M, Wojcik SE, Garzon R, Alder H, Agosto-Perez FJ et al. A microRNA signature of hypoxia. Mol Cell Biol 2007; 27: 1859–1867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Crosby ME, Kulshreshtha R, Ivan M, Glazer PM . MicroRNA regulation of DNA repair gene expression in hypoxic stress. Cancer Res 2009; 69: 1221–1229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang D, Shi Z, Li M, Mi J . Hypoxia-induced miR-424 decreases tumor sensitivity to chemotherapy by inhibiting apoptosis. Cell Death Dis 2014; 5: e1301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ma Y, Yang HZ, Dong BJ, Zou HB, Zhou Y, Kong XM et al. Biphasic regulation of autophagy by miR-96 in prostate cancer cells under hypoxia. Oncotarget 2014; 5: 9169–9182.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Berra E, Benizri E, Ginouvès A, Volmat V, Roux D, Pouysségur J . HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. EMBO J 2003; 22: 4082–4090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Trikha P, Sharma N, Pena C, Reyes A, Pécot T, Khurshid S et al. E2f3 in tumor macrophages promotes lung metastasis. Oncogene 2016; 35: 3636–3646.

    Article  CAS  PubMed  Google Scholar 

  29. Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M et al. Nature 2015; 527: 329–335.

  30. Cui H, Seubert B, Stahl E, Dietz H, Reuning U, Moreno-Leon L et al. Tissue inhibitor of metalloproteinases-1 induces a pro-tumourigenic increase of miR-210 in lung adenocarcinoma cells and their exosomes. Oncogene 2015; 34: 3640–3650.

    Article  CAS  PubMed  Google Scholar 

  31. Kohlhapp FJ, Mitra AK, Lengyel E, Peter ME . MicroRNAs as mediators and communicators between cancer cells and the tumor microenvironment. Oncogene 2015; 34: 5857–5868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ding G, Zhou L, Qian Y, Fu M, Chen J, Chen J et al. Pancreatic cancer-derived exosomes transfer miRNAs to dendritic cells and inhibit RFXAP expression via miR-212-3p. Oncotarget 2015; 6: 29877–29888.

    PubMed  PubMed Central  Google Scholar 

  33. Kosaka N, Iguchi H, Hagiwara K, Yoshioka Y, Takeshita F, Ochiya T . Neutral sphingomyelinase 2 (nSMase2)-dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis. J Biol Chem 2013; 288: 10849–10859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yohena T, Yoshino I, Takenaka T, Kameyama T, Ohba T, Kuniyoshi Y et al. Upregulation of hypoxia-inducible factor-1alpha mRNA and its clinical significance in non-small cell lung cancer. J Thorac Oncol 2009; 4: 284–290.

    Article  PubMed  Google Scholar 

  35. Koshikawa N, Iyozumi A, Gassmann M, Takenaga K . Constitutive upregulation of hypoxia-inducible factor-1alpha mRNA occurring in highly metastatic lung carcinoma cells leads to vascular endothelial growth factor overexpression upon hypoxic exposure. Oncogene 2003; 22: 6717–6724.

    Article  CAS  PubMed  Google Scholar 

  36. Branco-Price C, Zhang N, Schnelle M, Evans C, Katschinski DM, Liao D et al. Endothelial cell HIF-1α and HIF-2α differentially regulate metastatic success. Cancer Cell 2012; 21: 52–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yamakawa M, Liu LX, Date T, Belanger AJ, Vincent KA, Akita GY et al. Hypoxia-inducible factor-1 mediates activation of cultured vascular endothelial cells by inducing multiple angiogenic factors. Circ Res 2003; 93: 664–673.

    Article  CAS  PubMed  Google Scholar 

  38. Tornavaca O, Chia M, Dufton N, Almagro LO, Conway DE, Randi AM et al. ZO-1 controls endothelial adherens junctions, cell-cell tension, angiogenesis, and barrier formation. J Cell Biol 2015; 208: 821–838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li X, Padhan N, Sjöström EO, Roche FP, Testini C, Honkura N et al. VEGFR2 pY949 signalling regulates adherens junction integrity and metastatic spread. Nat Commun 2016; 7: 11017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tichet M, Prod’Homme V, Fenouille N, Ambrosetti D, Mallavialle A, Cerezo M et al. Tumour-derived SPARC drives vascular permeability and extravasation through endothelial VCAM1 signalling to promote metastasis. Nat Commun 2015; 6: 6993.

    Article  CAS  PubMed  Google Scholar 

  41. Galaup A, Cazes A, Le Jan S, Philippe J, Connault E, Le Coz E et al. Angiopoietin-like 4 prevents metastasis through inhibition of vascular permeability and tumor cell motility and invasiveness. Proc Natl Acad Sci USA 2006; 103: 18721–18726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rodriguez PL, Jiang S, Fu Y, Avraham S, Avraham HK . The proinflammatory peptide substance P promotes blood-brain barrier breaching by breast cancer cells through changes in microvascular endothelial cell tight junctions. Int J Cancer 2014; 134: 1034–1044.

    Article  CAS  PubMed  Google Scholar 

  43. Mazzone M, Dettori D, Leite de Oliveira R, Loges S, Schmidt T, Jonckx B et al. Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell 2009; 136: 839–851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Ministry of Science and Technology (MOST 104-2314-B-037-053-MY4; MOST 104-2320-B-037-014-MY3; MOST 103-2320-B-037-006-MY3), and the Kaohsiung Medical University ‘Aim for the Top Journals Grant’ (Grant No. KMU-DT106005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P-L Kuo.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsu, YL., Hung, JY., Chang, WA. et al. Hypoxic lung cancer-secreted exosomal miR-23a increased angiogenesis and vascular permeability by targeting prolyl hydroxylase and tight junction protein ZO-1. Oncogene 36, 4929–4942 (2017). https://doi.org/10.1038/onc.2017.105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.105

This article is cited by

Search

Quick links