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MicroRNA-101 regulated transcriptional modulator SUB1
plays a role in prostate cancer
BVSK Chakravarthi1,2,3, MT Goswami1,2, SS Pathi1,2,9, AD Robinson3, M Cieślik1,2, DS Chandrashekar3, S Agarwal3, J Siddiqui1,
S Daignault4, SL Carskadon1,2,10, X Jing1,2, AM Chinnaiyan1,2,5,6,7, LP Kunju1,2, N Palanisamy1,2,7,10 and S Varambally1,2,3,7,8

MicroRNA-101, a tumor suppressor microRNA (miR), is often downregulated in cancer and is known to target multiple oncogenes.
Some of the genes that are negatively regulated by miR-101 expression include histone methyltransferase EZH2 (enhancer of zeste
homolog 2), COX2 (cyclooxygenase-2), POMP (proteasome maturation protein), CERS6, STMN1, MCL-1 and ROCK2, among others. In
the present study, we show that miR-101 targets transcriptional coactivator SUB1 homolog (Saccharomyces cerevisiae)/PC4 (positive
cofactor 4) and regulates its expression. SUB1 is known to have diverse role in vital cell processes such as DNA replication, repair
and heterochromatinization. SUB1 is known to modulate transcription and acts as a mediator between the upstream activators and
general transcription machinery. Expression profiling in several cancers revealed SUB1 overexpression, suggesting a potential role
in tumorigenesis. However, detailed regulation and function of SUB1 has not been elucidated. In this study, we show elevated
expression of SUB1 in aggressive prostate cancer. Knockdown of SUB1 in prostate cancer cells resulted in reduced cell proliferation,
invasion and migration in vitro, and tumor growth and metastasis in vivo. Gene expression analyses coupled with chromatin
immunoprecipitation revealed that SUB1 binds to the promoter regions of several oncogenes such as PLK1 (Polo-like kinase 1),
C-MYC, serine-threonine kinase BUB1B and regulates their expression. Additionally, we observed SUB1 downregulated CDKN1B
expression. PLK1 knockdown or use of PLK1 inhibitor can mitigate oncogenic function of SUB1 in benign prostate cancer cells. Thus,
our study suggests that miR-101 loss results in increased SUB1 expression and subsequent activation of known oncogenes driving
prostate cancer progression and metastasis. This study therefore demonstrates functional role of SUB1 in prostate cancer, and
identifies its regulation and potential downstream therapeutic targets of SUB1 in prostate cancer.

Oncogene (2016) 35, 6330–6340; doi:10.1038/onc.2016.164; published online 6 June 2016

INTRODUCTION
Prostate cancer is the most common malignancy and the second
most common cause of cancer death among men in the United
States.1 Multiple molecular alterations have been identified in
prostate cancer initiation, growth, invasion and metastasis. Further
investigations are needed to understand the mechanisms of
dysregulation and role in tumorigenesis of many of the dysregulated
genes that are implicated in cancer. These studies will enhance the
understanding of the disease process and help in developing new
therapies. High-throughput gene expression profiling studies and
transcriptome analyses have revealed tumor-specific gene signa-
tures and multiple oncogenic drivers in cancers.2–10

Loss of tumor suppressor microRNAs (miRNAs or miR) is an
established mechanism in cancer progression. Our analysis
suggested that SUB1 homolog (Saccharomyces cerevisiae) (SUB1)
is a target of miR-101. Our previous studies showed that genomic
loci encoding miR-101 were deleted in aggressive prostate cancer
leading to reduced miR-101 expression, resulting in overexpres-
sion of histone methyltransferase enhancer of zeste homolog 2
(EZH2).11 Apart from regulating EZH2, it has been shown that
miR-101 can target other critical genes such as COX2

(cyclooxygenase-2), POMP (proteasome maturation protein),
CERS6, STMN1, MCL-1 and ROCK2, among others.11–16

In this study, we characterized SUB1 expression specifically in
aggressive prostate cancer. Yeast SUB1 is biochemically identified
as a stimulator of in vitro basal transcription that binds to single-
strand DNA in the regions of transcription initiation.17,18 SUB1 is a
nuclear protein and is shown to have a role in various cellular
processes.19–24 It is substituted for replication protein A during
transcription elongation.25 In addition to its role as transcriptional
coactivator, SUB1 has been shown to repress promoter-driven
transcription as well as nonspecific transcription in vitro.26,27

Studies have reported that SUB1 interacts with distinct domains of
activators such as VP16, GAL4, AP2, HIV-TAT, P53 and SMYD3 to
modulate their functions.19,22,28–32 Previous studies indicated
that the overexpression of SUB1 in a population of normal
dermal multipotent fibroblasts resulted in the tumorigenic
transformation of the cells, indicating its role in tumorigenesis.
SUB1 has been recently found to show an upregulated level in
different cancers. Expression of SUB1 was correlated with the
levels of VEGF-C, VEGF-D and VEGFR-3 during the development
of lymphangiogenesis and lymphatic metastasis in lung
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adenocarcinoma.33 SUB1 is also shown to have a role in non-
small-cell lung cancer34 and astrocytoma.35 A recent study
demonstrated that SUB1 has a role in SMYD3-mediated trans-
activation of growth/invasion-stimulatory genes in cancer cells.32

Here, we show increased SUB1 expression in prostate cancer
cell lines and tissues. Through gene knockdown studies,
we demonstrate that SUB1 has an important role in prostate
cancer cell proliferation and invasion both in vitro and in vivo.
We investigated the role of miR-101 in regulating SUB1
expression. Furthermore, our studies reveal that SUB1 can
regulate several oncogenes including therapeutic targets
such as PLK1, BUB1B and C-MYC by directly binding to their
promoters. Finally, our studies indicate that SUB1-mediated
oncogenic phenotype can be reversed by blocking PLK1 activity
using PLK1 inhibitor.

RESULTS
MiR-101 targets SUB1 and regulates its expression
Several studies have revealed that miRNAs are important
regulators in cellular processes, such as cell proliferation, invasion

and metastasis by repressing several oncogenes.11–13,36,37 To
investigate the potential targets of miR-101, we used freely
available web-based miR target prediction resources: TargetScan,38

miRanda39 and Diana-microT.40 We identified that miR-101 could
potentially target SUB1. The binding site for miR-101 at 3′-UTR
(untranslated region) of SUB1 is indicated (Figure 1a). MiR-101 is
known to have tumor suppressor function by targeting several
oncogenes including EZH2,11 proteasome assembly factor POMP,13

COX2,12 and others, therefore we sought to determine its role in
SUB1 regulation. We treated prostate cancer cell line DU145 with
precursor miRNA, miR-101 and tested some of the potential
targets. We observed downregulation of QK1 and DDIT4 protein
levels along with SUB1 (Figure 1b). Quantitative real-time PCR
(qPCR) analyses also showed that miR-101 downregulates SUB1,
DDIT4 and STC1 mRNA levels (Supplementary Figure S1). Here we
show that miR-101 targets other known players in prostate cancer
DDIT4, STC1 and QK1. To find the effect on SUB1 protein levels, we
treated prostate cancer cells with precursor miRs, miR-101, -23a,
-23b, -30a, -30b, -124 and -122 individually and measured SUB1
protein levels. As shown in Figure 1c, miR-101-treated cells showed
significant reduction in SUB1 protein levels, whereas the control
and other miR precursors did not alter SUB1 expression. Further, we
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Figure 1. MiR-101 targets and downregulates SUB1 expression. (a) The predicted miR-101 binding site at the 3′-UTR of SUB1. (b) Immunoblot
analysis showing SUB1, QK1 and DDIT4 in pre-miR-101- and control pre-miR-treated DU145 cell lysates. (c) Immunoblot analysis showing SUB1
protein expression in DU145 and PC3 cells treated with a panel of miRNAs. (d) Images of colony growth of cells either treated with non-T pre-
miRNA or pre-miR-101. Quantitative data were presented in the histogram. (e) Luciferase reporter assay of SUB1 3′-UTR. HEK-293T cells were
transfected either with pre-miR-101 or non-T pre-miR along with either SUB1 3′-UTR wild-type, mutant-1 or mutant-2 luciferase constructs.
pRL-TK vector was used as an internal control.
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measured the effect of miR-101 on cell growth using a colony
growth assay using DU145, PC3 and LnCaP cells (Figure 1d).
To determine whether miR-101 directly binds SUB1 3′-UTR and
regulates it, HEK-293T cells were co-transfected with miR-101
and pMir-REPORT-SUB1 3′-UTR plasmids. MiR-101 showed
substantial reduction in luciferase reporter activity compared
with non-targeting (Non-T) control miR (Figure 1e). This effect is
reversed by mutating miR-101 target site (Supplementary Figures
S2a and b). These results indicate that SUB1 is a direct target
of miR-101.

Transcriptional coactivator SUB1 expression in prostate cancer
The expression profiling and transcriptome sequence analysis
showed upregulation of SUB1 in metastatic prostate cancer
(Figure 2a). Moreover, The Cancer Genome Atlas (TCGA) data
show that SUB1 is overexpressed in metastatic prostate adeno-
carcinoma (Figure 2b). To validate this observation, we performed
qPCR using RNA from multiple prostate cancer and benign tissues
and confirmed increased expression of SUB1 in metastatic
prostate cancer tissues relative to benign prostate samples
(Figure 2c). Immunoblot analysis using SUB1-specific antibody
(Figure 2d) indicated SUB1 protein overexpression. Similarly,

elevated levels of SUB1 protein was observed in metastatic
prostate cancer cell lines relative to benign cell lines (Figure 2e).
Additionally, we investigated SUB1 protein expression in a large
number of prostate cancer samples by immunohistochemical
analysis, which showed weak or no reactivity in many benign
tissues but stronger staining in aggressive prostate cancer tissue
and metastatic prostate tumors (Figure 2f).

SUB1 expression is essential for prostate cancer cell proliferation
and invasion
To determine the functional significance of SUB1 expression in
prostate cancer, we perturbed SUB1 levels in prostate cells and
investigated the effect of this modulation on cell proliferation,
migration and invasion. We used both transient RNA interference
and stable knockdown strategies targeting SUB1 in aggressive
prostate cancer cell lines DU145 and PC3 and hormone-responsive
LnCaP and VCaP cells. The efficiency of SUB1 knockdowns were
confirmed by immunoblot (Figure 3a) and qPCR (Supplementary
Figures S3a–g) analyses. We observed significant decrease in cell
proliferation upon transient knockdown of SUB1 compared with
control cells transfected with non-T small interfering RNAs
(siRNAs) (Figure 3a). Next, we tested cell motility after stable
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SUB1 knockdown in prostate cancer cells using wound healing
assay. The efficiency of SUB1 stable knockdowns were confirmed
by immunoblot (Supplementary Figure S4a). SUB1 knockdown
showed a wider wound area 24 h post wound generation relative
to control cells, the delayed time to heal indicating an inability
of SUB1 knockdown cells to migrate (Supplementary Figures S4b
and c). Additionally, SUB1 knockdown in DU145 and PC3 reduced

the invasive potential of these cells as assessed by Boyden
chamber Matrigel invasion assay (Figure 3b). Further we tested
for colony formation after transient knockdown of SUB1 and
colonies were quantified (Figures 3c and d). Taken together, these
observations demonstrate the involvement of SUB1 in the
proliferation, migration, invasion and colony formation of prostate
cancer cells in vitro.
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SUB1 modulates gene expression in prostate cancer
To evaluate SUB1-mediated effects in prostate cancer progression,
we performed gene expression analysis using RNA from SUB1
knockdown prostate cell lines. We identified multiple genes that
were modulated upon SUB1 knockdown including PLK1, C-MYC,
BUB1B and CDKN1B, among others (Figure 4a). PLK1 and C-MYC
are known to have a role in cell proliferation, invasion and
metastasis.41,42 We validated the activation of CDKN1B and the
downregulation of PLK1, C-MYC and BUB1B, both at the mRNA
and protein levels upon SUB1 knockdowns (Supplementary
Figures S5a–h, Figure 4b and Supplementary Figures S6a–c)
and observed induction of these genes upon SUB1 overexpression
in RWPE cells (Figure 4c). TCGA data show that PLK1 and
BUB1B are overexpressed in metastatic prostate adenocarcinoma
(Supplementary Figures S7a and b). Additionally, we validated
both PLK1 mRNA and protein levels across benign, prostrate
carcinoma and metastatic prostate cancer tissues by qPCR and
immunoblot analysis, respectively (Supplementary Figures S7c
and d), which confirmed the direct correlation between SUB1 and
PLK1. Additionally, SUB1 and PLK1 mRNA levels are correlated in
prostate cancer cell lines (Supplementary Figures S7e and f).
Further, we generated stable SUB1-expressing RWPE cells using
lentivirus (Supplementary Figure S8). Overexpression of SUB1
resulted in increased cell proliferation (Supplementary Figure S8
and Figure 4d) and invasion (Figure 4e). Furthermore, SUB1
overexpression elevated PLK1 and C-MYC expression, and reduced
CDKN1B expression (Figure 4c and Supplementary Figure S6c),
showing SUB1 dysregulation triggers alterations in critical
oncogenes and tumor suppressors in prostate cancer. To verify
the role of PLK1 in cell proliferation and invasion, we treated
stable SUB1-overexpressing RWPE cells with PLK1 siRNA SMART-
pool or PLK1 inhibitor (volasertib (BI6727)) and analyzed Myc-DDK-
tagged SUB1 and PLK1 (Figure 4d inset). Both PLK1 knockdown
and PLK1 inhibitor decreased cell proliferation (Figure 4d) and
Matrigel invasion (Figure 4e). Thus, these consolidated observa-
tions underscore a downstream role for PLK1, C-MYC and CDKN1B
in SUB1-mediated prostate cancer cell proliferation and invasion.
Earlier studies suggest the importance of SUB1 in regulating

transcription in vivo. For example, SUB1 enhances transcriptional
activation by the activators GCN5 and HAP4 in yeast,43 and
stimulates transcription in vitro with diverse kinds of activators,
including SMYD3,32 VP16,24,44 BRCA-145 and octomer transcription
factor-1,46 possibly by facilitating assembly of the preinitiation
complex. First, we compared motif occurrences within 500 bp
upstream regions of downregulated genes and undifferentially
expressed genes (when SUB1 is knocked down) using a computer
program called CLOVER.47 Next, to validate the binding of SUB1 to
PLK1, BUB1B and C-MYC promoters, we conducted chromatin
immunoprecipitation (ChIP) assays using commercially available
anti-SUB1 or -DDK antibodies in stable RWPE cells overexpressing
lacz or Myc-DDK-tagged SUB1. As expected, SUB1 is enriched at
PLK1, C-MYC and BUB1B promoter regions (Figures 5a–c). These
data demonstrate that PLK1, C-MYC and BUB1B promoters are
transcriptionally activated by SUB1 in prostate cancer.

SUB1 has a role in prostate tumor growth and metastasis
To demonstrate the role of SUB1 on tumor growth in vivo, we used
a chick chorioallantoic membrane (CAM) assay and measured
spontaneous metastasis, including local invasion, intravasation
and metastasis to distant organs. CAM assay was performed as
described previously,37,48 using prostate cancer PC3-SUB1 knock-
down cells. Depletion of SUB1 resulted in significantly reduced
tumor weight compared with non-target short hairpin RNA
(shRNA)-transfected control cells (Figure 6a). SUB1 knockdown in
PC3 cells impaired their ability to invade the CAM basement
membrane and resulted in a significantly decreased number of
intravasated cells in the lower CAM compared with control cells

(Figure 6b). Furthermore, there was attenuation of tumor
metastasis in the SUB1 knockdown group compared with the
control group (Figure 6c). Next, we examined SUB1-mediated
tumorigenesis in a murine PC3 xenograft model using Non-T
shRNA or two independent SUB1 stable knockdown PC3 cells.
Both SUB1-shRNA 1 and 2 cells showed significantly reduced
tumor growth and tumor weight in mice (Figures 6d and e)
relative to control animals, demonstrating that SUB1 inhibition
attenuates tumor growth (CAM assay and murine xenografts) and
metastasis (CAM assay) in vivo. These observations show that SUB1
has a role in prostate tumor growth in vivo.

DISCUSSION
In this study, we show that miR-101 regulates SUB1 expression
and SUB1 has a role in prostate cancer growth. We and others
have earlier shown that reduced expression of miR-101 leads to
overexpression of oncogenic histone methyltransferase EZH2 in
multiple tumors.11,13,36,49 A genomic loss of miR-101 or epigenetic
silencing leads to reduction in miR-101 expression in multiple
cancers.50,51 These observations suggest that attenuation of
miR-101 expression is an important event in oncogenesis. Our
investigations also demonstrate the role of SUB1 in prostate
cancer cell proliferation and invasion.
SUB1 protein has important roles in various cellular processes

including transcription, replication, chromatin organization, cell
cycle progression, DNA damage repair and apoptosis.20,21,34,52

Earlier, it was shown that SUB1 is amplified and overexpressed
in non-small-cell lung cancer cell lines,53 invasive intraductal
papillary mucinous neoplasm of the pancreas54 and in
carcinomatoses.55 Additionally, it has been shown that exogenous
overexpression of SUB1 could induce the transformation of a
population of normal dermal multipotent fibroblasts to acquire
malignant characteristics of anchorage-independent growth
in vitro and tumorigenicity in nude mice.56 Additionally, it was
reported that SUB1 is upregulated in esophageal squamous cell
carcinoma and its absence increased radiosensitivity of esopha-
geal squamous cell carcinoma cells, and suppressed non-
homologous end-joining activity via downregulation of XLF.52

Targeting coactivators and transcription factors through chemical
inhibitors has been challenging.57–60

Although earlier studies showed the role of SUB1 in cancer, its
mechanistic insight in oncogenesis is not fully understood. The
present study shows an increased expression of SUB1 in prostate
cancer. Moreover, it is involved in tumorigenesis through the
activation of PLK1, BUB1B and C-MYC, and repression of CDKN1B
during cancer progression. These proteins are involved in several
cellular processes including cell proliferation, cell cycle and
tumorigenesis.41,42,61,62 The oncoprotein PLK1 is known to have
a role in critical cell cycle events and acts in concert with cyclin-
dependent kinase 1-cyclin B1 and Aurora kinases.63 Moreover, in
cancer these kinases are often dysregulated, promoting uncon-
trolled cell proliferation and aberrant cell division.63,64 The PLK
family members have been associated with poor prognosis, which
lead to enhanced interest as promising targets for anticancer
drug development.65 In our study, we demonstrated that SUB1
positively regulated PLK1 expression at the transcriptional level.
Furthermore, we investigated the potential role of SUB1-induced
PLK1 in prostate cancer invasion by using PLK1-specific siRNA pool
or inhibitor volasertib. The PLK1 inhibitor volasertib attenuated
stable RWPE-SUB1 cells ability to proliferate as well as to invade
through Matrigel in vitro. Moreover, it is currently the most
clinically advanced inhibitor.66 Studies in various cancer cell lines
(prostate, lung, colon, melanoma, hematopoietic malignancies
and urothelial tumors) demonstrated that volasertib inhibits cell
division leading to cell death.67–70 Additionally, we also observed
that SUB1 also regulates BUB1B.
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Figure 4. SUB1 modulates PLK1 expression in prostate cancer cells. (a) Heatmap of select genes in stable SUB1 knockdown PC3 cells.
(b) Immunoblot analysis showing SUB1, PLK1 and C-MYC in prostate cancer cells after transient knockdown of SUB1. (c) Immunoblot analysis
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In summary, here we show that reduced miR-101 expression
results in transcriptional coactivator SUB1 overexpression
(Figure 6f). SUB1 triggers increased cell proliferation, invasion,
metastasis and modulates expression of several including PLK1,
BUB1B, C-MYC and CDKN1B. Finally, SUB1-mediated oncogenic
event can be alleviated using PLK1 siRNA or inhibitor. This study
shows SUB1 overexpression in aggressive prostate cancer and
reveals therapeutic options to block SUB1-mediated oncogenesis.

MATERIALS AND METHODS
Cell lines
Prostate cancer cell lines DU145, PC3 and LnCaP were grown in RPMI-1640
(Life Technologies, Carlsbad, CA, USA), whereas VCaP was grown in
Dulbecco's modified Eagle's medium with penicillin–streptomycin
(100 U/ml) and 10% fetal bovine serum (Invitrogen, Carlsbad, CA, USA) in
5% CO2 cell culture incubator. The HEK293 (ATCC), RWPE-1 (henceforth
referred as RWPE; ATCC, Manassas, VA, USA) cells were grown in their
respective medium as specified by the suppliers. Lentiviruses were
generated by the University of Michigan Vector Core (Ann Arbor, MI,
USA). Prostate cancer cells were infected with lentiviruses expressing SUB1
shRNA or Non-T shRNA controls and stable cell lines were generated
by selection with 1 μg/ml puromycin (Life Technologies).

Benign and tumor tissues
In this study, we used tissues from clinically localized prostate cancer
patients who underwent radical prostatectomy. Samples were also
obtained from androgen-independent metastatic prostate cancer patients
from a rapid autopsy program through the University of Michigan Prostate
SPORE Tissue Core as described previously.71,72 The detailed clinical and
pathological data are maintained in a secure relational database.
The Institutional Review Board at the University of Michigan Medical
School approved this study. Both radical prostatectomy series and the
rapid autopsy program are part of the University of Michigan Prostate
SPORE Tissue Core.

Gene expression from TCGA
The patients clinical data for prostate adenocarcinoma were downloaded
using TCGA assembler.73 However, downloaded data comprised of only
tumor pathologic and node pathologic information. Thus, based on tumor
pathologic and node pathologic data as per 'https://cancerstaging.org/
references-tools/quickreferences/Documents/ProstateSmall.pdf', samples
were categorized into primary and metastatic tumor. Afterwards, level3
TCGA RNA-seq data (including raw_read_count and scaled_estimate for
each sample) for all primary tumor, metastatic tumor and matched normal
samples were downloaded using TCGA assembler. Transcript per million
values for each gene was obtained by multiplying scaled_estimate by
1 000 000. Boxplot was generated using R (https://cran.r-project.org/).

Immunohistochemistry
Benign and prostate cancer tissues were obtained from the radical
prostatectomy series at the University of Michigan and from the Rapid
Autopsy Program, both part of the University of Michigan Prostate
SPORE programs, through appropriate informed consent. Institutional
Review Board approval was obtained to procure and analyze the
tissues used in this study. Immunohistochemistry was carried out to
evaluate SUB1 expression using rabbit polyclonal antibody against SUB1
(Novus Biologicals, Littleton, CO, USA; cat. no. NBP1-82454). Immunohis-
tochemistry was performed using an automated protocol developed for
the DISCOVERY XT automated slide staining system (Ventana
Medical Systems Inc., Tucson, AZ, USA) using Ultramap anti-rabbit HRP
(cat. no. 760-4315; Ventana Medical Systems Inc.) and was detected using
ChromoMap DAB (cat. no. 760-159; Ventana Medical Systems Inc.).
Hematoxylin II (cat. no. 790-2208; Ventana-Roche, Tucson, AZ, USA) was
used as the counterstain. The study pathologist Dr Kunju (PK) evaluated
the immunohistochemical staining.

Immunoblot analyses
Antibodies used in the study are listed in Supplementary Table S1. All
antibodies were used at dilutions optimized in our laboratory. For
immunoblot analysis, 10 μg protein samples were separated on a sodium
dodecyl sulfate–polyacrylamide gel electrophoresis and transferred onto
Immobilon-P PVDF membrane (EMD Millipore, Billerica, MA, USA). The
membrane was incubated for 1 h in blocking buffer (Tris-buffered saline,
0.1% Tween (TBS-T), 5% nonfat dry milk), followed by incubation overnight
at 4 °C with the primary antibody. After a wash with TBS-T, the blot was
incubated with horseradish peroxidase-conjugated secondary antibody
and signals were visualized by Luminata Crescendo chemiluminescence
western blotting substrate as per the manufacturer’s protocol (EMD
Millipore).
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Gene expression analysis
Global gene expression data was generated using RNA isolated from SUB1
siRNA knockdown PC3 and non-target control cells in profiling analysis as
well as in transcriptome sequencing analysis.6 Expression profiling was
performed using the Agilent Whole Human Genome Oligo Microarray

(Agilent, Santa Clara, CA, USA) and the analysis was performed according
to the manufacturer’s protocol. A bioconductor package ‘agilp’74 was used
to extract and normalize raw data from two-channel experiment arrays.
Loess normalization was applied on each array. The gene expression
profiling data has been deposited at gene expression omnibus (GSE74895).
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Figure 6. SUB1 is required for prostate tumor growth in vivo. (a) Tumor growth of stable SUB1 knockdown PC3 prostate cancer cells or control
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The differential expression of each gene was estimated by subtracting
loess normalized log-2-transformed signal intensity of control sample from
that of knockdown sample. Genes with absolute fold change of 2 were
selected as differentially expressed genes. The heatmap.2 function of R
package ‘gplots’ was used to create the heat map. To measure mRNA
expression levels, total RNA was isolated from prostate cancer cell lines and
prostate cancer tissue samples using the RNeasy Mini Kit (Qiagen, Valencia,
CA, USA). qPCR was performed as described.37 All primers were
synthesized by Integrated DNA Technologies (Coralville, IA, USA) and
PCR reactions were performed in triplicate. Primer sequences are listed in
Supplementary Table S2.

RNA interference and miRNA transfection
The siRNA duplexes (duplex 1, cat. no. SI04174835 and duplex 2, cat. no.
SI00678580) used to inhibit SUB1 expression were purchased from Qiagen,
and PLK1 SiGenome SMARTpool (cat. no. M-003290-01-0005) was
purchased from GE Dharmacon (Lafayette, CO, USA). Precursors of
respective microRNAs and negative controls were purchased from Ambion
(Life Technologies). Transfections were performed either with oligofecta-
mine or Lipofectamine RNAiMAX (Life Technologies). SUB1 shRNA (pGipz
SUB1-shRNA 1 (V2LHS_85556) and SUB1-shRNA2 (V3LHS_331788)) were
purchased from GE Dharmacon. Lentiviruses for these stable knockdowns
were generated by the University of Michigan Vector Core. For miRNA
transfection or RNA inference, we plated prostate cancer cells at 1 × 105

cells per well in a 6-well plate, and after 12 h, the cells were transfected
either with siRNA duplexes or miRNAs. A second identical transfection was
performed 24 h later. Seventy-two hours after the first transfection, cells
were harvested for RNA isolation or immunoblot analysis.

In vitro overexpression
SUB1 cDNA (Origene Technologies, Rockville, MD, USA; cat. no. RC204999;
Myc-DDK tagged) was cloned into Gateway expression system
(Life Technologies). To generate lentiviral constructs, PCR8-SUB1 (Myc-
DDK tagged) was recombined with pLenti6/V5-Dest (Life Technologies)
using LR Clonase II (Life Technologies). Lentiviruses were generated by the
University of Michigan Vector Core. Benign immortalized prostate cells
(RWPE) were infected with lentiviruses expressing SUB1 or lacZ, and stable
clones were selected with 3.5 μg/ml blasticidin (Santa Cruz Biotechnology
Inc., Dallas, TX, USA).

Cell proliferation assays
Cell proliferation was measured by cell counting. For this, transient SUB1
and PLK1 knockdown and stable cells overexpressing SUB1 were used.
After 72 h of transfection using specific siRNA, the cells were trypsinized
and seeded at a density of 10 000 cells per well in 24-well plates (n=3).
Non-T siRNA-treated cells were served as controls. The stable RWPE lacZ- or
SUB1-overexpressing cells were plated at the same density as mentioned
earlier, trypsinized and counted at specified time points by Z2 Coulter
particle counter (Beckman Coulter, Brea, CA, USA). Each experiment has
been performed with three replicates per sample.

Wound healing assay
DU145, PC3 scramble shRNA or SUB1 stable knockdown cells were seeded
in 6-well plates in growth medium containing 10% fetal bovine serum and
puromycin (10 μg/ml) for DU145 and PC3, and then allowed to grow to
confluent monolayer. For DU145 and PC3, the cells were serum starved for
12 h and replenished with 10% fetal bovine serum-RPMI medium. The
wound-induced migration was triggered by scraping the cells with a 200 ul
pipette tip, washed with Dulbecco's phosphate-buffered saline and
replenished with respective medium. The wound was imaged immediately
(0 h) and at 24 h with an inverted phase-contrast microscope under × 4
objective.

Matrigel invasion assay
Matrigel invasion assays were performed as described earlier.37,75 Various
test cells were seeded onto BD BioCoat Matrigel matrix (Corning Life
Sciences, Tewksbury, MA, USA) in the upper chamber of a 24-well culture
plate. The lower chamber containing respective medium was supplemen-
ted with 10% serum as a chemoattractant. After 48 h, the noninvading cells
and Matrigel matrix were gently removed with a cotton swab. Invasive
cells located on the lower side of the chamber were stained with 0.2%

crystal violet in methanol, air-dried and photographed using an inverted
microscope (×4). Invasion was quantified by colorimetric assay. For
colorimetric assays, the inserts were treated with 150 μl of 10% acetic
acid and the absorbance measured at 560 nm.

Colony formation assay
After 72 h of transfection, untreated, Non-T siRNA/miRNA- or miR-101-
treated cells were counted and seeded 800 cells per one well of 6-well
plates (triplicate) and incubated at 37 °C with 5% CO2 for 7–10 days.
Colonies were fixed with 10% (v/v) ethanol for 30 min and stained with
crystal violet (Sigma-Aldrich, St Louis, MO, USA) for 20 min. Then, the
photographs of the colonies were taken using Amersham Imager 600RGB
(GE Healthcare Life Sciences, Pittsburgh, PA, USA). Colony quantification
was carried out using ImageQuant TL Colony v.8.1 software (GE Healthcare
Life Sciences).

miR reporter luciferase assays
Wild-type or mutant 3′-UTR of SUB1 were cloned into the pMIR-REPORT
miRNA Expression Reporter Vector (Life Technologies). HEK293 cells were
co-transfected with pre-miR-101 or controls and wild-type or mutant
3′-UTR-luc, as well as pRL-TK vector as an internal control for luciferase
activity. Forty eight hours post-transfection, the cells were lysed and
luciferase assays were conducted using the dual luciferase assay system
(Promega, Madison, WI, USA). Each experiment was performed in triplicate.

ChIP assays
ChIP assays were carried out with respective antibodies (Supplementary
Table S1) using the EZ-Magna ChIP Kit (EMD Millipore, Billerica, MA, USA) as
described.37 The primer sequences for the promoters analyzed are
provided in Supplementary Table S3.

Chicken CAM assay
The CAM assay for local cell invasion, intravasation, metastasis and tumor
(or xenograft) formation was performed as described previously.37,48,75

After 3 days of implanting the cells in each egg, lower CAM was harvested
and extraembryonic tumors were isolated and weighed. For metastasis
assay, the embryonic livers were harvested on day 18 of embryonic growth
and analyzed for the presence of tumor cells by quantitative human
Alu-specific PCR. Genomic DNA from lower CAM and livers were prepared
using Puregene DNA purification system (Qiagen) and quantification of
human Alu was performed as described.37,48,75 An average of eight eggs
per group was used in each experiment.

Tumor xenograft model
All procedures involving mice were approved by the University Committee
on Use and Care of Animals (UCUCA) at the University of Michigan and
conform to all regulatory standards. To evaluate the role of SUB1 in tumor
formation in vivo, we propagated stable SUB1 knockdown PC3 cells using
two independent shRNAs and Non-T shRNA control cells, and inoculated
1× 106 cells subcutaneously into the dorsal flank of 5-week-old male
athymic nude mice (n = 8 for each group; Harlan Laboratories,
Evigo Indianapolis, IN, USA). The tumor data obtained using scramble
cells is the same as that used in an earlier study as SUB1 tumor
xenograft study was conducted simultaneously using common control
animals.37 Tumor size was measured biweekly, and tumor volumes
were calculated using the formula (π/6) (L ×W2), where L is the length
and W is the width of the tumor. After 5 weeks, mice from different
groups were killed, and then the tumors were photographed, weighed
and plotted.

Statistical analysis
To determine significant differences between two groups, Student’s two-
tailed t-test was used for all experiments except for microarray. P-values
o0.05 were considered significant.
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