Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Therapeutic targeting of necroptosis by Smac mimetic bypasses apoptosis resistance in acute myeloid leukemia cells

Abstract

Resistance to apoptosis, for example due to overexpression of Inhibitor of Apoptosis (IAP) proteins, is associated with poor prognosis in acute myeloid leukemia (AML). Here, we identify that Smac mimetics such as BV6, which antagonizes IAP proteins, elicit necroptosis in AML cells, in which apoptosis is inhibited pharmacologically by caspase inhibitors or genetically by caspase-8 knockdown. Importantly, BV6 triggers necroptosis also in apoptosis-resistant patient-derived AML blasts, underlining the clinical relevance of our findings. Mechanistically, we show that BV6-induced cell death depends on key components of necroptosis signaling such as RIP1, RIP3 and MLKL, since pharmacological or genetic inhibition of these proteins significantly protects AML cells from BV6-mediated cell death, whereas PGAM5 is dispensable. Interestingly, we identify constitutive tumor necrosis factor-alpha (TNFα) secretion and an autocrine/paracrine TNFα loop as critical mediators of BV6-induced necroptosis in AML cell lines and patient-derived blasts, as the TNFα-blocking antibody Enbrel or tumor necrosis factor-alpha receptor 1 (TNFR1) knockdown significantly rescue cell death. Notably, AML cells exhibit high basal levels of TNFα compared to non-malignant CD34+ cells, which is further increased by BV6. In conclusion, this is the first report showing that Smac mimetics circumvent apoptosis resistance in AML cells by inducing necroptosis in a TNFα-dependent manner, which has important implications for the development of new strategies to overcome treatment resistance in AML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Estey E, Dohner H . Acute myeloid leukaemia. Lancet 2006; 368: 1894–1907.

    Article  PubMed  Google Scholar 

  2. Fulda S, Debatin KM . Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 2006; 25: 4798–4811.

    Article  CAS  PubMed  Google Scholar 

  3. Taylor RC, Cullen SP, Martin SJ . Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 2008; 9: 231–241.

    Article  CAS  PubMed  Google Scholar 

  4. Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G . Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 2010; 11: 700–714.

    Article  CAS  PubMed  Google Scholar 

  5. Oberst A, Dillon CP, Weinlich R, McCormick LL, Fitzgerald P, Pop C et al. Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature 2011; 471: 363–367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fulda S, Vucic D, Targeting IAP . proteins for therapeutic intervention in cancer. Nat Rev Drug Discov 2012; 11: 109–124.

    Article  CAS  PubMed  Google Scholar 

  7. Tamm I, Kornblau SM, Segall H, Krajewski S, Welsh K, Kitada S et al. Expression and prognostic significance of IAP-family genes in human cancers and myeloid leukemias. Clin Cancer Res 2000; 6: 1796–1803.

    CAS  PubMed  Google Scholar 

  8. Tamm I, Richter S, Scholz F, Schmelz K, Oltersdorf D, Karawajew L et al. XIAP expression correlates with monocytic differentiation in adult de novo AML: impact on prognosis. Hematol J 2004; 5: 489–495.

    Article  CAS  PubMed  Google Scholar 

  9. Hess CJ, Berkhof J, Denkers F, Ossenkoppele GJ, Schouten JP, Oudejans JJ et al. Activated intrinsic apoptosis pathway is a key related prognostic parameter in acute myeloid leukemia. J Clin Oncol 2007; 25: 1209–1215.

    Article  CAS  PubMed  Google Scholar 

  10. Bullinger L, Rucker FG, Kurz S, Du J, Scholl C, Sander S et al. Gene-expression profiling identifies distinct subclasses of core binding factor acute myeloid leukemia. Blood 2007; 110: 1291–1300.

    Article  CAS  PubMed  Google Scholar 

  11. Varfolomeev E, Blankenship JW, Wayson SM, Fedorova AV, Kayagaki N, Garg P et al. IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation, and TNFalpha-dependent apoptosis. Cell 2007; 131: 669–681.

    Article  CAS  PubMed  Google Scholar 

  12. Vince JE, Wong WW, Khan N, Feltham R, Chau D, Ahmed AU et al. IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell 2007; 131: 682–693.

    Article  CAS  PubMed  Google Scholar 

  13. Wang L, Du F, Wang X . TNF-alpha induces two distinct caspase-8 activation pathways. Cell 2008; 133: 693–703.

    Article  CAS  PubMed  Google Scholar 

  14. Chromik J, Safferthal C, Serve H, Fulda S . Smac mimetic primes apoptosis-resistant acute myeloid leukaemia cells for cytarabine-induced cell death by triggering necroptosis. Cancer Lett 2014; 344: 101–109.

    Article  CAS  PubMed  Google Scholar 

  15. Steinhart L, Belz K, Fulda S . Smac mimetic and demethylating agents synergistically trigger cell death in acute myeloid leukemia cells and overcome apoptosis resistance by inducing necroptosis. Cell Death Dis 2013; 4: e802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Steinwascher S, Nugues AL, Schoeneberger H, Fulda S . Identification of a novel synergistic induction of cell death by Smac mimetic and HDAC inhibitors in acute myeloid leukemia cells. Cancer Lett 2015; 366: 32–43.

    Article  CAS  PubMed  Google Scholar 

  17. Weisberg E, Kung AL, Wright RD, Moreno D, Catley L, Ray A et al. Potentiation of antileukemic therapies by Smac mimetic, LBW242: effects on mutant FLT3-expressing cells. Mol Cancer Ther 2007; 6: 1951–1961.

    Article  CAS  PubMed  Google Scholar 

  18. Weisberg E, Ray A, Barrett R, Nelson E, Christie AL, Porter D et al. Smac mimetics: implications for enhancement of targeted therapies in leukemia. Leukemia 2010; 24: 2100–2109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Servida F, Lecis D, Scavullo C, Drago C, Seneci P, Carlo-Stella C et al. Novel second mitochondria-derived activator of caspases (Smac) mimetic compounds sensitize human leukemic cell lines to conventional chemotherapeutic drug-induced and death receptor-mediated apoptosis. Invest New Drugs 2011; 29: 1264–1275.

    Article  CAS  PubMed  Google Scholar 

  20. Carter BZ, Mak PY, Mak DH, Shi Y, Qiu Y, Bogenberger JM et al. Synergistic targeting of AML stem/progenitor cells with IAP antagonist birinapant and demethylating agents. J Natl Cancer Inst 2014; 106: djt440.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Laukens B, Jennewein C, Schenk B, Vanlangenakker N, Schier A, Cristofanon S et al. Smac Mimetic Bypasses Apoptosis Resistance in FADD- or Caspase-8-Deficient Cells by Priming for Tumor Necrosis Factor alpha-Induced Necroptosis. Neoplasia 2011; 13: 971–979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. He S, Wang L, Miao L, Wang T, Du F, Zhao L et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 2009; 137: 1100–1111.

    Article  CAS  PubMed  Google Scholar 

  23. Cho YS, Challa S, Moquin D, Genga R, Ray TD, Guildford M et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 2009; 137: 1112–1123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang DW, Shao J, Lin J, Zhang N, Lu BJ, Lin SC et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 2009; 325: 332–336.

    Article  CAS  PubMed  Google Scholar 

  25. Fulda S . Promises and challenges of Smac mimetics as cancer therapeutics. Clin Cancer Res 2015; 21: 5030–5036.

    Article  CAS  PubMed  Google Scholar 

  26. Wang Z, Jiang H, Chen S, Du F, Wang X . The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell 2012; 148: 228–243.

    Article  CAS  PubMed  Google Scholar 

  27. Schenk B, Fulda S . Reactive oxygen species regulate Smac mimetic/TNFalpha-induced necroptotic signaling and cell death. Oncogene 2015; 34: 5796–5806.

    Article  CAS  PubMed  Google Scholar 

  28. Petersen SL, Wang L, Yalcin-Chin A, Li L, Peyton M, Minna J et al. Autocrine TNFalpha signaling renders human cancer cells susceptible to Smac-mimetic-induced apoptosis. Cancer Cell 2007; 12: 445–456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Volk A, Li J, Xin J, You D, Zhang J, Liu X et al. Co-inhibition of NF-kappaB and JNK is synergistic in TNF-expressing human AML. J Exp Med 2014; 211: 1093–1108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fulda S . Exploiting inhibitor of apoptosis proteins as therapeutic targets in hematological malignancies. Leukemia 2012; 26: 1155–1165.

    Article  CAS  PubMed  Google Scholar 

  31. Moriwaki K, Farias Luz N, Balaji S, De Rosa MJ, O'Donnell CL, Gough PJ et al. The Mitochondrial Phosphatase PGAM5 Is Dispensable for Necroptosis but Promotes Inflammasome Activation in Macrophages. J Immunol 2016; 196: 407–415.

    Article  CAS  PubMed  Google Scholar 

  32. Chu WM . Tumor necrosis factor. Cancer Lett 2013; 328: 222–225.

    Article  CAS  PubMed  Google Scholar 

  33. Lalaoui N, Hanggi K, Brumatti G, Chau D, Nguyen NY, Vasilikos L et al. Targeting p38 or MK2 Enhances the Anti-Leukemic Activity of Smac-Mimetics. Cancer Cell 2016; 29: 145–158.

    Article  CAS  PubMed  Google Scholar 

  34. Bertrand MJ, Milutinovic S, Dickson KM, Ho WC, Boudreault A, Durkin J et al. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell 2008; 30: 689–700.

    Article  CAS  PubMed  Google Scholar 

  35. Infante JR, Dees EC, Olszanski AJ, Dhuria SV, Sen S, Cameron S et al. Phase I dose-escalation study of LCL161, an oral inhibitor of apoptosis proteins inhibitor, in patients with advanced solid tumors. J Clin Oncol 2014; 32: 3103–3110.

    Article  CAS  PubMed  Google Scholar 

  36. Belz K, Schoeneberger H, Wehner S, Weigert A, Bonig H, Klingebiel T et al. Smac mimetic and glucocorticoids synergize to induce apoptosis in childhood ALL by promoting ripoptosome assembly. Blood 2014; 124: 240–250.

    Article  CAS  PubMed  Google Scholar 

  37. DiPersio J, Erba H, Larson R, Luger S, Mangan K, Tallman M et al. Phase I study of Debio1143 (AT406) in combination with daunorubicin (D) and cytarabine (C) in patients with poor-risk acute myeloid leukemia (AML). J Clin Oncols 2014; 32 (15 suppl): 7029.

    Article  Google Scholar 

  38. Fulda S, Strauss G, Meyer E, Debatin KM . Functional CD95 ligand and CD95 death-inducing signaling complex in activation-induced cell death and doxorubicin-induced apoptosis in leukemic T cells. Blood 2000; 95: 301–308.

    CAS  PubMed  Google Scholar 

  39. Fakler M, Loeder S, Vogler M, Schneider K, Jeremias I, Debatin KM et al. Small molecule XIAP inhibitors cooperate with TRAIL to induce apoptosis in childhood acute leukemia cells and overcome Bcl-2-mediated resistance. Blood 2009; 113: 1710–1722.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank X Wang (Beijing, China) for kindly providing PGAM5 antibody and C Hugenberg for expert secretarial assistance. This work has been partially supported by grants from the BMBF (German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) and CI3 131A029B), IUAP VII (to SF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Fulda.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safferthal, C., Rohde, K. & Fulda, S. Therapeutic targeting of necroptosis by Smac mimetic bypasses apoptosis resistance in acute myeloid leukemia cells. Oncogene 36, 1487–1502 (2017). https://doi.org/10.1038/onc.2016.310

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.310

This article is cited by

Search

Quick links