Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Oncolytic reovirus induces intracellular redistribution of Ras to promote apoptosis and progeny virus release

Abstract

Reovirus is a naturally oncolytic virus that preferentially replicates in Ras-transformed cells and is currently undergoing clinical trials as a cancer therapeutic. Ras transformation promotes reovirus oncolysis by enhancing virion disassembly during entry, viral progeny production, and virus release through apoptosis; however, the mechanism behind the latter is not well understood. Here, we show that reovirus alters the intracellular location of oncogenic Ras to induce apoptosis of H-RasV12-transformed fibroblasts. Reovirus infection decreases Ras palmitoylation levels and causes accumulation of Ras in the Golgi through Golgi fragmentation. With the Golgi being the site of Ras palmitoylation, treatment of target cells with the palmitoylation inhibitor, 2-bromopalmitate (2BP), prompts a greater accumulation of H-RasV12 in the Golgi, and a dose-dependent increase in progeny virus release and subsequent spread. Conversely, tethering H-RasV12 to the plasma membrane (thereby preventing its movement to the Golgi) allows for efficient virus production, but results in basal levels of reovirus-induced cell death. Analysis of Ras downstream signaling reveals that cells expressing cycling H-RasV12 have elevated levels of phosphorylated JNK (c-Jun N-terminal kinase), and that Ras retained at the Golgi body by 2BP increases activation of the MEKK1/MKK4/JNK signaling pathway to promote cell death. Collectively, our data suggest that reovirus induces Golgi fragmentation of target cells, and the subsequent accumulation of oncogenic Ras in the Golgi body initiates apoptotic signaling events required for virus release and spread.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Coffey MC, Strong JE, Forsyth PA, Lee PWK . Reovirus therapy of tumors with activated Ras pathway. Science 1998; 282: 1332–1334.

    Article  CAS  Google Scholar 

  2. Strong JE, Coffey MC, Tang D, Sabinin P, Lee PWK . The molecular basis of viral oncolysis: usurpation of the Ras signaling pathway by reovirus. EMBO J 1998; 17: 3351–3362.

    Article  CAS  Google Scholar 

  3. Calvo F, Agudo-Ibáñez L, Crespo P . The Ras-ERK pathway: understanding site-specific signaling provides hope of new anti-tumor therapies. BioEssays 2010; 32: 412–421.

    Article  CAS  Google Scholar 

  4. Norman KL, Coffey MC, Hirasawa K, Demetrick DJ, Nishikawa SG, DiFrancesco LM et al. Reovirus oncolysis of human breast cancer. Hum Gene Ther 2002; 13: 641–652.

    Article  CAS  Google Scholar 

  5. Hirasawa K, Nishikawa S, Norman K, Alain T, Kossakowska A, Lee PWK . Oncolytic reovirus against ovarian and colon cancer. Cancer Res 2002; 62: 1696–1701.

    CAS  PubMed  Google Scholar 

  6. Oncolytics Biotech Inc Reovirus clinical trials, 2014. Available at: http://www.oncolyticsbiotech.com/clinical-trials/default.aspx (last accessed 13 April 2015).

  7. Marcato P, Shmulevitz M, Pan D, Stoltz D, Lee PWK . Ras transformation mediates reovirus oncolysis by enhancing virus uncoating, particle infectivity, and apoptosis-dependent release. Mol Ther 2007; 15: 1522–1530.

    Article  CAS  Google Scholar 

  8. Shmulevitz M, Pan L, Garant K, Pan D, Lee PWK . Oncogenic Ras promotes reovirus spread by suppressing IFN-beta production through negative regulation of RIG-I signaling. Cancer Res 2010; 70: 4912–4921.

    Article  CAS  Google Scholar 

  9. Der CJ, Krontiris TG, Cooper GM . Transforming genes of human bladder and lung carcinoma cell lines are homologous to the ras genes of Harvey and Kirsten sarcoma viruses. Proc Natl Acad Sci USA 1982; 79: 3637–3640.

    Article  CAS  Google Scholar 

  10. Shimizu K, Goldfarb M, Perucho M, Wigler M . Isolation and preliminary characterization of the transforming gene of a human neuroblastoma cell line. Proc Natl Acad Sci 1983; 80: 383–387.

    Article  CAS  Google Scholar 

  11. Ahearn IM, Haigis K, Bar-Sagi D, Philips MR . Regulating the regulator: post-translational modification of RAS. Nat Rev Mol Cell Biol 2012; 13: 39–51.

    Article  CAS  Google Scholar 

  12. Casey PJ, Solski PA, Der CJ, Buss JE . P21ras is modified by a farnesyl isoprenoid. Proc Natl Acad Sci USA 1989; 86: 8323–8327.

    Article  CAS  Google Scholar 

  13. Boyartchuk VL, Ashby MN, Rine J . Modulation of ras and a-factor function by carboxyl-terminal proteolysis. Science 1997; 275: 1796–1800.

    Article  CAS  Google Scholar 

  14. Dai Q, Choy E, Chiu V, Romano J, Slivka SR, Steitz SA et al. Mammalian prenylcysteine carboxyl methyltransferase is in the endoplasmic reticulum. J Biol Chem 1998; 273: 15030–15034.

    Article  CAS  Google Scholar 

  15. Choy E, Chiu VK, Silletti J, Feoktistov M, Morimoto T, Michaelson D et al. Endomembrane trafficking of ras: the CAAX motif targets proteins to the ER and Golgi. Cell 1999; 98: 69–80.

    Article  CAS  Google Scholar 

  16. Hancock JF, Magee AI, Childs JE, Marshall J . All ras proteins are polyisoprenylated but only some are palmitoylated. Cell 1989; 57: 1167–1177.

    Article  CAS  Google Scholar 

  17. Swarthout JT, Lobo S, Farh L, Croke MR, Greentree WK, Deschenes RJ et al. DHHC9 and GCP16 constitute a human protein fatty acyltransferase with specificity for H- and N-ras. J Biol Chem 2005; 280: 31141–31148.

    Article  CAS  Google Scholar 

  18. Shahinian S, Silvius JR . Doubly-lipid-modified protein sequence motifs exhibit long-lived anchorage to lipid bilayer membranes. Biochemistry 1995; 34: 3813–3822.

    Article  CAS  Google Scholar 

  19. Ahearn IM, Tsai FD, Court H, Zhou M, Jennings BC, Ahmed M et al. FKBP12 binds to acylated H-Ras and promotes depalmitoylation. Mol Cell 2011; 41: 173–185.

    Article  CAS  Google Scholar 

  20. Duncan J, Gilman A . A cytoplasmic acyl-protein thioesterase that removes palmitate from G protein alpha subunits and p21RAS. J Biol Chem 1998; 273: 15830–15837.

    Article  CAS  Google Scholar 

  21. Rocks O, Peyker A, Kahms M, Verveer PJ, Koerner C, Lumbierres M et al. An acylation cycle regulates localization and activity of palmitoylated Ras isoforms. Science 2005; 307: 1746–1752.

    Article  CAS  Google Scholar 

  22. Goodwin JS, Drake KR, Rogers C, Wright L, Lippincott-Schwartz J, Philips MR et al. Depalmitoylated Ras traffics to and from the Golgi complex via a nonvesicular pathway. J Cell Biol 2005; 170: 261–272.

    Article  CAS  Google Scholar 

  23. Roy S, Plowman S, Rotblat B, Prior IA, Muncke C, Grainger S et al. Individual palmitoyl residues serve distinct roles in H-Ras. Mol Cell Biol 2005; 25: 6722–6733.

    Article  CAS  Google Scholar 

  24. Chiu VK, Bivona T, Hach A, Sajous JB, Silletti J, Wiener H et al. Ras signalling on the endoplasmic reticulum and the Golgi. Nat Cell Biol 2002; 4: 343–350.

    Article  CAS  Google Scholar 

  25. Matallanas D, Sanz-Moreno V, Arozarena I, Calvo F, Agudo-Ibáñez L, Santos E et al. Distinct utilization of effectors and biological outcomes resulting from site-specific ras activation: Ras functions in lipid rafts and golgi complex are dispensable for proliferation and transformation. Mol Cell Biol 2006; 26: 100–116.

    Article  CAS  Google Scholar 

  26. Bos JL . Ras oncogenes in human cancer: a review. Cancer Res 1989; 49: 4682–4689.

    CAS  Google Scholar 

  27. Vigil D, Cherfils J, Rossman K, Der C . Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy? Nat Rev Cancer 2010; 10: 842–857.

    Article  CAS  Google Scholar 

  28. Gutierrez L, Magee AI, Marshall CJ, Hancock JF . Post-translational processing of p21ras is two-step and involves carboxyl-methylation and carboxy-terminal proteolysis. EMBO J 1989; 8: 1093–1098.

    Article  CAS  Google Scholar 

  29. Stickney BJT, Booden MA, Buss JE . Targeting proteins to membranes, using signal sequences for lipid modifications. Methods Enzymol 2001; 332: 64–77.

    Article  CAS  Google Scholar 

  30. Drisdel RC, Alexander JK, Sayeed A, Green WN . Assays of protein palmitoylation. Methods 2006; 40: 127–134.

    Article  CAS  Google Scholar 

  31. Colanzi A, Suetterlin C, Malhotra V . Cell-cycle-specific Golgi fragmentation: how and why? Curr Opin Cell Biol 2003; 15: 462–467.

    Article  CAS  Google Scholar 

  32. Mukherjee S, Chiu R, Leung S-M, Shields D . Fragmentation of the Golgi apparatus: an early apoptotic event independent of the cytoskeleton. Traffic 2007; 8: 369–378.

    Article  CAS  Google Scholar 

  33. Nozawa K, Casiano CA, Hamel JC, Molinaro C, Fritzler MJ, Chan EKL . Fragmentation of Golgi complex and Golgi autoantigens during apoptosis and necrosis. Arthritis Res 2002; 4: R3.

    Article  Google Scholar 

  34. Parker JSL, Broering TJ, Kim J, Higgins E, Nibert ML . Reovirus core protein μ2 determines the filamentous morphology of viral inclusion bodies by interacting with and stabilizing microtubules. J Virol 2002; 76: 4483–4496.

    Article  CAS  Google Scholar 

  35. Sharpe AH, Chen LB, Fields BN . The interaction of mammalian reoviruses with the cytoskeleton of monkey kidney CV-1 cells. Virology 1982; 120: 399–411.

    Article  CAS  Google Scholar 

  36. Resh MD . Use of analogs and inhibitors to study the functional significance of protein palmitoylation. Methods 2006; 40: 191–197.

    Article  CAS  Google Scholar 

  37. Webb Y, Hermida-Matsumoto L, Resh MD . Inhibition of protein palmitoylation, raft localization, and T cell signaling by 2-bromopalmitate and polyunsaturated fatty acids. J Biol Chem 2000; 275: 261–270.

    Article  CAS  Google Scholar 

  38. Clarke P, Meintzer S, Wang Y . JNK regulates the release of proapoptotic mitochondrial factors in reovirus-infected cells. J Virol 2004; 78: 13132–13138.

    Article  CAS  Google Scholar 

  39. Russell M, Lange-Carter C, Johnson G . Direct interaction between Ras and the kinase domain of mitogen-activated protein kinase kinase kinase (MEKK1). J Biol Chem 1995; 270: 11757–11760.

    Article  CAS  Google Scholar 

  40. Kominsky DJ, Bickel RJ, Tyler KL . Reovirus-induced apoptosis requires both death receptor- and mitochondrial-mediated caspase-dependent pathways of cell death. Cell Death Differ 2002; 9: 926–933.

    Article  CAS  Google Scholar 

  41. Kominsky D, Bickel R, Tyler K . Reovirus-induced apoptosis requires mitochondrial release of Smac/DIABLO and involves reduction of cellular inhibitor of apoptosis protein levels. J Virol 2002; 76: 11414–11424.

    Article  CAS  Google Scholar 

  42. Ilkow CS, Swift SL, Bell JC, Diallo J-S . From scourge to cure: tumour-selective viral pathogenesis as a new strategy against cancer. PLoS Pathogen 2014; 10: e1003836.

    Article  Google Scholar 

  43. Avitabile E, Di Gaeta S, Torrisi MR, Ward PL, Roizman B, Campadelli-Fiume G . Redistribution of microtubules and Golgi apparatus in herpes simplex virus-infected cells and their role in viral exocytosis. J Virol 1995; 69: 7472–7482.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Summy JM, Gallick GE . Src family kinases in tumor progression and metastasis. Cancer Metast Rev 2003; 22: 337–358.

    Article  CAS  Google Scholar 

  45. Grabocka E, Pylayeva-Gupta Y, Jones MJK, Lubkov V, Yemanaberhan E, Taylor L et al. Wild-type H- and N-Ras promote mutant K-Ras-driven tumorigenesis by modulating the DNA damage response. Cancer Cell 2014; 25: 243–256.

    Article  CAS  Google Scholar 

  46. Heinemann L, Simpson GR, Boxall A, Kottke T, Relph KL, Vile R et al. Synergistic effects of oncolytic reovirus and docetaxel chemotherapy in prostate cancer. BMC Cancer 2011; 11: 221.

    Article  CAS  Google Scholar 

  47. Baines A, Xu D, Der C . Inhibition of Ras for cancer treatment: the search continues. Fut Med Chem 2011; 3: 1787–1808.

    Article  CAS  Google Scholar 

  48. Mendez II, Hermann LL, Hazelton PR, Coombs KM . A comparative analysis of Freon substitutes in the purification of reovirus and calicivirus. J Virol Methods 2000; 90: 59–67.

    Article  CAS  Google Scholar 

  49. Dekker FJ, Rocks O, Vartak N, Menninger S, Hedberg C, Balamurugan R et al. Small-molecule inhibition of APT1 affects Ras localization and signaling. Nat Chem Biol 2010; 6: 449–456.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the research grants from the Canadian Institutes for Health Research (Grant FRN # 130574) and the Terry Fox Research Institute (TFRI) New Frontiers Program in Cancer Research (through Canadian Oncolytic Virus Consortium (COVCo)) to PWKL and SAG. Funding for KA Garant was awarded through the National Sciences and Engineering Research Council of Canada, the Killam Trusts and the Nova Scotia Health Research Foundation. Plasma membrane-tethered CD8-H-RasV12xx in pCEFL was a gift from Dr Piero Crespo (University of Cantabria, Cantabria, Spain). D-G Ahn was supported by the Canadian Institute of Health Research (CIHR)—Cancer Research Training Program and the Beatrice Hunter Cancer Research Institute (BHCRI). SG was supported by CIHR postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S A Gujar or P W K Lee.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garant, K., Shmulevitz, M., Pan, L. et al. Oncolytic reovirus induces intracellular redistribution of Ras to promote apoptosis and progeny virus release. Oncogene 35, 771–782 (2016). https://doi.org/10.1038/onc.2015.136

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.136

This article is cited by

Search

Quick links