Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Mutant versions of von Hippel-Lindau (VHL) can protect HIF1α from SART1-mediated degradation in clear-cell renal cell carcinoma

Abstract

Inactivation of the von Hippel-Lindau (VHL) tumor suppressor drives the development of clear-cell renal cell carcinoma (ccRCC) through hypoxia-inducible factors (HIFs). Although ccRCC cells exhibit constitutive normoxic HIF signaling, the potential role of hypoxia in this setting is not fully understood. We show here that the ccRCC cell lines RCC4 and RCC10, which express mutant versions of VHL, have reduced HIF1α expression in hypoxia, whereas HIF2α expression is increased or not affected. Similar findings were observed in normoxia after abrogation of prolyl hydroxylase activity by siRNA or pharmacological inhibition, and by siRNA inhibition of mutant VHL. This reduction of HIF1α protein is due to proteasome-dependent degradation and is mediated by the E3 ubiquitin ligase SART1. HIF1α degradation favors ccRCC proliferation, in line with the previously recognized tumor suppressor capability of HIF1α. Our data indicate that mutant VHL can protect HIF1α from SART1-dependent degradation in normoxic conditions, but this protection is lost in hypoxic settings, favoring hypoxia-dependent ccRCC proliferation. This mechanism of HIF1α degradation might operate in some VHL-related clear-cell renal carcinomas in which the deletion of HIF1α locus does not occur.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Kim WY, Kaelin WG . Role of VHL gene mutation in human cancer. J Clin Oncol 2004; 22: 4991–5004.

    Article  CAS  Google Scholar 

  2. Maher ER, Yates JR, Harries R, Benjamin C, Harris R, Moore AT et al. Clinical features and natural history of von Hippel-Lindau disease. Q J Med 1990; 77: 1151–1163.

    Article  CAS  Google Scholar 

  3. Beroukhim R, Brunet JP, Di Napoli A, Mertz KD, Seeley A, Pires MM et al. Patterns of gene expression and copy-number alterations in von-hippel lindau disease-associated and sporadic clear cell carcinoma of the kidney. Cancer Res 2009; 69: 4674–4681.

    Article  CAS  Google Scholar 

  4. Bruick RK, McKnight SL . A conserved family of prolyl-4-hydroxylases that modify HIF. Science 2001; 294: 1337–1340.

    Article  CAS  Google Scholar 

  5. Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 2001; 292: 464–468.

    Article  CAS  Google Scholar 

  6. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 2001; 292: 468–472.

    Article  CAS  Google Scholar 

  7. Yu F, White SB, Zhao Q, Lee FS . HIF-1alpha binding to VHL is regulated by stimulus-sensitive proline hydroxylation. Proc Natl Acad Sci USA 2001; 98: 9630–9635.

    Article  CAS  Google Scholar 

  8. Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 1999; 399: 271–275.

    Article  CAS  Google Scholar 

  9. Kondo K, Kim WY, Lechpammer M, Kaelin WG Jr . Inhibition of HIF2alpha is sufficient to suppress pVHL-defective tumor growth. PLoS Biol 2003; 1: E83.

    Article  Google Scholar 

  10. Kondo K, Klco J, Nakamura E, Lechpammer M, Kaelin WG Jr . Inhibition of HIF is necessary for tumor suppression by the von Hippel-Lindau protein. Cancer Cell 2002; 1: 237–246.

    Article  CAS  Google Scholar 

  11. Raval RR, Lau KW, Tran MG, Sowter HM, Mandriota SJ, Li JL et al. Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma. Mol Cell Biol 2005; 25: 5675–5686.

    Article  CAS  Google Scholar 

  12. Mandriota SJ, Turner KJ, Davies DR, Murray PG, Morgan NV, Sowter HM et al. HIF activation identifies early lesions in VHL kidneys: evidence for site-specific tumor suppressor function in the nephron. Cancer Cell 2002; 1: 459–468.

    Article  CAS  Google Scholar 

  13. Shen C, Beroukhim R, Schumacher SE, Zhou J, Chang M, Signoretti S et al. Genetic and functional studies implicate HIF1alpha as a 14q kidney cancer suppressor gene. Cancer Discov 2011; 1: 222–235.

    Article  CAS  Google Scholar 

  14. Lawrentschuk N, Lee FT, Jones G, Rigopoulos A, Mountain A, O’Keefe G et al. Investigation of hypoxia and carbonic anhydrase IX expression in a renal cell carcinoma xenograft model with oxygen tension measurements and (1)(2)(4)I-cG250 PET/CT. Urol Oncol 2011; 29: 411–420.

    Article  CAS  Google Scholar 

  15. Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC . HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 2006; 3: 187–197.

    Article  CAS  Google Scholar 

  16. Elorza A, Soro-Arnaiz I, Melendez-Rodriguez F, Rodriguez-Vaello V, Marsboom G, de Carcer G et al. HIF2alpha acts as an mTORC1 activator through the amino acid carrier SLC7A5. Mol Cell 2012; 48: 681–691.

    Article  CAS  Google Scholar 

  17. Metzen E, Berchner-Pfannschmidt U, Stengel P, Marxsen JH, Stolze I, Klinger M et al. Intracellular localisation of human HIF-1 alpha hydroxylases: implications for oxygen sensing. J Cell Sci 2003; 116: 1319–1326.

    Article  CAS  Google Scholar 

  18. Liu YV, Baek JH, Zhang H, Diez R, Cole RN, Semenza GL . RACK1 competes with HSP90 for binding to HIF-1alpha and is required for O(2)-independent and HSP90 inhibitor-induced degradation of HIF-1alpha. Mol Cell 2007; 25: 207–217.

    Article  Google Scholar 

  19. Luo W, Zhong J, Chang R, Hu H, Pandey A, Semenza GL . Hsp70 and CHIP selectively mediate ubiquitination and degradation of hypoxia-inducible factor (HIF)-1alpha but Not HIF-2alpha. J Biol Chem 2009; 285: 3651–3663.

    Article  Google Scholar 

  20. Montagner M, Enzo E, Forcato M, Zanconato F, Parenti A, Rampazzo E et al. SHARP1 suppresses breast cancer metastasis by promoting degradation of hypoxia-inducible factors. Nature 2012; 487: 380–384.

    Article  CAS  Google Scholar 

  21. Koh MY, Darnay BG, Powis G . Hypoxia-associated factor, a novel E3-ubiquitin ligase, binds and ubiquitinates hypoxia-inducible factor 1alpha, leading to its oxygen-independent degradation. Mol Cell Biol 2008; 28: 7081–7095.

    Article  CAS  Google Scholar 

  22. Koh MY, Lemos Jr R, Liu X, Powis G . The hypoxia-associated factor switches cells from HIF-1alpha- to HIF-2alpha-dependent signaling promoting stem cell characteristics, aggressive tumor growth and invasion. Cancer Res 2011; 71: 4015–4027.

    Article  CAS  Google Scholar 

  23. Clifford SC, Cockman ME, Smallwood AC, Mole DR, Woodward ER, Maxwell PH et al. Contrasting effects on HIF-1alpha regulation by disease-causing pVHL mutations correlate with patterns of tumourigenesis in von Hippel-Lindau disease. Hum Mol Genet 2001; 10: 1029–1038.

    Article  CAS  Google Scholar 

  24. Miller F, Kentsis A, Osman R, Pan ZQ . Inactivation of VHL by tumorigenic mutations that disrupt dynamic coupling of the pVHL.hypoxia-inducible transcription factor-1alpha complex. J Biol Chem 2005; 280: 7985–7996.

    Article  CAS  Google Scholar 

  25. Masson N, Willam C, Maxwell PH, Pugh CW, Ratcliffe PJ . Independent function of two destruction domains in hypoxia-inducible factor-alpha chains activated by prolyl hydroxylation. EMBO J 2001; 20: 5197–5206.

    Article  CAS  Google Scholar 

  26. De Bock K, Cauwenberghs S, Carmeliet P . Vessel abnormalization: another hallmark of cancer? Molecular mechanisms and therapeutic implications. Curr Opin Genet Dev 2010; 21: 73–79.

    Article  Google Scholar 

  27. Cohen HT, McGovern FJ . Renal-cell carcinoma. N Engl J Med 2005; 353: 2477–2490.

    Article  CAS  Google Scholar 

  28. Pan Y, Mansfield KD, Bertozzi CC, Rudenko V, Chan DA, Giaccia AJ et al. Multiple factors affecting cellular redox status and energy metabolism modulate hypoxia-inducible factor prolyl hydroxylase activity in vivo and in vitro. Mol Cell Biol 2007; 27: 912–925.

    Article  CAS  Google Scholar 

  29. Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG, Mansfield KD et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell 2005; 7: 77–85.

    Article  CAS  Google Scholar 

  30. Berra E, Benizri E, Ginouves A, Volmat V, Roux D, Pouyssegur J . HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. EMBO J 2003; 22: 4082–4090.

    Article  CAS  Google Scholar 

  31. Lidgren A, Hedberg Y, Grankvist K, Rasmuson T, Vasko J, Ljungberg B . The expression of hypoxia-inducible factor 1alpha is a favorable independent prognostic factor in renal cell carcinoma. Clin Cancer Res 2005; 11: 1129–1135.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by MINECO (SAF 2010-14851), MINECO (SAF 2013-48130), Recava Network (RD12/0042/0065), Programa Prometeo Government of Ecuador and Metoxia Project-Health (F2 2009-222741) to MOL; Consepoc (S2014/BMD-2542 consepoc-CM) and MICINN (SAF 2011-29716) to JA. We thank M. Ohh (Laboratory Medicine & Pathobiology University of Toronto) for providing the RCC10 cell line.

Author Contributions

AON, JA and MOL designed the research; AON, EF, BAI and AE performed the research; AON, EB, JA and MOL wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M O Landazuri.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ordóñez-Navadijo, Á., Fuertes-Yebra, E., Acosta-Iborra, B. et al. Mutant versions of von Hippel-Lindau (VHL) can protect HIF1α from SART1-mediated degradation in clear-cell renal cell carcinoma. Oncogene 35, 587–594 (2016). https://doi.org/10.1038/onc.2015.113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.113

This article is cited by

Search

Quick links