Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Hypoxia and MITF regulate KIT oncogenic properties in melanocytes

Subjects

Abstract

KIT mutations are frequent in acral, mucosal and chronic sun-damage (CSD) melanoma, but little is known about the mechanisms driving the transformation of KIT-mutated melanocytes into melanoma cells. We showed that exposition of melanocytes harboring the L576PKIT mutation to a hypoxic environment induced their transformation into malignant cells. Transformed L576PKIT melanocytes showed downregulation of MITF expression characteristic of melanoma initiating cells (MICs). In agreement, these cells were able to form spheres in neural crest cell medium and low-adherence conditions, also a characteristic of MICs. Downregulation of MITF by RNA interference induced transformation of KIT-mutated melanocytes in normoxia and acquisition of a MIC phenotype by these cells. Hence, low level of MITF cooperates with oncogenic KIT to transform melanocytes. Activation of the cAMP pathway in transformed L576PKIT melanocytes stimulated MITF expression, and reduced cellular proliferation and sphere formation. These findings highlight the essential role of MITF in revealing the oncogenic activity of KIT in melanocytes and suggest that the cAMP pathway is a therapeutic target in KIT-mutated melanoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Liu H, Chen X, Focia PJ, He X . Structural basis for stem cell factor-KIT signaling and activation of class III receptor tyrosine kinases. EMBO J 2007; 26: 891–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ronnstrand L . Signal transduction via the stem cell factor receptor/c-Kit. Cell Mol Life Sci 2004; 61: 2535–2548.

    Article  CAS  PubMed  Google Scholar 

  3. Young SM, Cambareri AC, Odell A, Geary SM, Ashman LK . Early myeloid cells expressing c-KIT isoforms differ in signal transduction, survival and chemotactic responses to Stem Cell Factor. Cell Signal 2007; 19: 2572–2581.

    Article  CAS  PubMed  Google Scholar 

  4. Garrido MC, Bastian BC . KIT as a therapeutic target in melanoma. J Invest Dermatol 2010; 130: 20–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Giebel LB, Spritz RA . Mutation of the KIT (mast/stem cell growth factor receptor) protooncogene in human piebaldism. Proc Natl Acad Sci USA 1991; 88: 8696–8699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Huang S, Luca M, Gutman M, McConkey DJ, Langley KE, Lyman SD et al. Enforced c-KIT expression renders highly metastatic human melanoma cells susceptible to stem cell factor-induced apoptosis and inhibits their tumorigenic and metastatic potential. Oncogene 1996; 13: 2339–2347.

    CAS  PubMed  Google Scholar 

  7. Lassam N, Bickford S . Loss of c-kit expression in cultured melanoma cells. Oncogene 1992; 7: 51–56.

    CAS  PubMed  Google Scholar 

  8. Curtin JA, Busam K, Pinkel D, Bastian BC . Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol 2006; 24: 4340–4346.

    Article  CAS  PubMed  Google Scholar 

  9. Curtin JA, Fridlyand J, Kageshita T, Patel HN, Busam KJ, Kutzner H et al. Distinct sets of genetic alterations in melanoma. N Engl J Med 2005; 353: 2135–2147.

    Article  CAS  PubMed  Google Scholar 

  10. Bastian BC, Esteve-Puig R . Targeting activated KIT signaling for melanoma therapy. J Clin Oncol 2013; 31: 3288–3290.

    Article  CAS  PubMed  Google Scholar 

  11. Park E, Yang S, Emley A, DeCarlo K, Richards J, Mahalingam M . Lack of correlation between immunohistochemical expression of CKIT and KIT mutations in atypical acral nevi. Am J Dermatopathol 2012; 34: 41–46.

    Article  PubMed  Google Scholar 

  12. Monsel G, Ortonne N, Bagot M, Bensussan A, Dumaz N . c-Kit mutants require hypoxia-inducible factor 1alpha to transform melanocytes. Oncogene 2010; 29: 227–236.

    Article  CAS  PubMed  Google Scholar 

  13. Evans SM, Schrlau AE, Chalian AA, Zhang P, Koch CJ . Oxygen levels in normal and previously irradiated human skin as assessed by EF5 binding. J Invest Dermatol 2006; 126: 2596–2606.

    Article  CAS  PubMed  Google Scholar 

  14. Bedogni B, Welford SM, Cassarino DS, Nickoloff BJ, Giaccia AJ, Powell MB . The hypoxic microenvironment of the skin contributes to Akt-mediated melanocyte transformation. Cancer Cell 2005; 8: 443–454.

    Article  CAS  PubMed  Google Scholar 

  15. Horikoshi T, Balin AK, Carter DM . Effects of oxygen tension on the growth and pigmentation of normal human melanocytes. J Invest Dermatol 1991; 96: 841–844.

    Article  CAS  PubMed  Google Scholar 

  16. Rezvani HR, Ali N, Nissen LJ, Harfouche G, de Verneuil H, Taieb A et al. HIF-1alpha in epidermis: oxygen sensing, cutaneous angiogenesis, cancer, and non-cancer disorders. J Invest Dermatol 2011; 131: 1793–1805.

    Article  CAS  PubMed  Google Scholar 

  17. Bedogni B, Powell MB . Hypoxia, melanocytes and melanoma - survival and tumor development in the permissive microenvironment of the skin. Pigment Cell Melanoma Res 2009; 22: 166–174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mohyeldin A, Garzon-Muvdi T, Quinones-Hinojosa A . Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell 2010; 7: 150–161.

    Article  CAS  PubMed  Google Scholar 

  19. Cheli Y, Giuliano S, Botton T, Rocchi S, Hofman V, Hofman P et al. Mitf is the key molecular switch between mouse or human melanoma initiating cells and their differentiated progeny. Oncogene 2011; 30: 2307–2318.

    Article  CAS  PubMed  Google Scholar 

  20. Fang D, Nguyen TK, Leishear K, Finko R, Kulp AN, Hotz S et al. A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 2005; 65: 9328–9337.

    Article  CAS  PubMed  Google Scholar 

  21. Kumar SM, Liu S, Lu H, Zhang H, Zhang PJ, Gimotty PA et al. Acquired cancer stem cell phenotypes through Oct4-mediated dedifferentiation. Oncogene 2012; 31: 4898–4911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ramgolam K, Lauriol J, Lalou C, Lauden L, Michel L, de la Grange P et al. Melanoma spheroids grown under neural crest cell conditions are highly plastic migratory/invasive tumor cells endowed with immunomodulator function. PLoS One 2011; 6: e18784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schatton T, Murphy GF, Frank NY, Yamaura K, Waaga-Gasser AM, Gasser M et al. Identification of cells initiating human melanomas. Nature 2008; 451: 345–349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cheli Y, Giuliano S, Fenouille N, Allegra M, Hofman V, Hofman P et al. Hypoxia and MITF control metastatic behaviour in mouse and human melanoma cells. Oncogene 2012; 31: 2461–2470.

    Article  CAS  PubMed  Google Scholar 

  25. Feige E, Yokoyama S, Levy C, Khaled M, Igras V, Lin RJ et al. Hypoxia-induced transcriptional repression of the melanoma-associated oncogene MITF. Proc Natl Acad Sci USA 2011; 108: E924–E933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hoek KS, Goding CR . Cancer stem cells versus phenotype-switching in melanoma. Pigment Cell Melanoma Res 2010; 23: 746–759.

    Article  CAS  PubMed  Google Scholar 

  27. Dumaz N, Andre J, Sadoux A, Laugier F, Podgorniak MP, Mourah S et al. Driver KIT mutations in melanoma cluster in four hotspots. Melanoma research 2015; 25: 88–90.

    Article  CAS  PubMed  Google Scholar 

  28. Bourillon A, Hu HH, Hetet G, Lacapere JJ, Andre J, Descamps V et al. Genetic variation at KIT locus may predispose to melanoma. Pigment Cell Melanoma Res 2013; 26: 88–96.

    Article  CAS  PubMed  Google Scholar 

  29. Liang R, Wallace AR, Schadendorf D, Rubin BP . The phosphatidyl inositol 3-kinase pathway is central to the pathogenesis of Kit-activated melanoma. Pigment Cell Melanoma Res 2011; 24: 714–723.

    Article  CAS  PubMed  Google Scholar 

  30. Todd JR, Scurr LL, Becker TM, Kefford RF, Rizos H . The MAPK pathway functions as a redundant survival signal that reinforces the PI3K cascade in c-Kit mutant melanoma. Oncogene 2012; 33: 236–245.

    Article  PubMed  Google Scholar 

  31. Ohanna M, Cheli Y, Bonet C, Bonazzi VF, Allegra M, Giuliano S et al. Secretome from senescent melanoma engages the STAT3 pathway to favor reprogramming of naive melanoma towards a tumor-initiating cell phenotype. Oncotarget 2013; 4: 2212–2224.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hamai A, Richon C, Meslin F, Faure F, Kauffmann A, Lecluse Y et al. Imatinib enhances human melanoma cell susceptibility to TRAIL-induced cell death: Relationship to Bcl-2 family and caspase activation. Oncogene 2006; 25: 7618–7634.

    Article  CAS  PubMed  Google Scholar 

  33. Garraway LA, Widlund HR, Rubin MA, Getz G, Berger AJ, Ramaswamy S et al. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 2005; 436: 117–122.

    Article  CAS  PubMed  Google Scholar 

  34. von Euw E, Atefi M, Attar N, Chu C, Zachariah S, Burgess BL et al. Antitumor effects of the investigational selective MEK inhibitor TAK733 against cutaneous and uveal melanoma cell lines. Mol Cancer 2012; 11: 22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Carvajal RD, Antonescu CR, Wolchok JD, Chapman PB, Roman RA, Teitcher J et al. KIT as a therapeutic target in metastatic melanoma. JAMA 2011; 305: 2327–2334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Guo J, Si L, Kong Y, Flaherty KT, Xu X, Zhu Y et al. Phase II, open-label, single-arm trial of imatinib mesylate in patients with metastatic melanoma harboring c-Kit mutation or amplification. J Clin Oncol 2011; 29: 2904–2909.

    Article  CAS  PubMed  Google Scholar 

  37. Hodi FS, Corless CL, Giobbie-Hurder A, Fletcher JA, Zhu M, Marino-Enriquez A et al. Imatinib for Melanomas Harboring Mutationally Activated or Amplified KIT Arising on Mucosal, Acral, and Chronically Sun-Damaged Skin. J Clin Oncol 2013; 31: 3182–3190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Marquette A, Andre J, Bagot M, Bensussan A, Dumaz N ERK . and PDE4 cooperate to induce RAF isoform switching in melanoma. Nat Struct Mol Biol 2011; 18: 584–591.

    Article  CAS  PubMed  Google Scholar 

  39. Bennett DC, Cooper PJ, Hart IR . A line of non-tumorigenic mouse melanocytes, syngeneic with the B16 melanoma and requiring a tumour promoter for growth. Int J Cancer 1987; 39: 414–418.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Pr Antoni Ribas for the M230 melanoma cell line. This work was funded by L’Oréal Research & Innovation, INSERM, Université Paris Diderot and Fondation ARC pour la Recherche sur le Cancer. FL was supported by L’Oréal Research & Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Dumaz.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laugier, F., Delyon, J., André, J. et al. Hypoxia and MITF regulate KIT oncogenic properties in melanocytes. Oncogene 35, 5070–5077 (2016). https://doi.org/10.1038/onc.2016.39

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.39

Search

Quick links