Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Physical interaction of estrogen receptor with MnSOD: implication in mitochondrial O2.− upregulation and mTORC2 potentiation in estrogen-responsive breast cancer cells

Abstract

Augmented reactive oxygen species levels consequential to functional alteration of key mitochondrial attributes contribute to carcinogenesis, either directly via oxidative DNA damage infliction or indirectly via activation of oncogenic signaling cascades. We previously reported activation of a key oncogenic signaling cascade via mammalian target of rapamycin (mTOR) signaling complex-2 (mTORC2) owing to estrogen receptor (ER-α)-dependent augmentation of O2.− within the mitochondria of 17-β-estradiol (E2)-stimulated breast cancer cells. Manganese superoxide dismutase (MnSOD) is the principal mitochondrial attribute governing mitochondrial O2.− homeostasis, raising the possibility that its functional alteration could be instrumental in augmenting mitochondrial O2.− levels in breast cancer cells. Here we show ER-dependent transient inhibition of MnSOD catalytic function in breast cancer cells. Catalytic function of MnSOD is tightly regulated at the post-translational level. Post-translational modifications such as phosphorylation, nitration and acetylation represent key regulatory means governing the catalytic function of MnSOD. Acetylation at lysine-68 (K68) inhibits MnSOD catalytic activity and thus represents an important post-translational regulatory mechanism in human cells. Using reciprocal immunoprecipitation and proximity ligation assay, we demonstrate the occurrence of direct physical interaction between ER-α and MnSOD in human breast cancer cells, which in turn was associated with potentiated acetylation of MnSOD at K68. In addition, we also observed diminished interaction of MnSOD with sirtuin-3, the key mitochondrial deacetylase that deacetylates MnSOD at critical K68 and thereby activates it for scavenging O2.−. Consequently, compromised deacetylation of MnSOD at K68 leading to its inhibition and a resultant buildup of O2.− within the mitochondria culminated in the activation of mTORC2. In agreement with this, human breast cancer tissue specimen exhibited a positive correlation between acetyl-MnSODK68 levels and phospho-Ser2481 mTOR levels. In addition to exposing the crosstalk of ER-α with MnSOD post-translational regulatory mechanisms, these data also unravel a regulatory role of ER/MnSOD interaction as an important control switch for redox regulation of ER-α-responsive oncogenic signaling cascades. Furthermore, our study provides a mechanistic link for ER-α-dependent O2.− potentiation and resultant mTORC2 activation in breast cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Murphy MP . How mitochondria produce reactive oxygen species. Biochem J 2009; 417: 1–13.

    Article  CAS  PubMed  Google Scholar 

  2. Butterfield DA, Swomley AM, Sultana R . Amyloid beta-peptide (1–42)-induced oxidative stress in Alzheimer disease: importance in disease pathogenesis and progression. Antioxid Redox Signal 2013; 19: 823–835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Domej W, Oettl K, Renner W . Oxidative stress and free radicals in COPD—implications and relevance for treatment. Int J Chron Obstruct Pulmon Dis 2014; 9: 1207–1224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yan MH, Wang X, Zhu X . Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radic Biol Med 2013; 62: 90–101.

    Article  CAS  PubMed  Google Scholar 

  5. Klaunig JE, Kamendulis LM . The role of oxidative stress in carcinogenesis. Annu Rev Pharmacol Toxicol 2004; 44: 239–267.

    Article  CAS  PubMed  Google Scholar 

  6. Felty Q, Xiong WC, Sun D, Sarkar S, Singh KP, Parkash J et al. Estrogen-induced mitochondrial reactive oxygen species as signal-transducing messengers. Biochemistry 2005; 44: 6900–6909.

    Article  CAS  PubMed  Google Scholar 

  7. Kawanishi S, Hiraku Y, Oikawa S . Mechanism of guanine-specific DNA damage by oxidative stress and its role in carcinogenesis and aging. Mutat Res 2001; 488: 65–76.

    Article  CAS  PubMed  Google Scholar 

  8. Ogrunc M, Di Micco R, Liontos M, Bombardelli L, Mione M, Fumagalli M et al. Oncogene-induced reactive oxygen species fuel hyperproliferation and DNA damage response activation. Cell Death Differ 2014; 21: 998–1012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kumari Kanchan R, Tripathi C, Singh Baghel K, Kumar Dwivedi S, Kumar B, Sanyal S et al. Estrogen receptor potentiates mTORC2 signaling in breast cancer cells by upregulating superoxide anions. Free Radic Biol Med 2012; 53: 1929–1941.

    Article  CAS  PubMed  Google Scholar 

  10. Jacinto E, Loewith R, Schmidt A, Lin S, Ruegg MA, Hall A et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 2004; 6: 1122–1128.

    Article  CAS  PubMed  Google Scholar 

  11. Quintela-Fandino M, Gonzalez-Martin A, Colomer R . Targeting cytoskeleton reorganisation as antimetastatic treatment. Clin Transl Oncol 2010; 12: 662–669.

    Article  CAS  PubMed  Google Scholar 

  12. Sarbassov DD, Ali SM, Sengupta S, Sheen JH, Hsu PP, Bagley AF et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 2006; 22: 159–168.

    Article  CAS  PubMed  Google Scholar 

  13. Spitz DR, Oberley LW . An assay for superoxide dismutase activity in mammalian tissue homogenates. Anal Biochem 1989; 179: 8–18.

    Article  CAS  PubMed  Google Scholar 

  14. Dhar SK, St Clair DK . Manganese superoxide dismutase regulation and cancer. Free Radic Biol Med 2012; 52: 2209–2222.

    Article  CAS  PubMed  Google Scholar 

  15. Oberley LW, Buettner GR . Role of superoxide dismutase in cancer: a review. Cancer Res 1979; 39: 1141–1149.

    CAS  PubMed  Google Scholar 

  16. Yan T, Oberley LW, Zhong W, St Clair DK . Manganese-containing superoxide dismutase overexpression causes phenotypic reversion in SV40-transformed human lung fibroblasts. Cancer Res 1996; 56: 2864–2871.

    CAS  PubMed  Google Scholar 

  17. Chen Y, Zhang J, Lin Y, Lei Q, Guan KL, Zhao S et al. Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS. EMBO Rep 2011; 12: 534–541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Borgstahl GE, Parge HE, Hickey MJ, Beyer WF Jr, Hallewell RA, Tainer JA . The structure of human mitochondrial manganese superoxide dismutase reveals a novel tetrameric interface of two 4-helix bundles. Cell 1992; 71: 107–118.

    Article  CAS  PubMed  Google Scholar 

  19. Chen JQ, Eshete M, Alworth WL, Yager JD . Binding of MCF-7 cell mitochondrial proteins and recombinant human estrogen receptors alpha and beta to human mitochondrial DNA estrogen response elements. J Cell Biochem 2004; 93: 358–373.

    Article  CAS  PubMed  Google Scholar 

  20. Pedram A, Razandi M, Wallace DC, Levin ER . Functional estrogen receptors in the mitochondria of breast cancer cells. Mol Biol Cell 2006; 17: 2125–2137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Finkel T, Deng CX, Mostoslavsky R . Recent progress in the biology and physiology of sirtuins. Nature 2009; 460: 587–591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lombard DB, Alt FW, Cheng HL, Bunkenborg J, Streeper RS, Mostoslavsky R et al. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol Cell Biol 2007; 27: 8807–8814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Copp J, Manning G, Hunter T . TORC-specific phosphorylation of mammalian target of rapamycin (mTOR): phospho-Ser2481 is a marker for intact mTOR signaling complex 2. Cancer Res 2009; 69: 1821–1827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Griendling KK, Sorescu D, Lassegue B, Ushio-Fukai M . Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology. Arterioscler Thromb Vasc Biol 2000; 20: 2175–2183.

    Article  CAS  PubMed  Google Scholar 

  25. Borrello S, De Leo ME, Galeotti T . Defective gene expression of MnSOD in cancer cells. Mol Aspects Med 1993; 14: 253–258.

    Article  CAS  PubMed  Google Scholar 

  26. Hayashi S-I, Eguchi H, Tanimoto K, Yoshida T, Omoto Y, Inoue A et al. The expression and function of estrogen receptor alpha and beta in human breast cancer and its clinical application. Endocr Relat Cancer 2003; 10: 193–202.

    Article  CAS  PubMed  Google Scholar 

  27. Buetler TM, Krauskopf A, Ruegg UT . Role of superoxide as a signaling molecule. News Physiol. Sci 2004; 19: 120–123.

    CAS  PubMed  Google Scholar 

  28. Kanchan RK, Tripathi C, Baghel KS, Dwivedi SK, Kumar B, Sanyal S et al. Estrogen receptor potentiates mTORC2 signaling in breast cancer cells by upregulating superoxide anions. Free Radic Biol Med 2012; 53: 1929–1941.

    Article  Google Scholar 

  29. Kim SC, Sprung R, Chen Y, Xu Y, Ball H, Pei J et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell 2006; 23: 607–618.

    Article  CAS  PubMed  Google Scholar 

  30. Scher MB, Vaquero A, Reinberg D . SirT3 is a nuclear NAD+-dependent histone deacetylase that translocates to the mitochondria upon cellular stress. Genes Dev 2007; 21: 920–928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Stoica GE, Franke TF, Wellstein A, Czubayko F, List H-J, Reiter R et al. Estradiol rapidlyactivates Akt via the ERbB2 signaling pathway. Mol Endocrinol 2003; 15: 818–830.

    Article  Google Scholar 

  32. Aykin-Burns N, Ahmad IM, Zhu Y, Oberley LW, Spitz DR . Increased levels of superoxide and H2O2 mediate the differential susceptibility of cancer cells versus normal cells to glucose deprivation. Biochem J 2009; 418: 29–37.

    Article  CAS  PubMed  Google Scholar 

  33. Oberley LW . Mechanism of the tumor suppressive effect of MnSOD overexpression. Biomed Pharmacother 2005; 59: 143–148.

    Article  CAS  PubMed  Google Scholar 

  34. Dwivedi SK, Singh N, Kumari R, Mishra JS, Tripathi S, Banerjee P et al. Bile acid receptor agonist GW4064 regulates PPARgamma coactivator-1alpha expression through estrogen receptor-related receptor alpha. Mol Endocrinol 2011; 25: 922–932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen B, Caballero S, Seo S, Grant MB, Lewin AS . Delivery of antioxidant enzyme genes to protect against ischemia/reperfusion-induced injury to retinal microvasculature. Invest Ophthalmol Vis Sci 2009; 50: 5587–5595.

    Article  PubMed  Google Scholar 

  36. Misra HP, Fridovich I . The generation of superoxide radical during the autoxidation of hemoglobin. J Biol Chem 1972; 247: 6960–6962.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Director of CDRI for providing the facility and infrastructure. We also thank Dr Kalyan Mitra and Dr Kavita Singh (SAIF) for providing microscopy facilities and Dr AL Vishwakarma (SAIF) for providing flow cytometry facilities. The financial grants received for this study were SR/FT/LS-169/2012 from DST and No. BSC0103 from CSIR India. Mehraj u din alone received fellowship from the Indian Council of Medical Research, New Delhi under ICMR-JRF scheme vide award letter no. 3/1/3/JRF-2011/HRD-69(12035). The institutional manuscript no. for this article is 9324.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Bhadauria.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lone, MUD., Baghel, K., Kanchan, R. et al. Physical interaction of estrogen receptor with MnSOD: implication in mitochondrial O2.− upregulation and mTORC2 potentiation in estrogen-responsive breast cancer cells. Oncogene 36, 1829–1839 (2017). https://doi.org/10.1038/onc.2016.346

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.346

This article is cited by

Search

Quick links