Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Hic-5 remodeling of the stromal matrix promotes breast tumor progression

Abstract

The remodeling of the stromal extracellular matrix (ECM) has a crucial, but incompletely understood role during tumor progression and metastasis. Hic-5, a focal adhesion scaffold protein, has previously been implicated in tumor cell invasion, proliferation and metastasis. To investigate the role of Hic-5 in breast tumor progression in vivo, Hic-5−/− mice were generated and crossed with the Mouse Mammary Tumor Virus-Polyoma Middle T-Antigen mouse. Tumors from the Hic-5−/−;PyMT mice exhibited increased latency and reduced growth, with fewer lung metastases, as compared with Hic-5+/−;PyMT mice. Immunohistochemical analysis showed that Hic-5 is primarily expressed in the cancer-associated fibroblasts (CAFs). Further analysis revealed that the Hic-5−/−;PyMT tumor stroma contains fewer CAFs and exhibits reduced ECM deposition. The remodeling of the stromal matrix by CAFs has been shown to increase tumor rigidity to indirectly regulate FAK Y397 phosphorylation in tumor cells to promote their growth and invasion. Accordingly, the Hic-5−/−;PyMT tumor cells exhibited a reduction in FAK Y397 phosphorylation. Isolated Hic-5−/−;PyMT CAFs were defective in stress fiber organization and exhibited reduced contractility. These cells also failed to efficiently deposit and organize the ECM in two and three dimensions. This, in turn, impacted three-dimensional MDA-MB-231 tumor cell migration behavior. Thus, using a new knockout mouse model, we have identified Hic-5 expression in CAFs as a key requirement for deposition and remodeling of the stromal ECM to promote non-cell autonomous breast tumor progression.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Humphrey JD, Dufresne ER, Schwartz MA . Mechanotransduction and extracellular matrix homeostasis. Nat Rev Mol Cell Biol 2014; 15: 802–812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kalluri R, Zeisberg M . Fibroblasts in cancer. Nat Rev Cancer 2006; 6: 392–401.

    Article  CAS  PubMed  Google Scholar 

  3. Goetz JG, Minguet S, Navarro-Lerida I, Lazcano JJ, Samaniego R, Calvo E et al. Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis. Cell 2011; 146: 148–163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. De Wever O, Demetter P, Mareel M, Bracke M . Stromal myofibroblasts are drivers of invasive cancer growth. Int J Cancer 2008; 23: 2229–2238.

    Article  Google Scholar 

  5. Cox TR, Erler JT . Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis Model Mech 2011; 4: 165–178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Provenzano PP, Eliceiri KW, Campbell JM, Inman DR, White JG, Keely PJ . Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med 2006; 4: 38.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Boyd NF, Martin LJ, Yaffe M J, Minkin S . Mammographic density and breast cancer risk: current understanding and future prospects. Breast Cancer Res 2011; 13: 223.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Provenzano PP, Inman DR, Eliceiri KW, Knittel JG, Yan L, Reuden CT et al. Collagen density promotes mammary tumor initiation and progression. BMC Med 2008; 6: 11.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Levental KR, Yu H, Lakins JN, Egeblad M, Erler JT, Fong SF et al. Matrix crosslinking forces tumor progression by enhancing Integrin Signaling. Cell 2009; 139: 891–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Geiger B, Spatz JP, Bershadsky AD . Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol 2009; 10: 21–33.

    Article  CAS  PubMed  Google Scholar 

  11. Thomas SM, Hagel M, Turner CE . Characterization of a focal adhesion protein, Hic-5, that shares extensive homology with paxillin. J Cell Science 1999; 112: 181–190.

    CAS  PubMed  Google Scholar 

  12. Dabiri G, Tumbarello DA, Turner CE, Van de Water L . Hic-5 promotes the hypertrophic scar myofibroblast phenotype by regulating the TGF-beta1 autocrine loop. J Invest Dermatol 2008; 128: 2518–2525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Deakin NO, Turner CE . Distinct roles for paxillin and Hic-5 in regulating breast cancer cell morphology, invasion, and metastasis. Mol Biol Cell 2011; 22: 327–341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Deakin NO, Ballestrem C, Turner CE . Paxillin and Hic-5 interaction with vinculin is differentially regulated by Rac1 and RhoA. PLoS One 2012; 7: e37990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hagel M, George EL, Klim A, Tamimi R, Opitz SL, Turner CE et al. The adaptor protein paxillin is essential for normal development in the mouse and is a critical transducer of fibronectin signaling. Mol Cell Biol 2002; 22: 901–915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tchou J, Kossenkov AV, Chang L, Satija C, Herlyn M, Showe LC et al. Human breast cancer associated fibroblasts exhibit subtype specific gene expression profiles. BMC Med Genomics 2012; 5: 39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tumbarello DA, Turner CE . Hic-5 contributes to epithelial-mesenchymal transformation through a RhoA / ROCK-dependent pathway. J Cell Physiol 2007; 211: 736–748.

    Article  CAS  PubMed  Google Scholar 

  18. Pignatelli J, Tumbarello DA, Schmidt RP, Turner CE . Hic-5 promotes invadopodia formation and invasion during TGF-β-induced epithelial-mesenchymal transition. J Cell Biol 2012; 197: 421–437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lin EY, Jones JG, Li P, Zhu L, Whitney KD, Muller WJ et al. Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. Am J Pathol 2003; 163: 2113–2126.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Schäfer M, Werner S . Cancer as an overhealing wound: an old hypothesis revisited. Nat Rev Mol Cell Biol 2008; 9: 628–638.

    Article  PubMed  Google Scholar 

  21. Martin P . Wound healing--aiming for perfect skin regeneration. Science 1997; 276: 75–81.

    Article  CAS  PubMed  Google Scholar 

  22. Hinz B . Formation and function of the myofibroblast during tissue repair. J Invest Dermatol 2007; 127: 526–537.

    Article  CAS  PubMed  Google Scholar 

  23. Hinz B, Phan SH, Thannickal VJ, Prunotto M, Desmouliere A, Varga J et al. Recent developments in myofibroblast biology: Paradigms for connective tissue remodeling. Am J Pathol 2012; 180: 1340–1355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Varney SD, Betts CB, Zheng R, Wu L, Hinz B, Zhou J et al. Hic-5 is required for myofibroblast differentiation by regulating mechanically dependent, MRTF-A nuclear accumulation. J Cell Sci 2016; 129: 774–787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kim-Kaneyama JR, Suzuki W, Ichikawa K, Ohki T, Kohno Y, Sata M et al. Uni-axial stretching regulates intracellular localization of Hic-5 expressed in smooth-muscle cells in vivo. J Cell Sci 2005; 118: 937–949.

    Article  CAS  PubMed  Google Scholar 

  26. Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 2005; 121: 335–348.

    Article  CAS  PubMed  Google Scholar 

  27. Provenzano PP, Inman DR, Eliceiri KW, Keely PJ . Matrix density-induced mechanoregulation of breast cell phenotype, signaling and gene expression through a FAK-ERK linkage. Oncogene 2009; 28: 4326–4343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Paszek MJ, Zahir N, Johnson KR, Latkins JN, Rozenberg GI, Gefen A et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 2005; 8: 241–254.

    Article  CAS  PubMed  Google Scholar 

  29. Cukierman E, Pankov R, Stevens DR, Yamada KM . Taking cell-matrix adhesions to the third dimension. Science 2001; 294: 1708–1712.

    Article  CAS  PubMed  Google Scholar 

  30. Kutys ML, Doyle AD, Yamada KM . Regulation of cell adhesion and migration by cell-derived matrices. Exp Cell Res 2013; 319: 2434–2439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Amatangelo MD, Bassi DE, Klein-Szanto AJ, Cukierman E . Stroma-derived three-dimensional matrices are necessary and sufficient to promote desmoplastic differentiation of normal fibroblasts. Am J Pathol 2005; 167: 475–488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Friedl P, Alexander S . Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 2011; 147: 992–1009.

    Article  CAS  PubMed  Google Scholar 

  33. Friedl P, Wolf K . Plasticity of cell migration: a multiscale tuning model. J Cell Biol 2010; 188: 11–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pickup MW, Mouw JK, Weaver VM . The extracellular matrix modulates the hallmarks of cancer. EMBO Rep 2014; 15: 1243–1253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cheung KJ, Gabrielson E, Werb Z, Ewald AJ . Collective invasion in breast cancer requires a conserved basal epithelial program. Cell 2013; 155: 1639–1651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bierie B, Moses HL . Tumor Microenvironment: TGFβ: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 2006; 6: 506–520.

    Article  CAS  PubMed  Google Scholar 

  37. Wang H, Song K, Krebs TL, Yang J, Danielpour D . Smad7 is inactivated through a direct physical interaction with the LIM protein Hic-5/ARA55. Oncogene 2008; 27: 6791–6805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shola DT, Wang H, Wahdan-Alaswad R, Danielpour D . Hic-5 controls BMP4 responses in prostate cancer cells through interacting with Smads 1, 5 and 8. Oncogene 2012; 31: 2480–2490.

    Article  CAS  PubMed  Google Scholar 

  39. Xu J, Lamouille S, Derynck R . TGF-β-induced epithelial to mesenchymal transition. Cell Res 2009; 19: 156–172.

    Article  CAS  PubMed  Google Scholar 

  40. Kuo JC . Mechanotransduction at focal adhesions: integrating cytoskeletal mechanics in migrating cells. J Cell Mol Med 2013; 17: 704–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gaggioli C, Hooper S, Hidalgo-Carcedo C, Grosse R, Marshall JF, Harrington K et al. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat Cell Biol 2007; 9: 1392–1400.

    Article  CAS  PubMed  Google Scholar 

  42. Cirri P, Chiarugi P . Cancer associated fibroblasts: the dark side of the coin. Am J Cancer Res 2011; 1: 482–497.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Lu P, Weaver VM, Werb Z . The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 2012; 196: 395–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Egeblad M, Werb Z . New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2002; 2: 161–174.

    Article  CAS  PubMed  Google Scholar 

  45. Lei XF, Kim-Kaneyama JR, Arita-Okubo S, Offermanns S, Itabe H, Miyazaki T et al. Identification of Hic-5 as a novel scaffold for the MKK4/p54 JNK pathway in the development of abdominal aortic aneurysms. J Am Heart Assoc 2014; 3: e000747.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Burridge K, Guilluy C . Focal adhesions, stress fibers and mechanical tension. Exp Cell Res 2016; 343: 14–20.

    Article  CAS  PubMed  Google Scholar 

  47. Nishiya N, Tachibana K, Shibanuma M, Mashimo JI, Nose K . Hic-5-reduced cell spreading on fibronectin: competitive effects between paxillin and Hic-5 through interaction with focal adhesion kinase. Mol Cell Biol 2001; 21: 5332–5345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Petrie RJ, Doyle AD, Yamada KM . Random versus directionally persistent cell migration. Nat Rev Mol Cell Biol 2009; 10: 538–549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ouderkirk-Pecone JL, Goreczny GJ, Chase SE, Tatum AH, Turner CE, Krendel M . Myosin 1e promotes breast cancer malignancy by enhancing tumor cell proliferation and stimulating tumor cell de-differentiation. Oncotarget e-pub ahead of print 17 June 2016 doi:10.18632/oncotarget.10139.

  50. Plante I, Stewart MK, Laird DW . Evaluation of mammary gland development and function in mouse models. JoVE 2011; 53: pii: 2828.

  51. Nguyen-Ngoc KV, Shamir ER, Huebner RJ, Beck JN, Cheung KJ, Ewald AJ . 3D culture assays of murine mammary branching morphogenesis and epithelial invasion. Methods Mol Biol 2015; 1189: 135–162.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Rezakhaniha R, Agianniotis A, Schrauwen JT, Griffa A, Sage D, Bouten CV et al. Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy. Biomech Model Mechanobiol 2012; 11: 461–473.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Turner lab for critical reading of this manuscript and for insightful discussions. We are grateful to Ian Forsythe for the mouse genotyping and additional technical assistance. We also thank Nicholas Deakin for his assistance in isolating CTCs. This work was supported by the National Institutes of Health Grant R01 CA163296 and R01 GM047607 to CET R01 NS066071 to ECO and CET, R01 DK083345 to MK and the Carol M Baldwin Breast Cancer Research Fund of CNY awards to CET and MK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C E Turner.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goreczny, G., Ouderkirk-Pecone, J., Olson, E. et al. Hic-5 remodeling of the stromal matrix promotes breast tumor progression. Oncogene 36, 2693–2703 (2017). https://doi.org/10.1038/onc.2016.422

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.422

This article is cited by

Search

Quick links