Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Expression and therapeutic targeting of dopamine receptor-1 (D1R) in breast cancer

Subjects

Abstract

Patients with advanced breast cancer often fail to respond to treatment, creating a need to develop novel biomarkers and effective therapeutics. Dopamine (DA) is a catecholamine that binds to five G protein-coupled receptors. We discovered expression of DA type-1 receptors (D1Rs) in breast cancer, thereby identifying these receptors as novel therapeutic targets in this disease. Strong to moderate immunoreactive D1R expression was found in 30% of 751 primary breast carcinomas, and was associated with larger tumors, higher tumor grades, node metastasis and shorter patient survival. DA and D1R agonists, signaling through the cGMP/protein kinase G (PKG) pathway, suppressed cell viability, inhibited invasion and induced apoptosis in multiple breast cancer cell lines. Fenoldopam, a peripheral D1R agonist that does not penetrate the brain, dramatically suppressed tumor growth in two mouse models with D1R-expressing xenografts by increasing both necrosis and apoptosis. D1R-expressing primary tumors and metastases in mice were detected by fluorescence imaging. In conclusion, D1R overexpression is associated with advanced breast cancer and poor prognosis. Activation of the D1R/cGMP/PKG pathway induces apoptosis in vitro and causes tumor shrinkage in vivo. Fenoldopam, which is FDA (Food and Drug Administration) approved to treat renal hypertension, could be repurposed as a novel therapeutic agent for patients with D1R-expressing tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Amenta F, Ricci A, Tayebati SK, Zaccheo D . The peripheral dopaminergic system: morphological analysis, functional and clinical applications. Ital J Anat Embryol 2002; 107: 145–167.

    CAS  PubMed  Google Scholar 

  2. Rubi B, Maechler P . Minireview: new roles for peripheral dopamine on metabolic control and tumor growth: let's seek the balance. Endocrinology 2010; 151: 5570–5581.

    Article  CAS  PubMed  Google Scholar 

  3. Contreras F, Fouillioux C, Bolívar A, Simonovis N, Hernández-Hernández R, Armas-Hernandez MJ et al. Dopamine, hypertension and obesity. J Hum Hypertens 2002; 16: S13–S17.

    Article  CAS  PubMed  Google Scholar 

  4. Li ZS, Schmauss C, Cuenca A, Ratcliffe E, Gershon MD . Physiological modulation of intestinal motility by enteric dopaminergic neurons and the D2 receptor: analysis of dopamine receptor expression, location, development, and function in wild-type and knock-out mice. J Neurosci 2006; 26: 2798–2807.

    Article  CAS  PubMed  Google Scholar 

  5. Borcherding DC, Hugo ER, Idelman G, De Silva A, Richtand NW, Loftus J et al. Dopamine receptors in human adipocytes: expression and functions. PLoS One 2011; 6: e25537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Missale C, Nash SR, Robinson SW, Jaber M, Caron MG . Dopamine receptors: from structure to function. Physiol Rev 1998; 78: 189–225.

    Article  CAS  PubMed  Google Scholar 

  7. Sidhu A, Niznik HB . Coupling of dopamine receptor subtypes to multiple and diverse G proteins. Int J Dev Neurosci 2000; 18: 669–677.

    Article  CAS  PubMed  Google Scholar 

  8. Beaulieu JM, Gainetdinov RR . The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 2011; 63: 182–217.

    Article  CAS  PubMed  Google Scholar 

  9. Arcangeli S, Tozzi A, Tantucci M, Spaccatini C, de Iure A, Costa C et al. Ischemic-LTP in striatal spiny neurons of both direct and indirect pathway requires the activation of D1-like receptors and NO/soluble guanylate cyclase/cGMP transmission. J Cereb Blood Flow Metab 2013; 33: 278–286.

    Article  CAS  PubMed  Google Scholar 

  10. Lin DT, Fretier P, Jiang C, Vincent SR . Nitric oxide signaling via cGMP-stimulated phosphodiesterase in striatal neurons. Synapse 2010; 64: 460–466.

    Article  CAS  PubMed  Google Scholar 

  11. Natarajan A, Han G, Chen SY, Yu P, White R, Jose P . The d5 dopamine receptor mediates large-conductance, calcium- and voltage-activated potassium channel activation in human coronary artery smooth muscle cells. J Pharmacol Exp Ther 2010; 332: 640–649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sharma RK, Duda T . Membrane guanylate cyclase, a multimodal transduction machine: history, present, and future directions. Front Mol Neurosci 2014; 7: 56.

    PubMed  PubMed Central  Google Scholar 

  13. Evgenov OV, Pacher P, Schmidt PM, Haskó G, Schmidt HH, Stasch JP . NO-independent stimulators and activators of soluble guanylate cyclase: discovery and therapeutic potential. Nat Rev Drug Discov 2006; 5: 755–768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Azevedo MF, Faucz FR, Bimpaki E, Horvath A, Levy I, de Alexandre RB et al. Clinical and molecular genetics of the phosphodiesterases (PDEs). Endocr Rev 2014; 35: 195–233.

    Article  CAS  PubMed  Google Scholar 

  15. Supuran CT, Mastrolorenzo A, Barbaro G, Scozzafava A . Phosphodiesterase 5 inhibitors—drug design and differentiation based on selectivity, pharmacokinetic and efficacy profiles. Curr Pharm Des 2006; 12: 3459–3465.

    Article  CAS  PubMed  Google Scholar 

  16. Zhu B, Strada SJ . The novel functions of cGMP-specific phosphodiesterase 5 and its inhibitors in carcinoma cells and pulmonary/cardiovascular vessels. Curr Top Med Chem 2007; 7: 437–454.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang L, Zhang Z, Zhang RL, Cui Y, LaPointe MC, Silver B et al. Tadalafil, a long-acting type 5 phosphodiesterase isoenzyme inhibitor, improves neurological functional recovery in a rat model of embolic stroke. Brain Res 2006; 1118: 192–198.

    Article  CAS  PubMed  Google Scholar 

  18. Flaim KE, Gessner GW, Crooke ST, Sarau HM, Weinstock J . Binding of a novel dopaminergic agonist radioligand [3H]-fenoldopam (SKF 82526) to D-1 receptors in rat striatum. Life Sci 1985; 36: 1427–1436.

    Article  CAS  PubMed  Google Scholar 

  19. Murphy MB, Murray C, Shorten GD . Fenoldopam: a selective peripheral dopamine-receptor agonist for the treatment of severe hypertension. N Engl J Med 2001; 345: 1548–1557.

    Article  CAS  PubMed  Google Scholar 

  20. Ng SS, Pang CC . In vivo venodilator action of fenoldopam, a dopamine D(1)-receptor agonist. Br J Pharmacol 2000; 129: 853–858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Weber RR, McCoy CE, Ziemniak JA, Frederickson ED, Goldberg LI, Murphy MB . Pharmacokinetic and pharmacodynamic properties of intravenous fenoldopam, a dopamine1-receptor agonist, in hypertensive patients. Br J Clin Pharmacol 1988; 25: 17–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bodei S, Arrighi N, Spano P, Sigala S . Should we be cautious on the use of commercially available antibodies to dopamine receptors? Naunyn Schmiedebergs Arch Pharmacol 2009; 379: 413–415.

    Article  CAS  PubMed  Google Scholar 

  23. Michel MC, Wieland T, Tsujimoto G . How reliable are G-protein-coupled receptor antibodies? Naunyn Schmiedebergs Arch Pharmacol 2009; 379: 385–388.

    Article  CAS  PubMed  Google Scholar 

  24. Granados-Principal S, Liu Y, Guevara ML, Blanco E, Choi DS, Qian W et al. Inhibition of iNOS as a novel effective targeted therapy against triple negative breast cancer. Breast Cancer Res 2015; 17: 527.

    Article  Google Scholar 

  25. Shen LH, Liao MH, Tseng YC . Recent advances in imaging of dopaminergic neurons for evaluation of neuropsychiatric disorders. J Biomed Biotechnol 2012 2012. 259349.

  26. Almubarak M, Osman S, Marano G, Abraham J . Role of positron-emission tomography scan in the diagnosis and management of breast cancer. Oncology (Williston Park) 2009; 23: 255–261.

    Google Scholar 

  27. Conole D, Scott LJ . Riociguat: first global approval. Drugs 2013; 73: 1967–1975.

    Article  CAS  PubMed  Google Scholar 

  28. Carlo RD, Muccioli G, Bellussi G, Portaleoni P, Ghi P, Racca S . Steroid, prolactin, and dopamine receptors in normal and pathologic breast tissue. Ann NY Acad Sci 1986; 464: 559–562.

    Article  Google Scholar 

  29. Sachlos E, Risueño RM, Laronde S, Shapovalova Z, Lee JH, Russell J et al. Identification of drugs including a dopamine receptor antagonist that selectively target cancer stem cells. Cell 2012; 149: 1284–1297.

    Article  CAS  PubMed  Google Scholar 

  30. Wang PS, Walker AM, Tsuang MT, Orav EJ, Glynn RJ, Levin R et al. Dopamine antagonists and the development of breast cancer. Arch Gen Psychiatry 2002; 59: 1147–1154.

    Article  CAS  PubMed  Google Scholar 

  31. Zhao DL, Zou LB, Lin S, Shi JG, Zhu HB . Anti-apoptotic effect of esculin on dopamine-induced cytotoxicity in the human neuroblastoma SH-SY5Y cell line. Neuropharmacology 2007; 53: 724–732.

    Article  CAS  PubMed  Google Scholar 

  32. Moreno-Smith M, Lu C, Shahzad MM, Pena GN, Allen JK, Stone RL et al. Dopamine blocks stress-mediated ovarian carcinoma growth. Clin Cancer Res 2011; 17: 3649–3659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sarkar C, Chakroborty D, Chowdhury UR, Dasgupta PS, Basu S . Dopamine increases the efficacy of anticancer drugs in breast and colon cancer preclinical models. Clin Cancer Res 2008; 14: 2502–2510.

    Article  CAS  PubMed  Google Scholar 

  34. Johnson DE, Ochieng J, Evans SL . The growth inhibitory properties of a dopamine agonist (SKF 38393) on MCF-7 cells. Anticancer Drugs 1995; 6: 471–474.

    Article  CAS  PubMed  Google Scholar 

  35. Maggio R, Aloisi G, Silvano E, Rossi M, Millan MJ . Heterodimerization of dopamine receptors: new insights into functional and therapeutic significance. Parkinsonism Relat Disord 2009; 15: S2–S7.

    Article  PubMed  Google Scholar 

  36. Goldstein DS, Swoboda KJ, Miles JM, Coppack SW, Aneman A, Holmes C et al. Sources and physiological significance of plasma dopamine sulfate. J Clin Endocrinol Metab 1999; 84: 2523–2531.

    Article  CAS  PubMed  Google Scholar 

  37. Eisenhofer G, Coughtrie MW, Goldstein DS . Dopamine sulphate: an enigma resolved. Clin Exp Pharmacol Physiol Suppl 1999; 26: S41–S53.

    CAS  PubMed  Google Scholar 

  38. Ghosh D . Human sulfatases: a structural perspective to catalysis. Cell Mol Life Sci 2007; 64: 2013–2022.

    Article  CAS  PubMed  Google Scholar 

  39. Dajani R, Cleasby A, Neu M, Wonacott AJ, Jhoti H, Hood AM et al. X-ray crystal structure of human dopamine sulfotransferase, SULT1A3. Molecular modeling and quantitative structure-activity relationship analysis demonstrate a molecular basis for sulfotransferase substrate specificity. J Biol Chem 1999; 274: 37862–37868.

    Article  CAS  PubMed  Google Scholar 

  40. Zaccolo M, Movsesian MA . cAMP and cGMP signaling cross-talk: role of phosphodiesterases and implications for cardiac pathophysiology. Circ Res 2007; 100: 1569–1578.

    Article  CAS  PubMed  Google Scholar 

  41. Hoque KE, Indorkar RP, Sammut S, West AR . Impact of dopamine-glutamate interactions on striatal neuronal nitric oxide synthase activity. Psychopharmacology (Berl) 2010; 207: 571–581.

    Article  CAS  Google Scholar 

  42. Sammut S, Dec A, Mitchell D, Linardakis J, Ortiguela M, West AR . Phasic dopaminergic transmission increases NO efflux in the rat dorsal striatum via a neuronal NOS and a dopamine D(1/5) receptor-dependent mechanism. Neuropsychopharmacology 2006; 31: 493–505.

    Article  CAS  PubMed  Google Scholar 

  43. Choi BM, Pae HO, Jang SI, Kim YM, Chung HT . Nitric oxide as a pro-apoptotic as well as anti-apoptotic modulator. J Biochem Mol Biol 2002; 35: 116–126.

    CAS  PubMed  Google Scholar 

  44. Proskuryakov SY, Gabai VL . Mechanisms of tumor cell necrosis. Curr Pharm Des 2010; 16: 56–68.

    Article  CAS  PubMed  Google Scholar 

  45. Basu S, Sarkar C, Chakroborty D, Nagy J, Mitra RB, Dasgupta PS et al. Ablation of peripheral dopaminergic nerves stimulates malignant tumor growth by inducing vascular permeability factor/vascular endothelial growth factor-mediated angiogenesis. Cancer Res 2004; 64: 5551–5555.

    Article  CAS  PubMed  Google Scholar 

  46. Basu S, Nagy JA, Pal S, Vasile E, Eckelhoefer IA, Bliss VS et al. The neurotransmitter dopamine inhibits angiogenesis induced by vascular permeability factor/vascular endothelial growth factor. Nat Med 2001; 7: 569–574.

    Article  CAS  PubMed  Google Scholar 

  47. Chakroborty D, Sarkar C, Basu B, Dasgupta PS, Basu S . Catecholamines regulate tumor angiogenesis. Cancer Res 2009; 69: 3727–3730.

    Article  CAS  PubMed  Google Scholar 

  48. Sarkar C, Chakroborty D, Mitra RB, Banerjee S, Dasgupta PS, Basu S . Dopamine in vivo inhibits VEGF-induced phosphorylation of VEGFR-2, MAPK, and focal adhesion kinase in endothelial cells. Am J Physiol Heart Circ Physiol 2004; 287: H1554–H1560.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We dedicate this manuscript to Wilson Tong, M.D., whose untimely death was a major loss to all who knew him. We thank Dean Quaranta for technical assistance, and Drs Susan Waltz and Peter Stambrook for critical reviews of this manuscript. This investigation was funded by NIH grants CA096613 and ES020909, DOD grants AR110050 and BC122992, and pilot grants from Marlene Harris-Ride Cincinnati, and the University of Cincinnati Center for Clinical and Translational Science and Training (CCTST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Ben-Jonathan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borcherding, D., Tong, W., Hugo, E. et al. Expression and therapeutic targeting of dopamine receptor-1 (D1R) in breast cancer. Oncogene 35, 3103–3113 (2016). https://doi.org/10.1038/onc.2015.369

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.369

This article is cited by

Search

Quick links