Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

All-trans retinoic acid targets gastric cancer stem cells and inhibits patient-derived gastric carcinoma tumor growth

Abstract

Gastric carcinoma is the third leading cause of cancer-related death worldwide. This cancer, most of the time metastatic, is essentially treated by surgery associated with conventional chemotherapy, and has a poor prognosis. The existence of cancer stem cells (CSC) expressing CD44 and a high aldehyde dehydrogenase (ALDH) activity has recently been demonstrated in gastric carcinoma and has opened new perspectives to develop targeted therapy. In this study, we evaluated the effects of all-trans-retinoic acid (ATRA) on CSCs in human gastric carcinoma. ATRA effects were evaluated on the proliferation and tumorigenic properties of gastric carcinoma cells from patient-derived tumors and cell lines in conventional 2D cultures, in 3D culture systems (tumorsphere assay) and in mouse xenograft models. ATRA inhibited both tumorspheres initiation and growth in vitro, which was associated with a cell-cycle arrest through the upregulation of cyclin-dependent kinase (CDK) inhibitors and the downregulation of cell-cycle progression activators. More importantly, ATRA downregulated the expression of the CSC markers CD44 and ALDH as well as stemness genes such as Klf4 and Sox2 and induced differentiation of tumorspheres. Finally, 2 weeks of daily ATRA treatment were sufficient to inhibit gastric tumor progression in vivo, which was associated with a decrease in CD44, ALDH1, Ki67 and PCNA expression in the remaining tumor cells. Administration of ATRA appears to be a potent strategy to efficiently inhibit tumor growth and more importantly to target gastric CSCs in both intestinal and diffuse types of gastric carcinoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Flejou JF . [WHO Classification of digestive tumors: the fourth edition]. Ann Pathol 2011; 31 (5 Suppl): S27–S31.

    Article  PubMed  Google Scholar 

  2. Lauren P . The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathol Microbiol Scand 1965; 64: 31–49.

    Article  CAS  PubMed  Google Scholar 

  3. Megraud F, Bessede E, Varon C . Helicobacter pylori infection and gastric carcinoma. Clin Microbiol Infect 2015; 21: 984–990.

    Article  CAS  PubMed  Google Scholar 

  4. Gonzalez CA, Megraud F, Buissonniere A, Lujan Barroso L, Agudo A, Duell EJ et al. Helicobacter pylori infection assessed by ELISA and by immunoblot and noncardia gastric cancer risk in a prospective study: the Eurgast-EPIC project. Ann Oncol 2012; 23: 1320–1324.

    Article  CAS  PubMed  Google Scholar 

  5. IARC 'Working' Group Schistosomes, liver flukes and Helicobacter pylori: Views and expert opinion of IARC Working Group on the evaluation of carcinogenic risks to humans, vol. 61. IARC Monographs. International Agency for research on Cancer: Lyon, 1994, pp 177–240.

  6. Alison MR, Islam S, Wright NA . Stem cells in cancer: instigators and propagators? J Cell Sci 2010; 123: 2357–2368.

    Article  CAS  PubMed  Google Scholar 

  7. Clevers H . The cancer stem cell: premises, promises and challenges. Nat Med 2011; 17: 313–319.

    Article  CAS  PubMed  Google Scholar 

  8. Sreerama L, Sladek NE . Cellular levels of class 1 and class 3 aldehyde dehydrogenases and certain other drug-metabolizing enzymes in human breast malignancies. Clin Cancer Res 1997; 3: 1901–1914.

    CAS  PubMed  Google Scholar 

  9. Sladek NE, Kollander R, Sreerama L, Kiang DT . Cellular levels of aldehyde dehydrogenases (ALDH1A1 and ALDH3A1) as predictors of therapeutic responses to cyclophosphamide-based chemotherapy of breast cancer: a retrospective study. Rational individualization of oxazaphosphorine-based cancer chemotherapeutic regimens. Cancer Chemother Pharmacol 2002; 49: 309–321.

    Article  CAS  PubMed  Google Scholar 

  10. Abdullah LN, Chow EK . Mechanisms of chemoresistance in cancer stem cells. Clin Transl Med 2013; 2: 3.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Nishikawa S, Konno M, Hamabe A, Hasegawa S, Kano Y, Ohta K et al. Aldehyde dehydrogenase high gastric cancer stem cells are resistant to chemotherapy. Int J Oncol 2013; 42: 1437–1442.

    Article  CAS  PubMed  Google Scholar 

  12. Takaishi S, Okumura T, Tu S, Wang SS, Shibata W, Vigneshwaran R et al. Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells 2009; 27: 1006–1020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lau WM, Teng E, Chong HS, Lopez KA, Tay AY, Salto-Tellez M et al. CD44v8-10 is a cancer-specific marker for gastric cancer stem cells. Cancer Res 2014; 74: 2630–2641.

    Article  CAS  PubMed  Google Scholar 

  14. Chen W, Zhang X, Chu C, Cheung WL, Ng L, Lam S et al. Identification of CD44+ cancer stem cells in human gastric cancer. Hepato-gastroenterology 2013; 60: 949–954.

    CAS  PubMed  Google Scholar 

  15. Bessede E, Staedel C, Acuna Amador LA, Nguyen PH, Chambonnier L, Hatakeyama M et al. Helicobacter pylori generates cells with cancer stem cell properties via epithelial-mesenchymal transition-like changes. Oncogene 2014; 33: 4123–4131.

    Article  CAS  PubMed  Google Scholar 

  16. Bessede E, Dubus P, Megraud F, Varon C . Helicobacter pylori infection and stem cells at the origin of gastric cancer. Oncogene 2015; 34: 2547–2555.

    Article  CAS  PubMed  Google Scholar 

  17. Lo-Coco F, Avvisati G, Vignetti M, Thiede C, Orlando SM, Iacobelli S et al. Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. N Engl J Med 2013; 369: 111–121.

    Article  CAS  PubMed  Google Scholar 

  18. Schenk T, Stengel S, Zelent A . Unlocking the potential of retinoic acid in anticancer therapy. Br J Cancer 2014; 111: 2039–2045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shyu RY, Jiang SY, Huang SL, Chang TC, Wu KL, Roffler SR et al. Growth regulation by all-trans-retinoic acid and retinoic acid receptor messenger ribonucleic acids expression in gastric cancer cells. Eur J Cancer 1995; 31A: 237–243.

    Article  CAS  PubMed  Google Scholar 

  20. Chao TY, Jiang SY, Shyu RY, Yeh MY, Chu TM . All-trans retinoic acid decreases susceptibility of a gastric cancer cell line to lymphokine-activated killer cytotoxicity. Br J Cancer 1997; 75: 1284–1290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu S, Wu Q, Chen ZM, Su WJ . The effect pathway of retinoic acid through regulation of retinoic acid receptor alpha in gastric cancer cells. World J Gastroenterol 2001; 7: 662–666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang JP, Chen XY, Li JS . Effects of all-trans-retinoic on human gastric cancer cells BGC-823. J Dig Dis 2007; 8: 29–34.

    Article  CAS  PubMed  Google Scholar 

  23. Shin CS, Kwak B, Han B, Park K . Development of an in vitro 3D tumor model to study therapeutic efficiency of an anticancer drug. Mol Pharm 2013; 10: 2167–2175.

    Article  CAS  PubMed  Google Scholar 

  24. Abbas T, Dutta A . p21 in cancer: intricate networks and multiple activities. Nat Rev 2009; 9: 400–414.

    Article  CAS  Google Scholar 

  25. Tanaka T, Rodriguez de la Concepcion ML, De Luca LM . Involvement of all-trans-retinoic acid in the breakdown of retinoic acid receptors alpha and gamma through proteasomes in MCF-7 human breast cancer cells. Biochem Pharmacol 2001; 61: 1347–1355.

    Article  CAS  PubMed  Google Scholar 

  26. Liu M, Casimiro MC, Wang C, Shirley LA, Jiao X, Katiyar S et al. p21CIP1 attenuates Ras- and c-Myc-dependent breast tumor epithelial mesenchymal transition and cancer stem cell-like gene expression in vivo. Proc Natl Acad Sci USA 2009; 106: 19035–19039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li XL, Hara T, Choi Y, Subramanian M, Francis P, Bilke S et al. A p21-ZEB1 complex inhibits epithelial-mesenchymal transition through the microRNA 183-96-182 cluster. Mol Cell Biol 2014; 34: 533–550.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Czyzewska J, Guzinska-Ustymowicz K, Pryczynicz A, Kemona A, Bandurski R . Immunohistochemical evaluation of Ki-67, PCNA and MCM2 proteins proliferation index (PI) in advanced gastric cancer. Folia Histochem Cytobiol 2009; 47: 289–296.

    PubMed  Google Scholar 

  29. Isozaki H, Okajima K, Ichinona T, Fujii K, Nomura E, Izumi N et al. Significance of proliferating cell nuclear antigen (PCNA) expression in gastric cancer in relation to lymph node metastasis. J Surg Oncol 1996; 61: 106–110.

    Article  CAS  PubMed  Google Scholar 

  30. Connolly RM, Nguyen NK, Sukumar S . Molecular pathways: current role and future directions of the retinoic acid pathway in cancer prevention and treatment. Clin Cancer Res 2013; 19: 1651–1659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ying M, Wang S, Sang Y, Sun P, Lal B, Goodwin CR et al. Regulation of glioblastoma stem cells by retinoic acid: role for Notch pathway inhibition. Oncogene 2011; 30: 3454–3467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lim YC, Kang HJ, Kim YS, Choi EC . All-trans-retinoic acid inhibits growth of head and neck cancer stem cells by suppression of Wnt/beta-catenin pathway. Eur J Cancer 2012; 48: 3310–3318.

    Article  CAS  PubMed  Google Scholar 

  33. Baud J, Varon C, Chabas S, Chambonnier L, Darfeuille F, Staedel C . Helicobacter pylori initiates a mesenchymal transition through ZEB1 in gastric epithelial cells. PLoS ONE 2013; 8: e60315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Staedel C, Varon C, Nguyen PH, Vialet B, Chambonnier L, Rousseau B et al. Inhibition of Gastric Tumor Cell Growth Using Seed-targeting LNA as Specific, Long-lasting MicroRNA Inhibitors. Mol Ther 2015; 4: e246.

    CAS  Google Scholar 

  35. Ferrand J, Noel D, Lehours P, Prochazkova-Carlotti M, Chambonnier L, Menard et al. Human bone marrow-derived stem cells acquire epithelial characteristics through fusion with gastrointestinal epithelial cells. PLoS ONE 2011; 6: e19569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Varon C, Dubus P, Mazurier F, Asencio C, Chambonnier L, Ferrand J et al. Helicobacter pylori infection recruits bone marrow-derived cells that participate in gastric preneoplasia in mice. Gastroenterology 2012; 142: 281–291.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The post-doctoral fellowship of Julie Giraud was granted by the French ‘Institut National du Cancer’ (grant 2014-152). We thank Vincent Pitard and Santiago Gonzalez (Flow Cytometry and FACS Platform, University of Bordeaux), Lamia Azzi-Martin and Jacky Ferrer (EA2406, University of Bordeaux), Elodie Siffre and Armelle Ménard (INSERM U853) for technical assistance and helpful advice. We thank the French ‘Association pour la Recherche contre le Cancer’ (grant number 8412), the ‘Institut National du Cancer’ (grant 07/3D1616/IABC-23-12/NC-NG and grant 2014-152), the ‘Conseil Regional d’Aquitaine’ (grant numbers 20071301017 and 20081302203) and the French National Society for Gastroenterology for financial support. This project is part of SIRIC BRIO (Site de Recherche Intégrée sur le Cancer – Bordeaux Recherche Intégrée Oncologie; grant INCa-DGOS-INSERM 6046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Varon.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, P., Giraud, J., Staedel, C. et al. All-trans retinoic acid targets gastric cancer stem cells and inhibits patient-derived gastric carcinoma tumor growth. Oncogene 35, 5619–5628 (2016). https://doi.org/10.1038/onc.2016.87

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.87

This article is cited by

Search

Quick links