Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A TGFβ-PRMT5-MEP50 axis regulates cancer cell invasion through histone H3 and H4 arginine methylation coupled transcriptional activation and repression

Abstract

Protein arginine methyltransferase 5 (PRMT5) complexed with MEP50/WDR77 catalyzes arginine methylation on histones and other proteins. PRMT5-MEP50 activity is elevated in cancer cells and its expression is highly correlated with poor prognosis in many human tumors. We demonstrate that PRMT5-MEP50 is essential for transcriptional regulation promoting cancer cell invasive phenotypes in lung adenocarcinoma, lung squamous cell carcinoma and breast carcinoma cancer cells. RNA-Seq transcriptome analysis demonstrated that PRMT5 and MEP50 are required to maintain expression of metastasis and Epithelial-to-mesenchymal transition (EMT) markers and to potentiate an epigenetic mechanism of the TGFβ response. We show that PRMT5-MEP50 activity both positively and negatively regulates expression of a wide range of genes. Exogenous TGFβ promotes EMT in a unique pathway of PRMT5-MEP50 catalyzed histone mono- and dimethylation of chromatin at key metastasis suppressor and EMT genes, defining a new mechanism regulating cancer invasivity. PRMT5 methylation of histone H3R2me1 induced transcriptional activation by recruitment of WDR5 and concomitant H3K4 methylation at targeted genes. In parallel, PRMT5 methylation of histone H4R3me2s suppressed transcription at distinct genomic loci. Our decoding of histone methylarginine at key genes supports a critical role for complementary PRMT5-MEP50 transcriptional activation and repression in cancer invasion pathways and in response to TGFβ stimulation and therefore orients future chemotherapeutic opportunities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. May CD, Sphyris N, Evans KW, Werden SJ, Guo W, Mani SA . Epithelial-mesenchymal transition and cancer stem cells: a dangerously dynamic duo in breast cancer progression. Breast Cancer Res 2011; 13: 202.

    Article  Google Scholar 

  2. Sarkar S, Horn G, Moulton K, Oza A, Byler S, Kokolus S et al. Cancer development, progression, and therapy: an epigenetic overview. Int J Mol Sci 2013; 14: 21087–21113.

    Article  Google Scholar 

  3. Tam WL, Weinberg RA . The epigenetics of epithelial-mesenchymal plasticity in cancer. Nat Med 2013; 19: 1438–1449.

    Article  CAS  Google Scholar 

  4. Stopa N, Krebs JE, Shechter D . The PRMT5 arginine methyltransferase: many roles in development, cancer and beyond. Cell Mol Life Sci 2015; 72: 2041–2059.

    Article  CAS  Google Scholar 

  5. Yang Y, Bedford MT . Protein arginine methyltransferases and cancer. Nat Rev Cancer 2013; 13: 37–50.

    Article  CAS  Google Scholar 

  6. Chi P, Allis CD, Wang GG . Covalent histone modifications—miswritten, misinterpreted and mis-erased in human cancers. Nat Rev Cancer 2010; 10: 457–469.

    Article  CAS  Google Scholar 

  7. Greenblatt SM, Liu F, Nimer SD . Arginine methyltransferases in normal and malignant hematopoiesis. Exp Hematol 2016; 44: 435–441.

    Article  CAS  Google Scholar 

  8. Bedford MT, Clarke SG . Protein arginine methylation in mammals: who, what, and why. Molecular cell 2009; 33: 1–13.

    Article  CAS  Google Scholar 

  9. Di Lorenzo A, Bedford MT . Histone arginine methylation. FEBS Lett 2011; 585: 2024–2031.

    Article  CAS  Google Scholar 

  10. Dhar S, Vemulapalli V, Patananan AN, Huang GL, Di Lorenzo A, Richard S et al. Loss of the major Type I arginine methyltransferase PRMT1 causes substrate scavenging by other PRMTs. Scientific reports 2013; 3: 1311.

    Article  Google Scholar 

  11. Nicklay JJ, Shechter D, Chitta RK, Garcia BA, Shabanowitz J, Allis CD et al. Analysis of histones in Xenopus laevis. II. mass spectrometry reveals an index of cell type-specific modifications on H3 and H4. J Biol Chem 2009; 284: 1075–1085.

    Article  CAS  Google Scholar 

  12. Burgos ES, Wilczek C, Onikubo T, Bonanno JB, Jansong J, Reimer U et al. Histone H2A and H4 N-Terminal Tails are Positioned by the MEP50 WD-Repeat Protein for Efficient Methylation by the PRMT5 Arginine Methyltransferase. J Biol Chem 2015; 290: 9674–9689.

    Article  CAS  Google Scholar 

  13. Ho M-C, Wilczek C, Bonanno JB, Xing L, Seznec J, Matsui T et al. Structure of the Arginine Methyltransferase PRMT5-MEP50 Reveals a Mechanism for Substrate Specificity. PLoS ONE 2013; 8: e57008.

    Article  CAS  Google Scholar 

  14. Wang M, Xu RM, Thompson PR . Substrate specificity, processivity, and kinetic mechanism of protein arginine methyltransferase 5. Biochemistry 2013; 52: 5430–5440.

    Article  Google Scholar 

  15. Wang M, Fuhrmann J, Thompson PR . Protein arginine methyltransferase 5 catalyzes substrate dimethylation in a distributive fashion. Biochemistry 2014; 53: 7884–7892.

    Article  CAS  Google Scholar 

  16. Bao X, Zhao S, Liu T, Liu Y, Liu Y, Yang X . Overexpression of PRMT5 promotes tumor cell growth and is associated with poor disease prognosis in epithelial ovarian cancer. J Histochem Cytochem 2013; 61: 206–217.

    Article  CAS  Google Scholar 

  17. Chung J, Karkhanis V, Tae S, Yan F, Smith P, Ayers LW et al. Protein arginine methyltransferase 5 (PRMT5) inhibition induces lymphoma cell death through reactivation of the retinoblastoma tumor suppressor pathway and polycomb repressor complex 2 (PRC2) silencing. J. Biol. Chem 2013; 288: 35534–35547.

    Article  CAS  Google Scholar 

  18. Ibrahim R, Matsubara D, Osman W, Morikawa T, Goto A, Morita S et al. Expression of PRMT5 in lung adenocarcinoma and its significance in epithelial-mesenchymal transition. Human pathology 2014; 45: 1397–1405.

    Article  CAS  Google Scholar 

  19. Li Y, Chitnis N, Nakagawa H, Kita Y, Natsugoe S, Yang Y et al. PRMT5 is required for lymphomagenesis triggered by multiple oncogenic drivers. Cancer discovery 2015; 5: 288–303.

    Article  CAS  Google Scholar 

  20. Scoumanne A, Zhang J, Chen X . PRMT5 is required for cell-cycle progression and p53 tumor suppressor function. Nucleic Acids Res 2009; 37: 4965–4976.

    Article  CAS  Google Scholar 

  21. Alinari L, Mahasenan KV, Yan F, Karkhanis V, Chung JH, Smith EM et al. Selective inhibition of protein arginine methyltransferase 5 blocks initiation and maintenance of B-cell transformation. Blood 2015; 125: 2530–2543.

    Article  CAS  Google Scholar 

  22. Chan-Penebre E, Kuplast KG, Majer CR, Boriack-Sjodin PA, Wigle TJ, Johnston LD et al. A selective inhibitor of PRMT5 with in vivo and in vitro potency in MCL models. Nat Chem Biol 2015; 11: 432–437.

    Article  CAS  Google Scholar 

  23. Yan F, Alinari L, Lustberg ME, Katherine Martin L, Cordero-Nieves HM, Banasavadi-Siddegowda Y et al. Genetic Validation of the Protein Arginine Methyltransferase PRMT5 as a Candidate Therapeutic Target in Glioblastoma. Cancer Res 2014; 74: 1752–1765.

    Article  CAS  Google Scholar 

  24. Ikushima H, Miyazono K . TGFbeta signalling: a complex web in cancer progression. Nat Rev Cancer 2010; 10: 415–424.

    Article  CAS  Google Scholar 

  25. Lamouille S, Xu J, Derynck R . Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 2014; 15: 178–196.

    Article  CAS  Google Scholar 

  26. Cline MS, Craft B, Swatloski T, Goldman M, Ma S, Haussler D et al. Exploring TCGA Pan-Cancer data at the UCSC Cancer Genomics Browser. Scientific reports 2013; 3: 2652.

    Article  Google Scholar 

  27. Diez-Villanueva A, Mallona I, Peinado MA . Wanderer, an interactive viewer to explore DNA methylation and gene expression data in human cancer. Epigenetics Chromatin 2015; 8: 22.

    Article  Google Scholar 

  28. Shedden K, Taylor JM, Enkemann SA, Tsao MS, Yeatman TJ, Gerald WL et al. Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study. Nat Med 2008; 14: 822–827.

    Article  CAS  Google Scholar 

  29. Kamburov A, Stelzl U, Lehrach H, Herwig R . The ConsensusPathDB interaction database: 2013 update. Nucleic Acids Research 2013; 41: D793–D800.

    Article  CAS  Google Scholar 

  30. Wang H, Meyer CA, Fei T, Wang G, Zhang F, Liu XS . A systematic approach identifies FOXA1 as a key factor in the loss of epithelial traits during the epithelial-to-mesenchymal transition in lung cancer. BMC Genomics 2013; 14: 1–9.

    Article  Google Scholar 

  31. Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z . GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 2009; 10: 48.

    Article  Google Scholar 

  32. Supek F, Bosnjak M, Skunca N, Smuc T . REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One 2011; 6: e21800.

    Article  CAS  Google Scholar 

  33. Duncan KW, Rioux N, Boriack-Sjodin PA, Munchhof MJ, Reiter LA, Majer CR et al. Structure and Property Guided Design in the Identification of PRMT5 Tool Compound EPZ015666. ACS Medicinal Chemistry Letters 2015.

  34. Kasai H, Allen JT, Mason RM, Kamimura T, Zhang Z . TGF-beta1 induces human alveolar epithelial to mesenchymal cell transition (EMT). Respiratory research 2005; 6: 56.

    Article  Google Scholar 

  35. Liu J, Hu G, Chen D, Gong AY, Soori GS, Dobleman TJ et al. Suppression of SCARA5 by Snail1 is essential for EMT-associated cell migration of A549 cells. Oncogenesis 2013; 2: e73.

    Article  CAS  Google Scholar 

  36. Stafford LJ, Vaidya KS, Welch DR . Metastasis suppressors genes in cancer. Int J Biochem Cell Biol 2008; 40: 874–891.

    Article  CAS  Google Scholar 

  37. Yan J, Yang Q, Huang Q . Metastasis suppressor genes. Histology and histopathology 2013; 28: 285–292.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Migliori V, Muller J, Phalke S, Low D, Bezzi M, Mok WC et al. Symmetric dimethylation of H3R2 is a newly identified histone mark that supports euchromatin maintenance. Nat Struct Mol Biol 2012; 19: 136–144.

    Article  CAS  Google Scholar 

  39. Grebien F, Vedadi M, Getlik M, Giambruno R, Grover A, Avellino R et al. Pharmacological targeting of the Wdr5-MLL interaction in C/EBPalpha N-terminal leukemia. Nat. Chem. Biol. 2015; 11: 571–578.

    Article  CAS  Google Scholar 

  40. Koh C, Bezzi M, Guccione E . The Where and the How of PRMT5. Curr Mol Bio Rep 2015; 1: 19–28.

    Article  Google Scholar 

  41. Yang H, Zhan L, Yang T, Wang L, Li C, Zhao J et al. Ski prevents TGF-beta-induced EMT and cell invasion by repressing SMAD-dependent signaling in non-small cell lung cancer. Oncology reports 2015; 34: 87–94.

    Article  CAS  Google Scholar 

  42. Tarighat SS, Santhanam R, Frankhouser D, Radomska HS, Lai H, Anghelina M et al. The dual epigenetic role of PRMT5 in acute myeloid leukemia: gene activation and repression via histone arginine methylation. Leukemia 2015; 30: 789–799.

    Article  Google Scholar 

  43. Guccione E, Bassi C, Casadio F, Martinato F, Cesaroni M, Schuchlautz H et al. Methylation of histone H3R2 by PRMT6 and H3K4 by an MLL complex are mutually exclusive. Nature 2007; 449: 933–937.

    Article  CAS  Google Scholar 

  44. Yuan C-C, Matthews Adam GW, Jin Y, Chen Chang F, Chapman Brad A, Ohsumi Toshiro K et al. Histone H3R2 Symmetric Dimethylation and Histone H3K4 Trimethylation Are Tightly Correlated in Eukaryotic Genomes. Cell Reports 2012; 1: 83–90.

    Article  CAS  Google Scholar 

  45. Zhao Q, Rank G, Tan YT, Li H, Moritz RL, Simpson RJ et al. PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing. Nat Struct Mol Biol 2009; 16: 304–311.

    Article  CAS  Google Scholar 

  46. Otani J, Nankumo T, Arita K, Inamoto S, Ariyoshi M, Shirakawa M . Structural basis for recognition of H3K4 methylation status by the DNA methyltransferase 3 A ATRX-DNMT3-DNMT3L domain. EMBO reports 2009; 10: 1235–1241.

    Article  CAS  Google Scholar 

  47. Girardot M, Hirasawa R, Kacem S, Fritsch L, Pontis J, Kota SK et al. PRMT5-mediated histone H4 arginine-3 symmetrical dimethylation marks chromatin at G+C-rich regions of the mouse genome. Nucleic Acids Research 2013; 42: 235–248.

    Article  Google Scholar 

  48. Dhar SS, Lee SH, Kan PY, Voigt P, Ma L, Shi X et al. Trans-tail regulation of MLL4-catalyzed H3K4 methylation by H4R3 symmetric dimethylation is mediated by a tandem PHD of MLL4. Genes Dev 2012; 26: 2749–2762.

    Article  CAS  Google Scholar 

  49. Wilczek C, Chitta R, Woo E, Shabanowitz J, Chait BT, Hunt DF et al. Protein Arginine Methyltransferase Prmt5-Mep50 Methylates Histones H2A and H4 and the Histone Chaperone Nucleoplasmin in Xenopus laevis Eggs. J. Biol. Chem. 2011; 286: 42221–42231.

    Article  CAS  Google Scholar 

  50. Dacwag CS, Bedford MT, Sif S, Imbalzano AN . Distinct protein arginine methyltransferases promote ATP-dependent chromatin remodeling function at different stages of skeletal muscle differentiation. Mol Cell Biol 2009; 29: 1909–1921.

    Article  CAS  Google Scholar 

  51. Pal S, Vishwanath SN, Erdjument-Bromage H, Tempst P, Sif S . Human SWI/SNF-associated PRMT5 methylates histone H3 arginine 8 and negatively regulates expression of ST7 and NM23 tumor suppressor genes. Mol Cell Biol 2004; 24: 9630–9645.

    Article  CAS  Google Scholar 

  52. Kryukov GV, Wilson FH, Ruth JR, Paulk J, Tsherniak A, Marlow SE et al. MTAP deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells. Science 2016; 351: 1214–1218.

    Article  CAS  Google Scholar 

  53. Mavrakis KJ, McDonald ER 3rd, Schlabach MR, Billy E, Hoffman GR, deWeck A et al. Disordered methionine metabolism in MTAP/CDKN2A-deleted cancers leads to dependence on PRMT5. Science 2016; 351: 1208–1213.

    Article  CAS  Google Scholar 

  54. Smil D, Eram MS, Li F, Kennedy S, Szewczyk MM, Brown PJ et al. Discovery of a Dual PRMT5-PRMT7 Inhibitor. ACS Med Chem Lett 2015; 6: 408–412.

    Article  CAS  Google Scholar 

  55. Chen H, Ruiz PD, Novikov L, Casill AD, Park JW, Gamble MJ . MacroH2A1.1 and PARP-1 cooperate to regulate transcription by promoting CBP-mediated H2B acetylation. Nat Struct Mol Biol 2014; 21: 981–989.

    Article  CAS  Google Scholar 

  56. Chen H, Ruiz PD, McKimpson WM, Novikov L, Kitsis RN, Gamble MJ . MacroH2A1 and ATM Play Opposing Roles in Paracrine Senescence and the Senescence-Associated Secretory Phenotype. Mol. cell 2015; 59: 719–731.

    Article  CAS  Google Scholar 

  57. Kakuguchi W, Kitamura T, Kuroshima T, Ishikawa M, Kitagawa Y, Totsuka Y et al. HuR knockdown changes the oncogenic potential of oral cancer cells. Molecular cancer research: MCR 2010; 8: 520–528.

    Article  CAS  Google Scholar 

  58. Wu YC, Tang SJ, Sun GH, Sun KH . CXCR7 mediates TGFbeta1-promoted EMT and tumor-initiating features in lung cancer. Oncogene 2015; 35: 2123–2132.

    Article  Google Scholar 

  59. Love MI, Huber W, Anders S . Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014; 15: 550.

    Article  Google Scholar 

  60. Robinson MD, McCarthy DJ, Smyth GK . edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010; 26: 139–140.

    Article  CAS  Google Scholar 

  61. Kallio MA, Tuimala JT, Hupponen T, Klemela P, Gentile M, Scheinin I et al. Chipster: user-friendly analysis software for microarray and other high-throughput data. BMC Genomics 2011; 12: 507.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to C. Arrowsmith, GlaxoSmithKline and the Structural Genomics Consortium for the gift of GSK591, C. Wilczek, R. Mazur and P. Bailey for preliminary knockdown experiments, E. Burgos for recombinant PRMT5-MEP50, S. Maqbool, R. Dubin, and B. Ye at the Einstein Center for Epigenomics for assistance with RNA-Seq and initial analysis, and members of the Shechter lab for comments. This work was supported by startup funds from the Albert Einstein College of Medicine, The Alexandrine and Alexander Sinsheimer Fund, The American Cancer Society – Robbie Sue Mudd Kidney Cancer Research Scholar Grant (124891-RSG-13-396-01-DMC) and NIH R01GM108646-01A1 (all to D.S.).

RNA-seq data have been deposited in the Gene Expression Omnibus database under accession code GSE80182.

Author contributions

HC planned and conducted all experiments and wrote the manuscript, BL performed the native gel analysis, VG assisted with bioinformatics analysis, DS planned experiments, performed bioinformatics analysis, wrote the manuscript, and supervised all work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H Chen or D Shechter.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Lorton, B., Gupta, V. et al. A TGFβ-PRMT5-MEP50 axis regulates cancer cell invasion through histone H3 and H4 arginine methylation coupled transcriptional activation and repression. Oncogene 36, 373–386 (2017). https://doi.org/10.1038/onc.2016.205

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.205

This article is cited by

Search

Quick links