Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Disruption of cytochrome c oxidase function induces the Warburg effect and metabolic reprogramming

Abstract

Defects in mitochondrial oxidative phosphorylation complexes, altered bioenergetics and metabolic shift are often seen in cancers. Here we show a role for the dysfunction of the electron transport chain component cytochrome c oxidase (CcO) in cancer progression. We show that genetic silencing of the CcO complex by shRNA expression and loss of CcO activity in multiple cell types from the mouse and human sources resulted in metabolic shift to glycolysis, loss of anchorage-dependent growth and acquired invasive phenotypes. Disruption of the CcO complex caused loss of transmembrane potential and induction of Ca2+/Calcineurin-mediated retrograde signaling. Propagation of this signaling includes activation of PI3-kinase, IGF1R and Akt, Ca2+-sensitive transcription factors and also TGFβ1, MMP16 and periostin, which are involved in oncogenic progression. Whole-genome expression analysis showed the upregulation of genes involved in cell signaling, extracellular matrix interactions, cell morphogenesis, cell motility and migration. The transcription profiles reveal extensive similarity to retrograde signaling initiated by partial mitochondrial DNA depletion, although distinct differences are observed in signaling induced by CcO dysfunction. The possible CcO dysfunction as a biomarker for cancer progression was supported by data showing that esophageal tumors from human patients show reduced CcO subunits IVi1 and Vb in regions that were previously shown to be the hypoxic core of the tumors. Our results show that mitochondrial electron transport chain defect initiates a retrograde signaling. These results suggest that a defect in the CcO complex can potentially induce tumor progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Warburg O . On respiratory impairment in cancer cells. Science 1956; 124: 269–270.

    CAS  Google Scholar 

  2. Brandon M, Baldi P, Wallace DC . Mitochondrial mutations in cancer. Oncogene 2006; 25: 4647–4662.

    Article  CAS  Google Scholar 

  3. Chatterjee A, Mambo E, Sidransky D . Mitochondrial mutations mutations in human cancer. Oncogene 2006; 25: 4663–4674.

    Article  CAS  Google Scholar 

  4. Dakubo GD, Parr RL, Costello LC, Franklin RB, Thayer RE . Altered metabolism and mitochondrial genome in prostate cancer. J Clin Pathol 2006; 59: 10–16.

    Article  CAS  Google Scholar 

  5. Dasgupta S, Hoque MO, Upadhyay S, Sidransky D . Mitochondrial cytochrome B gene mutation promotes tumor growth in bladder cancer. Cancer Res 2008; 68: 700–706.

    Article  CAS  Google Scholar 

  6. Gallardo ME, Moreno-Loshuertos R, Lopez C, Casqueiro M, Silva J, Bonilla F et al. m.6267G>A: a recurrent mutation in the human mitochondrial DNA that reduces cytochrome c oxidase activity and is associated with tumors. Hum Mutat 2006; 27: 575–582.

    Article  CAS  Google Scholar 

  7. Fang H, Shen L, Chen T, He J, Ding Z, Wei J et al. Cancer type-specific modulation of mitochondrial haplogroups in breast, colorectal and thyroid cancer. BMC Cancer 2010; 10: 421.

    Article  Google Scholar 

  8. Amuthan G, Biswas G, Ananadatheerthavarada HK, Vijayasarathy C, Shephard HM, Avadhani NG . Mitochondrial stress-induced calcium signaling, phenotypic changes and invasive behavior in human lung carcinoma A549 cells. Oncogene 2002; 21: 7839–7849.

    Article  CAS  Google Scholar 

  9. Biswas G, Adebanjo OA, Freedman BD, Anandatheerthavarada HK, Vijayasarathy C, Zaidi M et al. Retrograde Ca2+ signaling in C2C12 skeletal myocytes in response to mitochondrial genetic and metabolic stress: a novel mode of inter-organelle crosstalk. EMBO J 1999; 18: 522–533.

    Article  CAS  Google Scholar 

  10. Guha M, Pan H, Fang JK, Avadhani NG . Heterogeneous nuclear ribonucleoprotein A2 is a common transcriptional coactivator in the nuclear transcription response to mitochondrial respiratory stress. Mol Biol Cell 2009; 20: 4107–4119.

    Article  CAS  Google Scholar 

  11. Guha M, Fang JK, Monks R, Birnbaum MJ, Avadhani NG . Activation of Akt is essential for the propagation of mitochondrial respiratory stress signaling and activation of the transcriptional coactivator heterogeneous ribonucleoprotein A2. Mol Biol Cell 2010; 21: 3578–3589.

    Article  CAS  Google Scholar 

  12. Biswas G, Tang W, Sondheimer N, Guha M, Bansal S, Avadhani NG . A distinctive physiological role for IkappaBbeta in the propagation of mitochondrial respiratory stress signaling. J Biol Chem 2008; 283: 12586–12594.

    Article  CAS  Google Scholar 

  13. Guha M, Srinivasan S, Ruthel G, Kashina AK, Carstens RP, Mendoza A et al. Mitochondrial retrograde signaling induces epithelial-mesenchymal transition and generates breast cancer stem cells. Oncogene 2013; 33: 5238–5250.

    Article  Google Scholar 

  14. Galati D, Srinivasan S, Raza H, Prabu SK, Hardy M, Chandran K et al. Role of nuclear-encoded subunit Vb in the assembly and stability of cytochrome c oxidase complex: implications in mitochondrial dysfunction and ROS production. Biochem J 2009; 420: 439–449.

    Article  CAS  Google Scholar 

  15. Li Y, Park JS, Deng JH, Bai Y . Cytochrome c oxidase subunit IV is essential for assembly and respiratory function of the enzyme complex. J Bioenerg Biomembr 2006; 38: 283–291.

    Article  CAS  Google Scholar 

  16. Bansal S, Srinivasan S, Anandasadagopan S, Chowdhury AR, Selvaraj V, Kalyanaraman B et al. Additive effects of mitochondrion-targeted cytochrome CYP2E1 and alcohol toxicity on cytochrome c oxidase function and stability of respirosome complexes. J Biol Chem 2012; 287: 15284–15297.

    Article  CAS  Google Scholar 

  17. Prabu SK, Anandatheerthavarada HK, Raza H, Srinivasan S, Spear JF, Avadhani NG . Protein kinase A-mediated phosphorylation modulates cytochrome c oxidase function and augments hypoxia and myocardial ischemia-related injury. J Biol Chem 2006; 281: 2061–2070.

    Article  CAS  Google Scholar 

  18. Fang JK, Prabu SK, Sepuri NB, Raza H, Anandatheerthavarada HK, Galati D . Site specific phosphorylation of cytochrome c oxidase subunits I, IVi1 and Vb in rabbit hearts subjected to ischemia/reperfusion. FEBS Lett 2007; 581: 1302–1310.

    Article  CAS  Google Scholar 

  19. Sayen MR, Gustafsson AB, Sussman MA, Molkentin JD, Gottlieb RA . Calcineurin transgenic mice have mitochondrial dysfunction and elevated superoxide production. Am J Physiol Cell Physiol 2003; 284: C562–C570.

    Article  CAS  Google Scholar 

  20. Fukuda R, Zhang H, Kim JW, Shimoda L, Dang CV, Semenza GL . HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 2007; 129: 111–122.

    Article  CAS  Google Scholar 

  21. Schafer E, Seelert H, Reifschneider NH, Krause F, Dencher NA, Vonck J . Architecture of active mammalian respiratory chain supercomplexes. J Biol Chem 2006; 281: 15370–15375.

    Article  Google Scholar 

  22. Vonck J, Schafer E . Supramolecular organization of protein complexes in the mitochondrial inner membrane. Biochim Biophys Acta 2009; 1793: 117–124.

    Article  CAS  Google Scholar 

  23. Acin-Perez R, Fernandez-Silva P, Peleato ML, Perez-Martos A, Enriquez JA . Respiratory active mitochondrial supercomplexes. Mol Cell 2008; 32: 529–539.

    Article  CAS  Google Scholar 

  24. Liu X, Hajnoczky G . Altered fusion dynamics underlie unique morphological changes in mitochondria during hypoxia-reoxygenation stress. Cell Death Differ 2011; 18: 1561–1572.

    Article  CAS  Google Scholar 

  25. Biswas G, Anandatheerthavarada HK, Zaidi M, Avadhani NG . Mitochondria to nucleus stress signaling: a distinctive mechanism of NFkappaB/Rel activation through calcineurin-mediated inactivation of IkappaBbeta. J Cell Biol 2003; 161: 507–519.

    Article  CAS  Google Scholar 

  26. Biswas G, Guha M, Avadhani NG . Mitochondria-to-nucleus stress signaling in mammalian cells: nature of nuclear gene targets, transcription regulation, and induced resistance to apoptosis. Gene 2005; 354: 132–139.

    Article  CAS  Google Scholar 

  27. Butow RA, Avadhani NG . Mitochondrial signaling: the retrograde response. Mol Cell. 2004; 14: 1–15.

    Article  CAS  Google Scholar 

  28. Guha M, Srinivasan S, Biswas G, Avadhani NG . Activation of a novel calcineurin-mediated insulin-like growth factor-1 receptor pathway, altered metabolism, and tumor cell invasion in cells subjected to mitochondrial respiratory stress. J Biol Chem 2007; 282: 14536–14546.

    Article  CAS  Google Scholar 

  29. Wilson WR, Hay MP . Targeting hypoxia in cancer therapy. Nat Rev Cancer 2011; 11: 393–410.

    Article  CAS  Google Scholar 

  30. Natsuizaka M, Naganuma S, Kagawa S, Ohashi S, Ahmadi A, Subramanian H et al. Hypoxia induces IGFBP3 in esophageal squamous cancer cells through HIF-1alpha-mediated mRNA transcription and continuous protein synthesis. FASEB J 2012; 26: 2620–2630.

    Article  CAS  Google Scholar 

  31. Guzy RD, Schumacker PT . Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia. Exp Physiol 2006; 91: 807–819.

    Article  CAS  Google Scholar 

  32. Vannuvel K, Renard P, Raes M, Arnould T . Functional and morphological impact of ER stress on mitochondria. J Cell Physiol 2013; 228: 1802–1818.

    Article  CAS  Google Scholar 

  33. Rainbolt TK, Saunders JM, Wiseman RL . Stress-responsive regulation of mitochondria through the ER unfolded protein response. Trends Endocrinol Metab 2014; 25: 528–537.

    Article  CAS  Google Scholar 

  34. Wallace DC . Mitochondria and cancer. Nat Rev Cancer 2012; 12: 685–698.

    Article  CAS  Google Scholar 

  35. Frezza C . The role of mitochondria in the oncogenic signal transduction. Int J Biochem Cell Biol 2014; 48: 11–17.

    Article  CAS  Google Scholar 

  36. Moro L, Arbini AA, Yao JL, di Sant'Agnese PA, Marra E, Greco M . Mitochondrial DNA depletion in prostate epithelial cells promotes anoikis resistance and invasion through activation of PI3K/Akt2. Cell Death Differ 2009; 16: 571–583.

    Article  CAS  Google Scholar 

  37. Wallace DC . Mitochondrial DNA mutations in diseases of energy metabolism. J Bioenerg Biomembr 1994; 26: 241–250.

    Article  CAS  Google Scholar 

  38. Pelicano H, Xu RH, Du M, Feng L, Sasaki R, Carew JS et al. Mitochondrial respiration defects in cancer cells cause activation of Akt survival pathway through a redox-mediated mechanism. J Cell Biol 2006; 175: 913–923.

    Article  CAS  Google Scholar 

  39. Amuthan G, Biswas G, Zhang SY, Klein-Szanto A, Vijayasarathy C, Avadhani NG . Mitochondria-to-nucleus stress signaling induces phenotypic changes, tumor progression and cell invasion. EMBO J 2001; 20: 1910–1920.

    Article  CAS  Google Scholar 

  40. Guha M, Avadhani NG . Mitochondrial retrograde signaling at the crossroads of tumor bioenergetics, genetics and epigenetics. Mitochondrion 2013; 13: 577–591.

    Article  CAS  Google Scholar 

  41. Ishikawa K, Takenaga K, Akimoto M, Koshikawa N, Yamaguchi A, Imanishi H et al. ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science 2008; 320: 661–664.

    Article  CAS  Google Scholar 

  42. Sharma LK, Fang H, Liu J, Vartak R, Deng J, Bai Y . Mitochondrial respiratory complex I dysfunction promotes tumorigenesis through ROS alteration and AKT activation. Hum Mol Genet 2011; 20: 4605–4616.

    Article  CAS  Google Scholar 

  43. Bardella C, Pollard PJ, Tomlinson I . SDH mutations in cancer. Biochim Biophys Acta 2011; 1807: 1432–1443.

    Article  CAS  Google Scholar 

  44. Krell D, Assoku M, Galloway M, Mulholland P, Tomlinson I, Bardella C . Screen for IDH1, IDH2, IDH3, D2HGDH and L2HGDH mutations in glioblastoma. PLoS One 2011; 6: e19868.

    Article  CAS  Google Scholar 

  45. Picaud S, Kavanagh KL, Yue WW, Lee WH, Muller-Knapp S, Gileadi O et al. Structural basis of fumarate hydratase deficiency. J Inherit Metab Dis 2011; 34: 671–676.

    Article  CAS  Google Scholar 

  46. Srinivasan S, Avadhani NG . Cytochrome c oxidase dysfunction in oxidative stress. Free Radic Biol Med 2012; 53: 1252–1263.

    Article  CAS  Google Scholar 

  47. Semenza GL, Roth PH, Fang HM, Wang GL . Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem 1994; 269: 23757–23763.

    CAS  PubMed  Google Scholar 

  48. Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM et al. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem 2000; 275: 25130–25138.

    Article  CAS  Google Scholar 

  49. Chen ZX, Pervaiz S . Involvement of cytochrome c oxidase subunits Va and Vb in the regulation of cancer cell metabolism by Bcl-2. Cell Death Differ 2010; 17: 408–420.

    Article  CAS  Google Scholar 

  50. Nakagawa H, Zukerberg L, Togawa K, Meltzer SJ, Nishihara T, Rustgi AK . Human cyclin D1 oncogene and esophageal squamous cell carcinoma. Cancer 1995; 76: 541–549.

    Article  CAS  Google Scholar 

  51. Nishihira T, Hashimoto Y, Katayama M, Mori S, Kuroki T . Molecular and cellular features of esophageal cancer cells. J Cancer Res Clin Oncol 1993; 119: 441–449.

    Article  CAS  Google Scholar 

  52. Srinivasan S, Spear J, Chandran K, Joseph J, Kalyanaraman B, Avadhani NG . Oxidative stress induced mitochondrial protein kinase A mediates cytochrome c oxidase dysfunction. PLoS One 2013; 8: e77129.

    Article  CAS  Google Scholar 

  53. Lowry OH, ROSEBROUGH NJ, FARR AL, RANDALL RJ . Protein measurement with the Folin phenol reagent. J Biol Chem 1951; 193: 265–275.

    CAS  PubMed  Google Scholar 

  54. Nijtmans LG, Taanman JW, Muijsers AO, Speijer D, Van den Bogert C . Assembly of cytochrome-c oxidase in cultured human cells. Eur J Biochem 1998; 254: 389–394.

    Article  CAS  Google Scholar 

  55. Miccoli L, Oudard S, Sureau F, Poirson F, Dutrillaux B, Poupon MF . Intracellular pH governs the subcellular distribution of hexokinase in a glioma cell line. Biochem J 1996; 313: 957–962.

    Article  CAS  Google Scholar 

  56. Devin A, Nogueira V, Leverve X, Guerin B, Rigoulet M . Allosteric activation of pyruvate kinase via NAD+ in rat liver cells. Eur J Biochem 2001; 268: 3943–3949.

    Article  CAS  Google Scholar 

  57. Frevert EU, Kahn BB . Differential effects of constitutively active phosphatidylinositol 3-kinase on glucose transport, glycogen synthase activity, and DNA synthesis in 3T3-L1 adipocytes. Mol Cell Biol 1997; 17: 190–198.

    Article  CAS  Google Scholar 

  58. Scholl C, Frohling S, Dunn IF, Schinzel AC, Barbie DA, Kim SY et al. Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells. Cell 2009; 137: 821–834.

    Article  CAS  Google Scholar 

  59. http://code.vet.upenn.edu/download/CcOdefect/. 8-21-2014Ref Type: Online Source.

  60. Huang dW, Sherman BT, Lempicki RA . Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009; 4: 44–57.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants CA-22762 and GM-34883, and an endowment from the Harriet Ellison Woodward Trust to NGA and a grant to SS from Mitochondria research affinity group, Children’s hospital of Philadelphia. We also acknowledge the help of the Imaging Core facility at the School of Veterinary Medicine and the NIH/NIDDK Center for Molecular Studies in Digestive and Liver Diseases (P30DK050306) and its Molecular Pathology and Imaging Core facilities at the Perelman School of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N G Avadhani.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srinivasan, S., Guha, M., Dong, D. et al. Disruption of cytochrome c oxidase function induces the Warburg effect and metabolic reprogramming. Oncogene 35, 1585–1595 (2016). https://doi.org/10.1038/onc.2015.227

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.227

This article is cited by

Search

Quick links