Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Induction of the intestinal stem cell signature gene SMOC-2 is required for L1-mediated colon cancer progression

Abstract

Overactivation of Wnt-β-catenin signaling, including β-catenin-TCF target gene expression, is a hallmark of colorectal cancer (CRC) development. We identified the immunoglobulin family of cell-adhesion receptors member L1 as a β-catenin-TCF target gene preferentially expressed at the invasive edge of human CRC tissue. L1 can confer enhanced motility and liver metastasis when expressed in CRC cells. This ability of L1-mediated metastasis is exerted by a mechanism involving ezrin and the activation of NF-κB target genes. In this study, we identified the secreted modular calcium-binding matricellular protein-2 (SMOC-2) as a gene activated by L1-ezrin-NF-κB signaling. SMOC-2 is also known as an intestinal stem cell signature gene in mice expressing Lgr5 in cells at the bottom of intestinal crypts. The induction of SMOC-2 expression in L1-expressing CRC cells was necessary for the increase in cell motility, proliferation under stress and liver metastasis conferred by L1. SMOC-2 expression induced a more mesenchymal like phenotype in CRC cells, a decrease in E-cadherin and an increase in Snail by signaling that involves integrin-linked kinase (ILK). SMOC-2 was localized at the bottom of normal human colonic crypts and at increased levels in CRC tissue with preferential expression in invasive areas of the tumor. We found an increase in Lgr5 levels in CRC cells overexpressing L1, p65 or SMOC-2, suggesting that L1-mediated CRC progression involves the acquisition of a stem cell-like phenotype, and that SMOC-2 elevation is necessary for L1-mediated induction of more aggressive/invasive CRC properties.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Clevers H . Wnt/beta-catenin signaling in development and disease. Cell 2006; 127: 469–480.

    Article  CAS  PubMed  Google Scholar 

  2. Polakis P . The many ways of Wnt in cancer. Curr Opin Genet Dev 2007; 17: 45–51.

    Article  CAS  PubMed  Google Scholar 

  3. Conacci-Sorrell M, Zhurinsky J, Ben-Ze’ev A . The cadherin-catenin adhesion system in adhesion, signaling and cancer. J Clin Invest 2002; 109: 987–991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brümmendorf T, Kenwrick S, Rathjen FG . Neural cell recognition molecule L1: from cell biology to human hereditary brain malformations. Curr Opin Neurobiol 1998; 8: 87–97.

    Article  PubMed  Google Scholar 

  5. Hortsch M . Structural and functional evolution of the L1 family: are four adhesion molecules better than one? Mol Cell Neurosci 2000; 15: 1–10.

    Article  CAS  PubMed  Google Scholar 

  6. Conacci-Sorrell ME, Ben-Yedidia T, Shtutman M, Feinstein E, Einat P, Ben-Ze'ev A . Nr-CAM is a target gene of the beta-catenin/LEF-1 pathway in melanoma and colon cancer and its expression enhances motility and confers tumorigenesis. Genes Dev 2002; 16: 2058–2072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gavert N, Conacci-Sorrell M, Gast D, Schneider A, Altevogt P, Brabletz T et al. L1, a novel target of beta-catenin signaling, transforms cells and is expressed at the invasive front of colon cancers. J Cell Biol 2005; 168: 633–642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gavert N, Sheffer M, Raveh S, Spaderna S, Shtutman M, Brabletz T et al. Expression of L1-CAM and ADAM10 in human colon cancer cells induces metastasis. Cancer Res 2007; 67: 7703–7712.

    Article  CAS  PubMed  Google Scholar 

  9. Gavert N, Shvab A, Sheffer M, Ben-Shmuel A, Haase G, Bakos E et al. c-Kit is suppressed in human colon cancer tissue and contributes to L1-mediated metastasis. Cancer Res 2013; 73: 5754–5763.

    Article  CAS  PubMed  Google Scholar 

  10. Gavert N, Ben-Shmuel A, Lemmon V, Brabletz T, Ben-Ze'ev A . Nuclear factor-kappaB signaling and ezrin are essential for L1-mediated metastasis of colon cancer cells. J Cell Sci 2010; 123: 2135–2143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ben-Shmuel A, Shvab A, Gavert N, Brabletz T, Ben-Ze'ev A . Global analysis of L1-transcriptomes identified IGFBP-2 as a target of ezrin and NF-κB signaling that promotes colon cancer progression. Oncogene 2013; 32: 3220–3230.

    Article  CAS  PubMed  Google Scholar 

  12. Munoz J, Stange D, Schepers A, van de Wetering M, Koo B, Itzkovitz S et al. The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent ‘+4’ cell markers. EMBO J 2012; 31: 3079–3091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vannahme C, Gosling S, Paulsson M, Maurer P, Hartmann U . Characterization of SMOC-2, a modular extracellular calcium-binding protein. Biochem J 2003; 373: 805–814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Novinec M, Kovacic L, Skrlj N, Turk V, Lenarcic B . Recombinant human SMOCs produced by in vitro refolding: calcium binding properties and interactions with serum proteins. Protein Expr Purif 2008; 62: 75–82.

    Article  CAS  PubMed  Google Scholar 

  15. Liu P, Lu J, Cardoso W, Vaziri C . The SPARC-related factor SMOC-2 promotes growth factor-induced cyclin D1 expression and DNA synthesis via integrin-linked kinase. Mol Biol Cell 2008; 19: 248–261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Thiery JP, Acloque H, Huang R, Nieto MA . Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139: 871–890.

    Article  CAS  PubMed  Google Scholar 

  17. Serrano I, McDonald P, Lock F, Muller WJ, Dedhar S . Inactivation of the Hippo tumour suppressor pathway by integrin-linked kinase. Nat Commun 2013; 4: 2976.

    Article  PubMed  Google Scholar 

  18. Bornstein P, Sage H . Matricellular proteins: extracellular modulators of cell function. Curr Opin Cell Biol 2002; 14: 608–616.

    Article  CAS  PubMed  Google Scholar 

  19. Liu P, Pazin D, Merson R, Albrecht K, Vaziri C . The developmentally-regulated Smoc2 gene is repressed by aryl-hydrocarbon receptor (Ahr) signaling. Gene 2009; 433: 72–80.

    Article  CAS  PubMed  Google Scholar 

  20. Rocnik E, Liu P, Sato K, Walsh K, Vaziri C . The novel SPARC family member SMOC-2 potentiates angiogenic growth factor activity. J Biol Chem 2006; 281: 22855–22864.

    Article  CAS  PubMed  Google Scholar 

  21. Maier S, Paulsson M, Hartmann U . The widely expressed extracellular matrix protein SMOC-2 promotes keratinocyte attachment and migration. Exp Cell Res 2008; 314: 2477–2487.

    Article  CAS  PubMed  Google Scholar 

  22. Milano S, Kwon W, Pereira R, Antonyak M, Cerione R . Characterization of a novel activated Ran GTPase mutant and its ability to induce cellular transformation. J Biol Chem 2012; 287: 24955–24966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Merlos-Suarez A, Barriga F, Jung P, Iglesias M, Cespedes MV, Rossell D et al. The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Cell Stem Cell 2011; 8: 511–524.

    Article  CAS  PubMed  Google Scholar 

  24. Uchida H, Yamazaki K, Fukuma M, Yamada T, Hayashida T et al. Overexpression of leucine-rich repeat-containing G protein-coupled receptor 5 in colorectal cancer. Cancer Sci 2010; 101: 1731–1737.

    Article  CAS  PubMed  Google Scholar 

  25. Schwitalla S, Fingerle A, Cammareri P, Nebelsiek T, Goktuna S et al. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell 2013; 152: 25–38.

    Article  CAS  PubMed  Google Scholar 

  26. Pattabiraman D, Weinberg R . Tackling the cancer stem cells—what challenges do they pose? Nature Rev Drug Discov 2014; 13: 497–512.

    Article  CAS  Google Scholar 

  27. Brabletz T, Jung A, Spaderna S, Hlubek F, Kirchner T . Opinion: migrating cancer stem cells—an integrated concept of malignant tumor progression. Nat Rev Cancer 2005; 5: 744–749.

    Article  CAS  PubMed  Google Scholar 

  28. Brabletz T . EMT and MET in metastasis: where are the cancer stem cells? Can Cell 2012; 22: 699–701.

    Article  CAS  Google Scholar 

  29. Gavert N, Vivanti A, Hazin J, Brabletz T, Ben-Ze’ev A . L1-mediated colon cancer metastasis does not require changes in EMT and cancer stem cell markers. Mol Can Res 2011; 9: 14–24.

    Article  CAS  Google Scholar 

  30. Shmelkov SV, Butler JM, Hooper AT, Hormigo A, Kushner J, Milde T et al. CD133 expression is not restricted to stem cells, and both CD133+ and CD133-metastatic colon cancer cells initiate tumors. J Clin Invest 2008; 118: 2111–2120.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Yan Z, Yin H, Wang R, Wu D, Sun W et al. Overexpression of integrin-linked kinase (ILK) promotes migration and invasion of colorectal cancer cells by inducing epithelial-mesenchymal transition via NF-κB signaling. Acta Histochem 2014; 116: 527–533.

    Article  CAS  PubMed  Google Scholar 

  32. Simons B, Clevers H . Stem cell self-renewal in intestinal crypt. Exp Cell Res 2011; 317: 2719–2724.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs C Vaziri, U Hartmann, B Lenarcic, S Milano, R Cerione and P McDonald for reagents. This study was supported by grants from the Israel Cancer Research Fund (ICRF) and from the Israel Science Foundation (ISF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Ben-Ze'ev.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shvab, A., Haase, G., Ben-Shmuel, A. et al. Induction of the intestinal stem cell signature gene SMOC-2 is required for L1-mediated colon cancer progression. Oncogene 35, 549–557 (2016). https://doi.org/10.1038/onc.2015.127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.127

This article is cited by

Search

Quick links