Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cell type-dependent ROS and mitophagy response leads to apoptosis or necroptosis in neuroblastoma

Abstract

A limiting factor in the therapeutic outcome of children with high-risk neuroblastoma is the intrinsic and acquired resistance to common chemotherapeutic treatments. Here we investigated the molecular mechanisms by which the hemisynthetic cardiac glycoside UNBS1450 overcomes this limitation and induces differential cell death modalities in both neuroblastic and stromal neuroblastoma through stimulation of a cell-type-specific autophagic response eventually leading to apoptosis or necroptosis. In neuroblastic SH-SY5Y cells, we observed a time-dependent production of reactive oxygen species that affects lysosomal integrity inducing lysosome-associated membrane protein 2 degradation and cathepsin B and L activation. Subsequent mitochondrial membrane depolarization and accumulation of mitochondria in phagophores occurred after 8h of UNBS1450 treatment. Results were confirmed by mitochondrial mass analysis, electron microscopy and co-localization of mitochondria with GFP-LC3, suggesting the impaired clearance of damaged mitochondria. Thus, a stress-induced defective autophagic flux and the subsequent lack of clearance of damaged mitochondria sensitized SH-SY5Y cells to UNBS1450-induced apoptosis. Inhibition of autophagy with small inhibitory RNAs against ATG5, ATG7 and Beclin-1 protected SH-SY5Y cells against the cytotoxic effect of UNBS1450 by inhibiting apoptosis. In contrast, autophagy progression towards the catabolic state was observed in stromal SK-N-AS cells: here reactive oxygen species (ROS) generation remained undetectable preserving intact lysosomes and engulfing damaged mitochondria after UNBS1450 treatment. Moreover, autophagy inhibition determined sensitization of SK-N-AS to apoptosis. We identified efficient mitophagy as the key mechanism leading to failure of activation of the apoptotic pathway that increased resistance of SK-N-AS to UNBS1450, triggering rather necroptosis at higher doses. Altogether we characterize here the differential modulation of ROS and mitophagy as a main determinant of neuroblastoma resistance with potential relevance for personalized anticancer therapeutic approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Abbreviations

ATG:

autophagy-related

CG:

cardiac glycoside

FOXO:

Forkhead box O

GFP:

green fluorescent protein

LAMP-2:

lysosome-associated membrane protein 2

LC3:

microtubule-associated protein 1A/1B light-chain 3

PKB/AKT:

protein kinase B

ROS:

reactive oxygen species

SQSTM1:

sequestosome-1

References

  1. Cerella C, Dicato M, Diederich M . Assembling the puzzle of anti-cancer mechanisms triggered by cardiac glycosides. Mitochondrion 2013; 13: 225–234.

    Article  CAS  PubMed  Google Scholar 

  2. Slingerland M, Cerella C, Guchelaar HJ, Diederich M, Gelderblom H . Cardiac glycosides in cancer therapy: from preclinical investigations towards clinical trials. Invest New Drugs 2013; 31: 1087–1094.

    Article  CAS  PubMed  Google Scholar 

  3. Menger L, Vacchelli E, Adjemian S, Martins I, Ma Y, Shen S et al. Cardiac glycosides exert anticancer effects by inducing immunogenic cell death. Sci Transl Med 2012; 4: 143ra99.

    Article  PubMed  Google Scholar 

  4. Juncker T, Schumacher M, Dicato M, Diederich M . UNBS1450 from Calotropis procera as a regulator of signaling pathways involved in proliferation and cell death. Biochem Pharmacol 2009; 78: 1–10.

    Article  CAS  PubMed  Google Scholar 

  5. Cerella C, Muller F, Gaigneaux A, Radogna F, Viry E, Chateauvieux S et al. Early downregulation of Mcl-1 regulates apoptosis triggered by cardiac glycoside UNBS1450. Cell Death Dis 2015; 6: e1782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Juncker T, Cerella C, Teiten MH, Morceau F, Schumacher M, Ghelfi J et al. UNBS1450, a steroid cardiac glycoside inducing apoptotic cell death in human leukemia cells. Biochem Pharmacol 2011; 81: 13–23.

    Article  CAS  PubMed  Google Scholar 

  7. Muller F, Cerella C, Radogna F, Dicato M, Diederich M . Effects of natural products on Mcl-1 expression and function. Curr Med Chem 2015; 22: 3447–3461.

    Article  CAS  PubMed  Google Scholar 

  8. Li Q, Pogwizd SM, Prabhu SD, Zhou L . Inhibiting Na+/K+ ATPase can impair mitochondrial energetics and induce abnormal Ca2+ cycling and automaticity in guinea pig cardiomyocytes. PloS One 2014; 9: e93928.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Newman RA, Yang P, Hittelman WN, Lu T, Ho DH, Ni D et al. Oleandrin-mediated oxidative stress in human melanoma cells. J Exp Ther Oncol 2006; 5: 167–181.

    CAS  PubMed  Google Scholar 

  10. Xie CM, Chan WY, Yu S, Zhao J, Cheng CH . Bufalin induces autophagy-mediated cell death in human colon cancer cells through reactive oxygen species generation and JNK activation. Free Radic Biol Med 2011; 51: 1365–1375.

    Article  CAS  PubMed  Google Scholar 

  11. Hu F, Han J, Zhai B, Ming X, Zhuang L, Liu Y et al. Blocking autophagy enhances the apoptosis effect of bufalin on human hepatocellular carcinoma cells through endoplasmic reticulum stress and JNK activation. Apoptosis 2014; 19: 210–223.

    Article  CAS  PubMed  Google Scholar 

  12. Lang F, Qin Z, Li F, Zhang H, Fang Z, Hao E . Apoptotic cell death induced by resveratrol is partially mediated by the autophagy pathway in human ovarian cancer cells. PloS One 2015; 10: e0129196.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhang T, Li Y, Park KA, Byun HS, Won M, Jeon J et al. Cucurbitacin induces autophagy through mitochondrial ROS production which counteracts to limit caspase-dependent apoptosis. Autophagy 2012; 8: 559–576.

    Article  CAS  PubMed  Google Scholar 

  14. Wang Y, Zhan Y, Xu R, Shao R, Jiang J, Wang Z . Src mediates extracellular signal-regulated kinase 1/2 activation and autophagic cell death induced by cardiac glycosides in human non-small cell lung cancer cell lines. Mol Carcinog 2015; 54: E26–E34.

    Article  CAS  PubMed  Google Scholar 

  15. Klose J, Stankov MV, Kleine M, Ramackers W, Panayotova-Dimitrova D, Jager MD et al. Inhibition of autophagic flux by salinomycin results in anti-cancer effect in hepatocellular carcinoma cells. PloS One 2014; 9: e95970.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chen Y, McMillan-Ward E, Kong J, Israels SJ, Gibson SB . Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells. Cell Death Differ 2008; 15: 171–182.

    Article  CAS  PubMed  Google Scholar 

  17. Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z . Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 2007; 26: 1749–1760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 2008; 30: 214–226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cheng P, Ni Z, Dai X, Wang B, Ding W, Rae Smith A et al. The novel BH-3 mimetic apogossypolone induces Beclin-1- and ROS-mediated autophagy in human hepatocellular carcinoma [corrected] cells. Cell Death Dis 2013; 4: e489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Radogna F, Dicato M, Diederich M . Cancer-type-specific crosstalk between autophagy, necroptosis and apoptosis as a pharmacological target. Biochem Pharmacol 2015; 94: 1–11.

    Article  CAS  PubMed  Google Scholar 

  21. Radogna F, Albertini MC, De Nicola M, Diederich M, Bejarano I, Ghibelli L . Melatonin promotes Bax sequestration to mitochondria reducing cell susceptibility to apoptosis via the lipoxygenase metabolite 5-hydroxyeicosatetraenoic acid. Mitochondrion 2015; 21: 113–121.

    Article  CAS  PubMed  Google Scholar 

  22. Filomeni G, De Zio D, Cecconi F . Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death Differ 2015; 22: 377–388.

    Article  CAS  PubMed  Google Scholar 

  23. Sui X, Chen R, Wang Z, Huang Z, Kong N, Zhang M et al. Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment. Cell Death Dis 2013; 4: e838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G . Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 2007; 8: 741–752.

    Article  CAS  PubMed  Google Scholar 

  25. Levine B, Kroemer G . Autophagy in the pathogenesis of disease. Cell 2008; 132: 27–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cerella C, Teiten MH, Radogna F, Dicato M, Diederich M . From nature to bedside: pro-survival and cell death mechanisms as therapeutic targets in cancer treatment. Biotechnol Adv 2014; 32: 1111–1122.

    Article  CAS  PubMed  Google Scholar 

  27. Maris JM, Hogarty MD, Bagatell R, Cohn SL . Neuroblastoma. Lancet 2007; 369: 2106–2120.

    Article  CAS  PubMed  Google Scholar 

  28. Mora J, Cheung NK, Juan G, Illei P, Cheung I, Akram M et al. Neuroblastic and Schwannian stromal cells of neuroblastoma are derived from a tumoral progenitor cell. Cancer Res 2001; 61: 6892–6898.

    CAS  PubMed  Google Scholar 

  29. Jasty R, van Golen C, Lin HJ, Solomon G, Heidelberger K, Polverini P et al. Bcl-2 and M-Myc coexpression increases IGF-IR and features of malignant growth in neuroblastoma cell lines. Neoplasia 2001; 3: 304–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mijatovic T, Op De Beeck A, Van Quaquebeke E, Dewelle J, Darro F, de Launoit Y et al. The cardenolide UNBS1450 is able to deactivate nuclear factor kappaB-mediated cytoprotective effects in human non-small cell lung cancer cells. Mol Cancer Ther 2006; 5: 391–399.

    Article  CAS  PubMed  Google Scholar 

  31. Cerella C, Radogna F, Dicato M, Diederich M . Natural compounds as regulators of the cancer cell metabolism. Int J Cell Biol 2013; 2013: 639401.

    PubMed  PubMed Central  Google Scholar 

  32. Pavlides S, Vera I, Gandara R, Sneddon S, Pestell RG, Mercier I et al. Warburg meets autophagy: cancer-associated fibroblasts accelerate tumor growth and metastasis via oxidative stress, mitophagy, and aerobic glycolysis. Antioxid Redox Signal 2012; 16: 1264–1284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sengupta A, Molkentin JD, Paik JH, DePinho RA, Yutzey KE . FoxO transcription factors promote cardiomyocyte survival upon induction of oxidative stress. J Biol Chem 2011; 286: 7468–7478.

    Article  CAS  PubMed  Google Scholar 

  34. Salcher S, Hagenbuchner J, Geiger K, Seiter MA, Rainer J, Kofler R et al. C10ORF10/DEPP, a transcriptional target of FOXO3, regulates ROS-sensitivity in human neuroblastoma. Mol Cancer 2014; 13: 224.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cerella C, Gaigneaux A, Dicato M, Diederich M . Antagonistic role of natural compounds in mTOR-mediated metabolic reprogramming. Cancer Lett 2015; 356: 251–262.

    Article  CAS  PubMed  Google Scholar 

  36. Boya P, Kroemer G . Lysosomal membrane permeabilization in cell death. Oncogene 2008; 27: 6434–6451.

    Article  CAS  PubMed  Google Scholar 

  37. Li L, Chen Y, Gibson SB . Starvation-induced autophagy is regulated by mitochondrial reactive oxygen species leading to AMPK activation. Cell Signal 2013; 25: 50–65.

    Article  CAS  PubMed  Google Scholar 

  38. Ostenfeld MS, Hoyer-Hansen M, Bastholm L, Fehrenbacher N, Olsen OD, Groth-Pedersen L et al. Anti-cancer agent siramesine is a lysosomotropic detergent that induces cytoprotective autophagosome accumulation. Autophagy 2008; 4: 487–499.

    Article  CAS  PubMed  Google Scholar 

  39. Vucicevic L, Misirkic-Marjanovic M, Paunovic V, Kravic-Stevovic T, Martinovic T, Ciric D et al. Autophagy inhibition uncovers the neurotoxic action of the antipsychotic drug olanzapine. Autophagy 2014; 10: 2362–2378.

    Article  CAS  PubMed  Google Scholar 

  40. Castino R, Fiorentino I, Cagnin M, Giovia A, Isidoro C . Chelation of lysosomal iron protects dopaminergic SH-SY5Y neuroblastoma cells from hydrogen peroxide toxicity by precluding autophagy and Akt dephosphorylation. Toxicol Sci 2011; 123: 523–541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Goldsmith KC, Hogarty MD . Targeting programmed cell death pathways with experimental therapeutics: opportunities in high-risk neuroblastoma. Cancer Lett 2005; 228: 133–141.

    Article  CAS  PubMed  Google Scholar 

  42. Abhari BA, Cristofanon S, Kappler R, von Schweinitz D, Humphreys R, Fulda S . RIP1 is required for IAP inhibitor-mediated sensitization for TRAIL-induced apoptosis via a RIP1/FADD/caspase-8 cell death complex. Oncogene 2013; 32: 3263–3273.

    Article  CAS  PubMed  Google Scholar 

  43. Hashem SI, Perry CN, Bauer M, Han S, Clegg SD, Ouyang K et al. Brief report: oxidative stress mediates cardiomyocyte apoptosis in a human model of Danon disease and heart failure. Stem Cells 2015; 33: 2343–2350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Parganlija D, Klinkenberg M, Dominguez-Bautista J, Hetzel M, Gispert S, Chimi MA et al. Loss of PINK1 impairs stress-induced autophagy and cell survival. PloS One 2014; 9: e95288.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lefranc F, Mijatovic T, Kondo Y, Sauvage S, Roland I, Debeir O et al. Targeting the alpha 1 subunit of the sodium pump to combat glioblastoma cells. Neurosurgery 2008; 62: 211–221; discussion 221-212.

    Article  PubMed  Google Scholar 

  46. Van Quaquebeke E, Simon G, Andre A, Dewelle J, El Yazidi M, Bruyneel F et al. Identification of a novel cardenolide (2''-oxovoruscharin) from Calotropis procera and the hemisynthesis of novel derivatives displaying potent in vitro antitumor activities and high in vivo tolerance: structure-activity relationship analyses. J Med Chem 2005; 48: 849–856.

    Article  CAS  PubMed  Google Scholar 

  47. Cerella C, Scherer C, Cristofanon S, Henry E, Anwar A, Busch C et al. Cell cycle arrest in early mitosis and induction of caspase-dependent apoptosis in U937 cells by diallyltetrasulfide (Al2S4). Apoptosis 2009; 14: 641–654.

    Article  CAS  PubMed  Google Scholar 

  48. Radogna F, Sestili P, Martinelli C, Paolillo M, Paternoster L, Albertini MC et al. Lipoxygenase-mediated pro-radical effect of melatonin via stimulation of arachidonic acid metabolism. Toxicol Appl Pharmacol 2009; 238: 170–177.

    Article  CAS  PubMed  Google Scholar 

  49. Olenych SG, Claxton NS, Ottenberg GK, Davidson MW . The fluorescent protein color palette. Curr Protoc Cell Biol 2007; Chapter 21: Unit 21 25.

    Google Scholar 

  50. Schnekenburger M, Grandjenette C, Ghelfi J, Karius T, Foliguet B, Dicato M et al. Sustained exposure to the DNA demethylating agent, 2'-deoxy-5-azacytidine, leads to apoptotic cell death in chronic myeloid leukemia by promoting differentiation, senescence, and autophagy. Biochem Pharmacol 2011; 81: 364–378.

    Article  CAS  PubMed  Google Scholar 

  51. Radogna F, Paternoster L, De Nicola M, Cerella C, Ammendola S, Bedini A et al. Rapid and transient stimulation of intracellular reactive oxygen species by melatonin in normal and tumor leukocytes. Toxicol Appl Pharmacol 2009; 239: 37–45.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

FR thanks ‘Een Haerz fir kriibskrank Kanner’ association for initial support. This manuscript is dedicated to the memory of Marian Aldred. The authors are very thankful to ThinkPinkLux and Europadonna Luxembourg for their generous support. FR and AG are supported by a Télévie grant (Fonds National de la Recherche Scientifique, Belgium). CC is supported by a ‘Waxweiler grant for cancer prevention research’ from the Action LIONS ‘Vaincre le Cancer’. Research at LBMCC is financially supported by the Fondation de Recherche Cancer et Sang, the Recherches Scientifiques Luxembourg association, the ‘Een Haerz fir kriibskrank Kanner’ association, the Action LIONS ‘Vaincre le Cancer’ association and the Télévie Luxembourg. Research at SNU is supported by the National Research Foundation (NRF) by the MEST of Korea for Tumor Microenvironment Global Core Research Center (GCRC) grant (grant number 2012–0001184) and by Brain Korea (BK21) PLUS program. The authors thank Justine Paoli for technical assistance with electron microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Diederich.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radogna, F., Cerella, C., Gaigneaux, A. et al. Cell type-dependent ROS and mitophagy response leads to apoptosis or necroptosis in neuroblastoma. Oncogene 35, 3839–3853 (2016). https://doi.org/10.1038/onc.2015.455

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.455

This article is cited by

Search

Quick links