Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

miR-200 promotes the mesenchymal to epithelial transition by suppressing multiple members of the Zeb2 and Snail1 transcriptional repressor complexes

Subjects

Abstract

The miR-200 family promotes the epithelial state by suppressing the Zeb1/Zeb2 epithelial gene transcriptional repressors. To identify other miR-200-regulated genes, we isolated mRNAs bound to transfected biotinylated miR-200c in mouse breast cancer cells. In all, 520 mRNAs were significantly enriched in miR-200c binding at least twofold. Putative miR-200-regulated genes included Zeb2, enriched 3.5-fold in the pull down. However, Zeb2 knockdown does not fully recapitulate miR-200c overexpression, suggesting that regulating other miR-200 targets contributes to miR-200’s enhancement of epithelial gene expression. Candidate genes were highly enriched for miR-200c seed pairing in their 3′UTR and coding sequence and for genes that were downregulated by miR-200c overexpression. Epidermal growth factor receptor and downstream MAPK signaling pathways were the most enriched pathways. Genes whose products mediate transforming growth factor (TGF)-β signaling were also significantly overrepresented, and miR-200 counteracted the suppressive effects of TGF-β and bone morphogenic protein 2 (BMP-2) on epithelial gene expression. miR-200c regulated the 3′UTRs of 12 of 14 putative miR-200c-binding mRNAs tested. The extent of mRNA binding to miR-200c strongly correlated with gene suppression. Twelve targets of miR-200c (Crtap, Fhod1, Smad2, Map3k1, Tob1, Ywhag/14-3-3γ, Ywhab/14-3-3β, Smad5, Zfp36, Xbp1, Mapk12, Snail1) were experimentally validated by identifying their 3′UTR miR-200 recognition elements. Smad2 and Smad5 form a complex with Zeb2 and Ywhab/14-3-3β and Ywhag/14-3-3γ form a complex with Snail1. These complexes that repress transcription assemble on epithelial gene promoters. miR-200 overexpression induced RNA polymerase II localization and reduced Zeb2 and Snail1 binding to epithelial gene promoters. Expression of miR-200-resistant Smad5 modestly, but significantly, reduced epithelial gene induction by miR-200. miR-200 expression and Zeb2 knockdown are known to inhibit cell invasion in in vitro assays. Knockdown of each of three novel miR-200 target genes identified here, Smad5, Ywhag and Crtap, also profoundly suppressed cell invasion. Thus, miR-200 suppresses TGF-β/BMP signaling, promotes epithelial gene expression and suppresses cell invasion by regulating a network of genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Baum B, Settleman J, Quinlan MP . Transitions between epithelial and mesenchymal states in development and disease. Semin Cell Dev Biol 2008; 19: 294–308.

    Article  CAS  PubMed  Google Scholar 

  2. Thiery JP . Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2002; 2: 442–454.

    Article  CAS  PubMed  Google Scholar 

  3. Kalluri R, Weinberg RA . The basics of epithelial-mesenchymal transition. J Clin Invest 2009; 119: 1420–1428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dykxhoorn DM, Wu Y, Xie H, Yu F, Lal A, Petrocca F et al. miR-200 enhances mouse breast cancer cell colonization to form distant metastases. PLoS ONE 2009; 4: e7181.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wells A, Yates C, Shepard CR . E-cadherin as an indicator of mesenchymal to epithelial reverting transitions during the metastatic seeding of disseminated carcinomas. Clin Exp Metastasis 2008; 25: 621–628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cheung KJ, Gabrielson E, Werb Z, Ewald AJ . Collective invasion in breast cancer requires a conserved basal epithelial program. Cell 2013; 155: 1639–1651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gravgaard KH, Lyng MB, Laenkholm AV, Sokilde R, Nielsen BS, Litman T et al. The miRNA-200 family and miRNA-9 exhibit differential expression in primary versus corresponding metastatic tissue in breast cancer. Breast Cancer Res Treat 2012; 134: 207–217.

    Article  CAS  PubMed  Google Scholar 

  8. Korpal M, Ell BJ, Buffa FM, Ibrahim T, Blanco MA, Celia-Terrassa T et al. Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization. Nat Med 2011; 17: 1101–1108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dai Y, Xia W, Song T, Su X, Li J, Li S et al. MicroRNA-200b Is Overexpressed in Endometrial Adenocarcinomas and Enhances MMP2 Activity by Downregulating TIMP2 in Human Endometrial Cancer Cell Line HEC-1A Cells. Nucleic Acid Ther 2013; 23: 29–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li J, Du L, Yang Y, Wang C, Liu H, Wang L et al. MiR-429 is an independent prognostic factor in colorectal cancer and exerts its anti-apoptotic function by targeting SOX2. Cancer Lett 2013; 329: 84–90.

    Article  CAS  PubMed  Google Scholar 

  11. Pichler M, Ress AL, Winter E, Stiegelbauer V, Karbiener M, Schwarzenbacher D et al. MiR-200a regulates epithelial to mesenchymal transition-related gene expression and determines prognosis in colorectal cancer patients. Br J Cancer 2014; 110: 1614–1621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sun L, Yao Y, Liu B, Lin Z, Lin L, Yang M et al. MiR-200b and miR-15b regulate chemotherapy-induced epithelial-mesenchymal transition in human tongue cancer cells by targeting BMI1. Oncogene 2012; 31: 432–445.

    Article  CAS  PubMed  Google Scholar 

  13. Ye F, Tang H, Liu Q, Xie X, Wu M, Liu X et al. miR-200b as a prognostic factor in breast cancer targets multiple members of RAB family. J Transl Med 2014; 12: 17–27.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Li A, Omura N, Hong SM, Vincent A, Walter K, Griffith M et al. Pancreatic cancers epigenetically silence SIP1 and hypomethylate and overexpress miR-200a/200b in association with elevated circulating miR-200a and miR-200b levels. Cancer Res 2010; 70: 5226–5237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 2008; 105: 10513–10518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Taylor DD, Gercel-Taylor C . MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 2008; 110: 13–21.

    Article  CAS  PubMed  Google Scholar 

  17. Toiyama Y, Hur K, Tanaka K, Inoue Y, Kusunoki M, Boland CR et al. Serum miR-200c is a novel prognostic and metastasis-predictive biomarker in patients with colorectal cancer. Ann Surg 2014; 259: 735–743.

    Article  PubMed  Google Scholar 

  18. Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep 2008; 9: 582–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Korpal M, Lee ES, Hu G, Kang Y . The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 2008; 283: 14910–14914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Park SM, Gaur AB, Lengyel E, Peter ME . The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 2008; 22: 894–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 2008; 10: 593–601.

    Article  CAS  PubMed  Google Scholar 

  22. Chan YC, Khanna S, Roy S, Sen CK . miR-200b targets Ets-1 and is down-regulated by hypoxia to induce angiogenic response of endothelial cells. J Biol Chem 2011; 286: 2047–2056.

    Article  CAS  PubMed  Google Scholar 

  23. Shin JO, Lee JM, Cho KW, Kwak S, Kwon HJ, Lee MJ et al. MiR-200b is involved in Tgf-beta signaling to regulate mammalian palate development. Histochem Cell Biol 2012; 137: 67–78.

    Article  CAS  PubMed  Google Scholar 

  24. Liu YN, Yin JJ, Abou-Kheir W, Hynes PG, Casey OM, Fang L et al. MiR-1 and miR-200 inhibit EMT via Slug-dependent and tumorigenesis via Slug-independent mechanisms. Oncogene 2013; 32: 296–306.

    Article  CAS  PubMed  Google Scholar 

  25. Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P, Qian D et al. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 2009; 138: 592–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Iliopoulos D, Lindahl-Allen M, Polytarchou C, Hirsch HA, Tsichlis PN, Struhl K et al. Loss of miR-200 inhibition of Suz12 leads to polycomb-mediated repression required for the formation and maintenance of cancer stem cells. Mol Cell 2010; 39: 761–772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Samavarchi-Tehrani P, Golipour A, David L, Sung HK, Beyer TA, Datti A et al. Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell 2010; 7: 64–77.

    Article  CAS  PubMed  Google Scholar 

  28. Uhlmann S, Zhang JD, Schwager A, Mannsperger H, Riazalhosseini Y, Burmester S et al. miR-200bc/429 cluster targets PLCgamma1 and differentially regulates proliferation and EGF-driven invasion than miR-200a/141 in breast cancer. Oncogene 2010; 29: 4297–4306.

    Article  CAS  PubMed  Google Scholar 

  29. Xia W, Li J, Chen L, Huang B, Li S, Yang G et al. MicroRNA-200b regulates cyclin D1 expression and promotes S-phase entry by targeting RND3 in HeLa cells. Mol Cell Biochem 2010; 344: 261–266.

    Article  CAS  PubMed  Google Scholar 

  30. Yao CX, Wei QX, Zhang YY, Wang WP, Xue LX, Yang F et al. miR-200b targets GATA-4 during cell growth and differentiation. RNA Biol 2013; 10: 465–480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schickel R, Park SM, Murmann AE, Peter ME . mir-200c regulates induction of apoptosis through CD95 by targeting FAP-1. Mol Cell 2010; 38: 908–915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Feng B, Wang R, Song HZ, Chen LB . MicroRNA-200b reverses chemoresistance of docetaxel-resistant human lung adenocarcinoma cells by targeting E2F3. Cancer 2012; 118: 3365–3376.

    Article  CAS  PubMed  Google Scholar 

  33. Zhu W, Xu H, Zhu D, Zhi H, Wang T, Wang J et al. miR-200bc/429 cluster modulates multidrug resistance of human cancer cell lines by targeting BCL2 and XIAP. Cancer Chemother Pharmacol 2012; 69: 723–731.

    Article  CAS  PubMed  Google Scholar 

  34. Lal A, Thomas MP, Altschuler G, Navarro F, O'Day E, Li XL et al. Capture of microRNA-bound mRNAs identifies the tumor suppressor miR-34a as a regulator of growth factor signaling. PLoS Genet 2011; 7: e1002363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Orom UA, Nielsen FC, Lund AH . MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 2008; 30: 460–471.

    Article  PubMed  Google Scholar 

  36. Krishnan K, Steptoe AL, Martin HC, Wani S, Nones K, Waddell N et al. MicroRNA-182-5p targets a network of genes involved in DNA repair. RNA 2013; 19: 230–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kang H, Davis-Dusenbery BN, Nguyen PH, Lal A, Lieberman J, Van Aelst L et al. Bone morphogenetic protein 4 promotes vascular smooth muscle contractility by activating microRNA-21 (miR-21), which down-regulates expression of family of dedicator of cytokinesis (DOCK) proteins. J Biol Chem 2012; 287: 3976–3986.

    Article  CAS  PubMed  Google Scholar 

  38. Cloonan N, Wani S, Xu Q, Gu J, Lea K, Heater S et al. MicroRNAs and their isomiRs function cooperatively to target common biological pathways. Genome Biol 2011; 12: R126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tan SM, Kirchner R, Jin J, Hofmann O, McReynolds L, Hide W et al. Sequencing of captive target transcripts identifies the network of regulated genes and functions of primate-specific miR-522. Cell Rep 2014; 8: 1225–1239.

    Article  CAS  PubMed  Google Scholar 

  40. Chaffer CL, Marjanovic ND, Lee T, Bell G, Kleer CG, Reinhardt F et al. Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. Cell 2013; 154: 61–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Verschueren K, Remacle JE, Collart C, Kraft H, Baker BS, Tylzanowski P et al. SIP1, a novel zinc finger/homeodomain repressor, interacts with Smad proteins and binds to 5'-CACCT sequences in candidate target genes. J Biol Chem 1999; 274: 20489–20498.

    Article  CAS  PubMed  Google Scholar 

  42. Hou Z, Peng H, White DE, Wang P, Lieberman PM, Halazonetis T et al. 14-3-3 binding sites in the snail protein are essential for snail-mediated transcriptional repression and epithelial-mesenchymal differentiation. Cancer Res 2010; 70: 4385–4393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Obri A, Ouararhni K, Papin C, Diebold ML, Padmanabhan K, Marek M et al. ANP32E is a histone chaperone that removes H2A.Z from chromatin. Nature 2014; 505: 648–653.

    Article  CAS  PubMed  Google Scholar 

  44. Tanjore H, Cheng DS, Degryse AL, Zoz DF, Abdolrasulnia R, Lawson WE et al. Alveolar epithelial cells undergo epithelial-to-mesenchymal transition in response to endoplasmic reticulum stress. J Biol Chem 2011; 286: 30972–30980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen X, Iliopoulos D, Zhang Q, Tang Q, Greenblatt MB, Hatziapostolou M et al. XBP1 promotes triple-negative breast cancer by controlling the HIF1alpha pathway. Nature 2014; 508: 103–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Koka S, Neudauer CL, Li X, Lewis RE, McCarthy JB, Westendorf JJ et al. The formin-homology-domain-containing protein FHOD1 enhances cell migration. J Cell Sci 2003; 116: 1745–1755.

    Article  CAS  PubMed  Google Scholar 

  47. Yamazaki D, Fujiwara T, Suetsugu S, Takenawa T . A novel function of WAVE in lamellipodia: WAVE1 is required for stabilization of lamellipodial protrusions during cell spreading. Genes Cells 2005; 10: 381–392.

    Article  CAS  PubMed  Google Scholar 

  48. Cuevas BD, Abell AN, Witowsky JA, Yujiri T, Johnson NL, Kesavan K et al. MEKK1 regulates calpain-dependent proteolysis of focal adhesion proteins for rear-end detachment of migrating fibroblasts. EMBO J 2003; 22: 3346–3355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lewis BP, Burge CB, Bartel DP . Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120: 15–20.

    Article  CAS  PubMed  Google Scholar 

  50. Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E . The role of site accessibility in microRNA target recognition. Nat Genet 2007; 39: 1278–1284.

    Article  CAS  PubMed  Google Scholar 

  51. Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R . Fast and effective prediction of microRNA/target duplexes. RNA 2004; 10: 1507–1517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Comijn J, Berx G, Vermassen P, Verschueren K, van Grunsven L, Bruyneel E et al. The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 2001; 7: 1267–1278.

    Article  CAS  PubMed  Google Scholar 

  53. Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2000; 2: 84–89.

    Article  CAS  PubMed  Google Scholar 

  54. Liu IM, Schilling SH, Knouse KA, Choy L, Derynck R, Wang XF et al. TGFbeta-stimulated Smad1/5 phosphorylation requires the ALK5 L45 loop and mediates the pro-migratory TGFbeta switch. EMBO J 2009; 28: 88–98.

    Article  CAS  PubMed  Google Scholar 

  55. Grafe I, Yang T, Alexander S, Homan EP, Lietman C, Jiang MM et al. Excessive transforming growth factor-β signaling is a common mechanism in osteogenesis imperfecta. Nat Med 2014; 20: 670–675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Enerly E, Steinfeld I, Kleivi K, Leivonen SK, Aure MR, Russnes HG et al. miRNA-mRNA integrated analysis reveals roles for miRNAs in primary breast tumors. PLoS ONE 2011; 6: e16915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Itoh T, Nozawa Y, Akao Y . MicroRNA-141 and -200a are involved in bone morphogenetic protein-2-induced mouse pre-osteoblast differentiation by targeting distal-less homeobox 5. J Biol Chem 2009; 284: 19272–19279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gregory PA, Bracken CP, Smith E, Bert AG, Wright JA, Roslan S et al. An autocrine TGF-beta/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition. Mol Biol Cell 2011; 22: 1686–1698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M et al. Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol 2004; 6: 931–940.

    Article  CAS  PubMed  Google Scholar 

  60. Langer EM, Feng Y, Zhaoyuan H, Rauscher FJ, Kroll KL, Longmore GD et al. AjubaLIM proteins are snail/slug corepressors required for neural crest development in Xenopus. Dev Cell 2008; 14: 424–436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Venkov CD, Link AJ, Jennings JL, Plieth D, Inoue T, Nagai K et al. A proximal activator of transcription in epithelial-mesenchymal transition. J Clin Invest 2007; 117: 482–491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mishra SK, Talukder AH, Gururaj AE, Yang Z, Singh RR, Mahoney MG et al. Upstream determinants of estrogen receptor-alpha regulation of metastatic tumor antigen 3 pathway. J Biol Chem 2004; 279: 32709–32715.

    Article  CAS  PubMed  Google Scholar 

  63. Ahmadi H, Ahmadi A, Azimzadeh-Jamalkandi S, Shoorehdeli MA, Salehzadeh-Yazdi A, Bidkhori G et al. HomoTarget: a new algorithm for prediction of microRNA targets in Homo sapiens. Genomics 2013; 101: 94–100.

    Article  CAS  PubMed  Google Scholar 

  64. Chi SW, Zang JB, Mele A, Darnell RB . Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 2009; 460: 479–486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jurmeister S, Baumann M, Balwierz A, Keklikoglou I, Ward A, Uhlmann S et al. MicroRNA-200c represses migration and invasion of breast cancer cells by targeting actin-regulatory proteins FHOD1 and PPM1F. Mol Cell Biol 2012; 32: 633–651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Capobianco V, Nardelli C, Ferrigno M, Iaffaldano L, Pilone V, Forestieri P et al. miRNA and protein expression profiles of visceral adipose tissue reveal miR-141/YWHAG and miR-520e/RAB11A as two potential miRNA/protein target pairs associated with severe obesity. J Proteome Res 2012; 11: 3358–3369.

    Article  CAS  PubMed  Google Scholar 

  67. Helwak A, Kudla G, Dudnakova T, Tollervey D . Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 2013; 153: 654–665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 2010; 141: 129–141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Aslakson CJ, Miller FR . Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res 1992; 52: 1399–1405.

    CAS  PubMed  Google Scholar 

  70. Petrocca F, Altschuler G, Tan SM, Mendillo ML, Yan H, Jerry DJ et al. A genome-wide siRNA screen identifies proteasome addiction as a vulnerability of basal-like triple-negative breast cancer cells. Cancer Cell 2013; 24: 182–196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 2007; 26: 745–752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chen R, Li L, Butte AJ . AILUN: reannotating gene expression data automatically. Nat Methods 2007; 4: 879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 2007; 27: 91–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Garcia DM, Baek D, Shin C, Bell GW, Grimson A, Bartel DP et al. Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs. Nat Struct Mol Biol 2011; 18: 1139–1146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pico AR, Kelder T, van Iersel MP, Hanspers K, Conklin BR, Evelo C et al. WikiPathways: pathway editing for the people. PLoS Biol 2008; 6: e184.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Reinhold WC, Sunshine M, Liu H, Varma S, Kohn KW, Morris J et al. CellMiner: a web-based suite of genomic and pharmacologic tools to explore transcript and drug patterns in the NCI-60 cell line set. Cancer Res 2012; 72: 3499–3511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bracken CP, Li X, Wright JA, Lawrence DM, Pillman KA, Salmanidis M et al. Genome-wide identification of miR-200 targets reveals a regulatory network controlling cell invasion. EMBO J 2014; 33: 2040–2056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Garibaldi F, Cicchini C, Conigliaro A, Santangelo L, Cozzolino AM, Grassi G et al. An epistatic mini-circuitry between the transcription factors Snail and HNF4α controls liver stem cell and hepatocyte features exhorting opposite regulation on stemness-inhibiting microRNAs. Cell Death Differ 2012; 19: 937–946.

    Article  CAS  PubMed  Google Scholar 

  79. Bracken CP, Gregory PA, Kolesnikoff N, Bert AG, Wang J, Shannon MF et al. A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res 2008; 68: 7846–7854.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

R Perdigão-Henriques acknowledges the Portuguese Ministry of Science and Technology (FCT) for Ph.D. fellowship SFRH/BD/37188/2007. We thank Alex Amiet and Devin Leake (Dharmacon) for providing the biotinylated miRNAs, Linfeng Huang (Lieberman laboratory) for assistance with ChIP assays and Francisco Navarro (Lieberman laboratory) for helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Lieberman.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perdigão-Henriques, R., Petrocca, F., Altschuler, G. et al. miR-200 promotes the mesenchymal to epithelial transition by suppressing multiple members of the Zeb2 and Snail1 transcriptional repressor complexes. Oncogene 35, 158–172 (2016). https://doi.org/10.1038/onc.2015.69

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.69

This article is cited by

Search

Quick links