Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Functional features of EVI1 and EVI1Δ324 isoforms of MECOM gene in genome-wide transcription regulation and oncogenicity

Subjects

Abstract

The MDS1 and ecotropic viral integration site 1 (EVI1) complex locus (MECOM) gene encodes several transcription factor variants including MDS1-EVI1, EVI1 and EVI1Δ324. Although MDS1-EVI1 has been associated with tumor-suppressing activity, EVI1 is a known oncogene in various cancers, whose expression is associated with poor patient survival. Although EVI1Δ324 is co-transcribed with EVI1, its activity in cancer cells is not fully understood. Previous reports described that unlike EVI1, EVI1Δ324 protein cannot transform fibroblasts because of its disrupted N-terminal zinc finger (ZNF) domain. To better understand EVI1Δ324 biology and function, we obtained genome-wide binding occupancies and expression data in ovarian cancer cells. We characterized its DNA-binding sites, binding motif and target genes. Comparative analyses with previous study show that EVI1 and EVI1Δ324 share similar transcriptional activities linked to their common C-terminus ZNF domain. They bind to an E-twenty-six family (ETS)-like motif, target to a large extent the same genes and cooperate with AP1 transcription factor. EVI1Δ324-occupied genes were 70.7% similar to EVI1-bound genes. More strikingly, EVI1 and EVI1Δ324 differentially expressed genes were 99.87% identical, indicating comparable transcriptional regulatory functions. Consistently with gene ontologies linked to these target genes, EVI1Δ324 expression in HeLa cells could enhance anchorage-independent growth, such as EVI1, showing that EVI1Δ324 expression also lead to pro-oncogenic effects. The main specific feature of EVI1 variant is its N-terminus ZNF domain that binds DNA through GATA-like motif. We found that most GATA-like EVI1 chromatin immunoprecipitation sequencing peaks are far from genes and are not involved in transcriptional regulation. These genomic regions were enriched in simple sequence repeats and displayed high meiotic recombination rates. Overall, our genomics analyses uncovered common and specific features of two major MECOM isoforms. Their influence on transcription and downstream cell proliferation was comparable. However, EVI1-specific GATA-like binding sites, from its N-terminus ZNF domain, associated with high recombination rates, suggesting possible additional oncogenic potential for EVI1 in modulating genomic stability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Goyama S, Kurokawa M . Pathogenetic significance of ecotropic viral integration site-1 in hematological malignancies. Cancer Sci 2009; 100: 990–995.

    Article  CAS  PubMed  Google Scholar 

  2. Goyama S, Kurokawa M . Evi-1 as a critical regulator of leukemic cells. Int J Hematol 2010; 91: 753–757.

    Article  CAS  PubMed  Google Scholar 

  3. Metais JY, Dunbar CE . The MDS1-EVI1 gene complex as a retrovirus integration site: impact on behavior of hematopoietic cells and implications for gene therapy. Mol Ther 2008; 16: 439–449.

    Article  CAS  PubMed  Google Scholar 

  4. Nucifora G, Laricchia-Robbio L, Senyuk V . EVI1 and hematopoietic disorders: history and perspectives. Gene 2006; 368: 1–11.

    Article  CAS  PubMed  Google Scholar 

  5. Bonome T, Levine DA, Shih J, Randonovich M, Pise-Masison CA, Bogomolniy F et al. A gene signature predicting for survival in suboptimally debulked patients with ovarian cancer. Cancer Res 2008; 68: 5478–5486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brooks DJ, Woodward S, Thompson FH, Dos Santos B, Russell M, Yang JM et al. Expression of the zinc finger gene EVI-1 in ovarian and other cancers. Br J Cancer 1996; 74: 1518–1525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dutta P, Bui T, Bauckman KA, Keyomarsi K, Mills GB, Nanjundan M . EVI1 splice variants modulate functional responses in ovarian cancer cells. Mol Oncol 2013; 7: 647–668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mok SC, Bonome T, Vathipadiekal V, Bell A, Johnson ME, Wong KK et al. A gene signature predictive for outcome in advanced ovarian cancer identifies a survival factor: microfibril-associated glycoprotein 2. Cancer Cell 2009; 16: 521–532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nanjundan M, Nakayama Y, Cheng KW, Lahad J, Liu J, Lu K et al. Amplification of MDS1/EVI1 and EVI1, located in the 3q26.2 amplicon, is associated with favorable patient prognosis in ovarian cancer. Cancer Res 2007; 67: 3074–3084.

    Article  CAS  PubMed  Google Scholar 

  10. Sunde JS, Donninger H, Wu K, Johnson ME, Pestell RG, Rose GS et al. Expression profiling identifies altered expression of genes that contribute to the inhibition of transforming growth factor-beta signaling in ovarian cancer. Cancer Res 2006; 66: 8404–8412.

    Article  CAS  PubMed  Google Scholar 

  11. Lugthart S, van Drunen E, van Norden Y, van Hoven A, Erpelinck CA, Valk PJ et al. High EVI1 levels predict adverse outcome in acute myeloid leukemia: prevalence of EVI1 overexpression and chromosome 3q26 abnormalities underestimated. Blood 2008; 111: 4329–4337.

    Article  CAS  PubMed  Google Scholar 

  12. Ogawa S, Kurokawa M, Tanaka T, Tanaka K, Hangaishi A, Mitani K et al. Increased Evi-1 expression is frequently observed in blastic crisis of chronic myelocytic leukemia. Leukemia 1996; 10: 788–794.

    CAS  PubMed  Google Scholar 

  13. Bartholomew C, Clark AM . Induction of two alternatively spliced evi-1 proto-oncogene transcripts by cAMP in kidney cells. Oncogene 1994; 9: 939–942.

    CAS  PubMed  Google Scholar 

  14. Bordereaux D, Fichelson S, Tambourin P, Gisselbrecht S . Alternative splicing of the Evi-1 zinc finger gene generates mRNAs which differ by the number of zinc finger motifs. Oncogene 1990; 5: 925–927.

    CAS  PubMed  Google Scholar 

  15. Kilbey A, Bartholomew C . Evi-1 ZF1 DNA binding activity and a second distinct transcriptional repressor region are both required for optimal transformation of Rat1 fibroblasts. Oncogene 1998; 16: 2287–2291.

    Article  CAS  PubMed  Google Scholar 

  16. Morishita K, Parganas E, Douglass EC, Ihle JN . Unique expression of the human Evi-1 gene in an endometrial carcinoma cell line: sequence of cDNAs and structure of alternatively spliced transcripts. Oncogene 1990; 5: 963–971.

    CAS  PubMed  Google Scholar 

  17. Wieser R . The oncogene and developmental regulator EVI1: expression, biochemical properties, and biological functions. Gene 2007; 396: 346–357.

    Article  CAS  PubMed  Google Scholar 

  18. Hirai H, Izutsu K, Kurokawa M, Mitani K . Oncogenic mechanisms of Evi-1 protein. Cancer Chemother Pharmacol 2001; 48: S35–S40.

    Article  CAS  PubMed  Google Scholar 

  19. Mitani K . Molecular mechanisms of leukemogenesis by AML1/EVI-1. Oncogene 2004; 23: 4263–4269.

    Article  CAS  PubMed  Google Scholar 

  20. Yoshimi A, Kurokawa M . Evi1 forms a bridge between the epigenetic machinery and signaling pathways. Oncotarget 2011; 2: 575–586.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Palmer S, Brouillet JP, Kilbey A, Fulton R, Walker M, Crossley M et al. Evi-1 transforming and repressor activities are mediated by CtBP co-repressor proteins. J Biol Chem 2001; 276: 25834–25840.

    Article  CAS  PubMed  Google Scholar 

  22. Bard-Chapeau EA, Gunaratne J, Kumar P, Chua BQ, Muller J, Bard FA et al. EVI1 oncoprotein interacts with a large and complex network of proteins and integrates signals through protein phosphorylation. Proc Natl Acad Sci USA 2013; 110: E2885–E2894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bard-Chapeau EA, Szumska D, Jacob B, Chua BQ, Chatterjee GC, Zhang Y et al. Mice carrying a hypomorphic Evi1 allele are embryonic viable but exhibit severe congenital heart defects. PLoS One 2014; 9: e89397.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Goyama S, Yamamoto G, Shimabe M, Sato T, Ichikawa M, Ogawa S et al. Evi-1 is a critical regulator for hematopoietic stem cells and transformed leukemic cells. Cell Stem Cell 2008; 3: 207–220.

    Article  CAS  PubMed  Google Scholar 

  25. Zhou LY, Chen FY, Shen LJ, Wan HX, Zhong JH . Arsenic trioxide induces apoptosis in the THP1 cell line by downregulating EVI-1. Exp Ther Med 2014; 8: 85–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bard-Chapeau EA, Jeyakani J, Kok CH, Muller J, Chua BQ, Gunaratne J et al. Ecotopic viral integration site 1 (EVI1) regulates multiple cellular processes important for cancer and is a synergistic partner for FOS protein in invasive tumors. Proc Natl Acad Sci USA 2012; 109: 2168–2173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Aytekin M, Vinatzer U, Musteanu M, Raynaud S, Wieser R . Regulation of the expression of the oncogene EVI1 through the use of alternative mRNA 5'-ends. Gene 2005; 356: 160–168.

    Article  CAS  PubMed  Google Scholar 

  28. Fears S, Mathieu C, Zeleznik-Le N, Huang S, Rowley JD, Nucifora G . Intergenic splicing of MDS1 and EVI1 occurs in normal tissues as well as in myeloid leukemia and produces a new member of the PR domain family. Proc Natl Acad Sci USA 1996; 93: 1642–1647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen X, Xu H, Yuan P, Fang F, Huss M, Vega VB et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 2008; 133: 1106–1117.

    Article  CAS  PubMed  Google Scholar 

  30. Pavesi G, Mereghetti P, Zambelli F, Stefani M, Mauri G, Pesole G . MoD Tools: regulatory motif discovery in nucleotide sequences from co-regulated or homologous genes. Nucleic Acids Res 2006; 34: W566–W570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wei GH, Badis G, Berger MF, Kivioja T, Palin K, Enge M et al. Genome-wide analysis of ETS-family DNA-binding in vitro and in vivo. EMBO J 2010; 29: 2147–2160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ji H, Vokes SA, Wong WH . A comparative analysis of genome-wide chromatin immunoprecipitation data for mammalian transcription factors. Nucleic Acids Res 2006; 34: e146.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Turatsinze JV, Thomas-Chollier M, Defrance M, van Helden J . Using RSAT to scan genome sequences for transcription factor binding sites and cis-regulatory modules. Nat Protoc 2008; 3: 1578–1588.

    Article  CAS  PubMed  Google Scholar 

  34. Medina-Rivera A, Abreu-Goodger C, Thomas-Chollier M, Salgado H, Collado-Vides J, van Helden J . Theoretical and empirical quality assessment of transcription factor-binding motifs. Nucleic Acids Res 2011; 39: 808–824.

    Article  CAS  PubMed  Google Scholar 

  35. Hoyt PR, Bartholomew C, Davis AJ, Yutzey K, Gamer LW, Potter SS et al. The Evi1 proto-oncogene is required at midgestation for neural, heart, and paraxial mesenchyme development. Mech Dev 1997; 65: 55–70.

    Article  CAS  PubMed  Google Scholar 

  36. Yuasa H, Oike Y, Iwama A, Nishikata I, Sugiyama D, Perkins A et al. Oncogenic transcription factor Evi1 regulates hematopoietic stem cell proliferation through GATA-2 expression. EMBO J 2005; 24: 1976–1987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Eferl R, Wagner EF . AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer 2003; 3: 859–868.

    Article  CAS  PubMed  Google Scholar 

  38. Delwel R, Funabiki T, Kreider BL, Morishita K, Ihle JN . Four of the seven zinc fingers of the Evi-1 myeloid-transforming gene are required for sequence-specific binding to GA(C/T)AAGA(T/C)AAGATAA. Mol Cell Biol 1993; 13: 4291–4300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yatsula B, Lin S, Read AJ, Poholek A, Yates K, Yue D et al. Identification of binding sites of EVI1 in mammalian cells. J Biol Chem 2005; 280: 30712–30722.

    Article  CAS  PubMed  Google Scholar 

  40. Fujiwara T, O'Geen H, Keles S, Blahnik K, Linnemann AK, Kang YA et al. Discovering hematopoietic mechanisms through genome-wide analysis of GATA factor chromatin occupancy. Mol Cell 2009; 36: 667–681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Karakaya K, Herbst F, Ball C, Glimm H, Kramer A, Loffler H . Overexpression of EVI1 interferes with cytokinesis and leads to accumulation of cells with supernumerary centrosomes in G0/1 phase. Cell Cycle 2012; 11: 3492–3503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Stein S, Ott MG, Schultze-Strasser S, Jauch A, Burwinkel B, Kinner A et al. Genomic instability and myelodysplasia with monosomy 7 consequent to EVI1 activation after gene therapy for chronic granulomatous disease. Nat Med 2010; 16: 198–204.

    Article  CAS  PubMed  Google Scholar 

  43. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  PubMed  Google Scholar 

  44. Heyer WD, Ehmsen KT, Liu J . Regulation of homologous recombination in eukaryotes. Annu Rev Genet 2010; 44: 113–139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kong A, Gudbjartsson DF, Sainz J, Jonsdottir GM, Gudjonsson SA, Richardsson B et al. A high-resolution recombination map of the human genome. Nat Genet 2002; 31: 241–247.

    Article  CAS  PubMed  Google Scholar 

  46. Broman KW, Murray JC, Sheffield VC, White RL, Weber JL . Comprehensive human genetic maps: individual and sex-specific variation in recombination. Am J Hum Genet 1998; 63: 861–869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dib C, Faure S, Fizames C, Samson D, Drouot N, Vignal A et al. A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature 1996; 380: 152–154.

    Article  CAS  PubMed  Google Scholar 

  48. Borum K . Oogenesis in the mouse. A study of the meiotic prophase. Exp Cell Res 1961; 24: 495–507.

    Article  CAS  PubMed  Google Scholar 

  49. Speed RM . Meiosis in the foetal mouse ovary. I. An analysis at the light microscope level using surface-spreading. Chromosoma 1982; 85: 427–437.

    Article  CAS  PubMed  Google Scholar 

  50. Bouma GJ, Affourtit JP, Bult CJ, Eicher EM . Transcriptional profile of mouse pre-granulosa and Sertoli cells isolated from early-differentiated fetal gonads. Gene Expr Patterns 2007; 7: 113–123.

    Article  CAS  PubMed  Google Scholar 

  51. Namekawa SH, Park PJ, Zhang LF, Shima JE, McCarrey JR, Griswold MD et al. Postmeiotic sex chromatin in the male germline of mice. Curr Biol 2006; 16: 660–667.

    Article  CAS  PubMed  Google Scholar 

  52. Xia W, Mruk DD, Lee WM, Cheng CY . Unraveling the molecular targets pertinent to junction restructuring events during spermatogenesis using the Adjudin-induced germ cell depletion model. J Endocrinol 2007; 192: 563–583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schultz N, Hamra FK, Garbers DL . A multitude of genes expressed solely in meiotic or postmeiotic spermatogenic cells offers a myriad of contraceptive targets. Proc Natl Acad Sci USA 2003; 100: 12201–12206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang Y, Stehling-Sun S, Lezon-Geyda K, Juneja SC, Coillard L, Chatterjee G et al. PR-domain-containing Mds1-Evi1 is critical for long-term hematopoietic stem cell function. Blood 2011; 118: 3853–3861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jazaeri AA, Ferriss JS, Bryant JL, Dalton MS, Dutta A . Evaluation of EVI1 and EVI1s (Delta324) as potential therapeutic targets in ovarian cancer. Gynecol Oncol 2010; 118: 189–195.

    Article  CAS  PubMed  Google Scholar 

  56. Jochum W, Passegue E, Wagner EF . AP-1 in mouse development and tumorigenesis. Oncogene 2001; 20: 2401–2412.

    Article  CAS  PubMed  Google Scholar 

  57. Tanaka T, Mitani K, Kurokawa M, Ogawa S, Tanaka K, Nishida J et al. Dual functions of the AML1/Evi-1 chimeric protein in the mechanism of leukemogenesis in t(3;21) leukemias. Mol Cell Biol 1995; 15: 2383–2392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yuan J, Adamski R, Chen J . Focus on histone variant H2AX: to be or not to be. FEBS Lett 2010; 584: 3717–3724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nicolas A . Relationship between transcription and initiation of meiotic recombination: toward chromatin accessibility. Proc Natl Acad Sci USA 1998; 95: 87–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wood RD, Mitchell M, Sgouros J, Lindahl T . Human DNA repair genes. Science 2001; 291: 1284–1289.

    Article  CAS  PubMed  Google Scholar 

  61. Mullan PB, Quinn JE, Harkin DP . The role of BRCA1 in transcriptional regulation and cell cycle control. Oncogene 2006; 25: 5854–5863.

    Article  CAS  PubMed  Google Scholar 

  62. Wu S, Shi Y, Mulligan P, Gay F, Landry J, Liu H et al. A YY1-INO80 complex regulates genomic stability through homologous recombination-based repair. Nat Struct Mol Biol 2007; 14: 1165–1172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zaprazna K, Atchison ML . YY1 controls immunoglobulin class switch recombination and nuclear activation-induced deaminase levels. Mol Cell Biol 2012; 32: 1542–1554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Janz C, Wiesmuller L . Wild-type p53 inhibits replication-associated homologous recombination. Oncogene 2002; 21: 5929–5933.

    Article  CAS  PubMed  Google Scholar 

  65. Yanowitz J . Meiosis: making a break for it. Curr Opin Cell Biol 2010; 22: 744–751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tan FJ, Hoang ML, Koshland D . DNA resection at chromosome breaks promotes genome stability by constraining non-allelic homologous recombination. PLoS Genet 2012; 8: e1002633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fog CK, Galli GG, Lund AH . PRDM proteins: important players in differentiation and disease. Bioessays 2012; 34: 50–60.

    Article  CAS  PubMed  Google Scholar 

  68. Hohenauer T, Moore AW . The Prdm family: expanding roles in stem cells and development. Development 2012; 139: 2267–2282.

    Article  CAS  PubMed  Google Scholar 

  69. Baudat F, Buard J, Grey C, Fledel-Alon A, Ober C, Przeworski M et al. PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice. Science 2010; 327: 836–840.

    Article  CAS  PubMed  Google Scholar 

  70. Parvanov ED, Petkov PM, Paigen K . Prdm9 controls activation of mammalian recombination hotspots. Science 2010; 327: 835.

    Article  CAS  PubMed  Google Scholar 

  71. Segurel L, Leffler EM, Przeworski M . The case of the fickle fingers: how the PRDM9 zinc finger protein specifies meiotic recombination hotspots in humans. PLoS Biol 2011; 9: e1001211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Agency for Science, Technology and Research (Singapore). We thank Archibald Perkins, University of Rochester, for sharing his mouse Evi1 antibodies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E A Bard-Chapeau.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayadi, A., Jeyakani, J., Seet, S. et al. Functional features of EVI1 and EVI1Δ324 isoforms of MECOM gene in genome-wide transcription regulation and oncogenicity. Oncogene 35, 2311–2321 (2016). https://doi.org/10.1038/onc.2015.286

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.286

This article is cited by

Search

Quick links