Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Decoy receptors block TRAIL sensitivity at a supracellular level: the role of stromal cells in controlling tumour TRAIL sensitivity

Abstract

Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) is a death ligand cytokine known for its cytotoxic activity against malignantly transformed cells. TRAIL induces cell death through binding to death receptors DR4 and DR5. The inhibitory decoy receptors (DcR1 and DcR2) co-expressed with death receptor 4 (DR4)/DR5 on the same cell can block the transmission of the apoptotic signal. Here, we show that DcRs also regulate TRAIL sensitivity at a supracellular level and thus represent a mechanism by which the microenvironment can diminish tumour TRAIL sensitivity. Mathematical modelling and layered or spheroid stroma–extracellular matrix–tumour cultures were used to model the tumour microenvironment. By engineering TRAIL to escape binding by DcRs, we found that DcRs do not only act in a cell-autonomous or cis-regulatory manner, but also exert trans-cellular regulation originating from stromal cells and affect tumour cells, highlighting the potent inhibitory effect of DcRs in the tumour tissue and the necessity of selective targeting of the two death-inducing TRAIL receptors to maximise efficacy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Bodmer JL, Holler N, Reynard S, Vinciguerra P, Schneider P, Juo P et al. TRAIL receptor-2 signals apoptosis through FADD and caspase-8. Nat Cell Biol 2000; 2: 241–243.

    Article  CAS  PubMed  Google Scholar 

  2. Kischkel FC, Lawrence DA, Chuntharapai A, Schow P, Kim KJ, Ashkenazi A . Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. Immunity 2000; 12: 611–620.

    Article  CAS  PubMed  Google Scholar 

  3. LeBlanc HN, Ashkenazi A . Apo2L/TRAIL and its death and decoy receptors. Cell Death Differ 2003; 10: 66–75.

    Article  CAS  PubMed  Google Scholar 

  4. Emery JG, McDonnell P, Burke MB, Deen KC, Lyn S, Silverman C et al. Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J Biol Chem 1998; 273: 14363–14367.

    Article  CAS  PubMed  Google Scholar 

  5. Mahalingam D, Szegezdi E, Keane M, de Jong S, Samali A . TRAIL receptor signalling and modulation: are we on the right TRAIL? Cancer Treat Rev 2009; 35: 280–288.

    Article  CAS  PubMed  Google Scholar 

  6. Kim K, Wilson SM, Abayasiriwardana KS, Collins R, Fjellbirkeland L, Xu Z et al. A novel in vitro model of human mesothelioma for studying tumor biology and apoptotic resistance. Am J Respir Cell Mol Biol 2005; 33: 541–548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Anees M, Horak P, El-Gazzar A, Susani M, Heinze G, Perco P et al. Recurrence-free survival in prostate cancer is related to increased stromal TRAIL expression. Cancer 2011; 117: 1172–1182.

    Article  CAS  PubMed  Google Scholar 

  8. Luce A, Courtin A, Levalois C, Altmeyer-Morel S, Romeo PH, Chevillard S et al. Death receptor pathways mediate targeted and non-targeted effects of ionizing radiations in breast cancer cells. Carcinogenesis 2009; 30: 432–439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shareef MM, Cui N, Burikhanov R, Gupta S, Satishkumar S, Shajahan S et al. Role of tumor necrosis factor-alpha and TRAIL in high-dose radiation-induced bystander signaling in lung adenocarcinoma. Cancer Res 2007; 67: 11811–11820.

    Article  CAS  PubMed  Google Scholar 

  10. Wilson NS, Yang A, Yang B, Couto S, Stern H, Gogineni A et al. Proapoptotic activation of death receptor 5 on tumor endothelial cells disrupts the vasculature and reduces tumor growth. Cancer Cell 2012; 22: 80–90.

    Article  CAS  PubMed  Google Scholar 

  11. Shirley S, Morizot A, Micheau O . Regulating TRAIL receptor-induced cell death at the membrane: a deadly discussion. Recent Pat Anticancer Drug Discov 2011; 6: 311–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Merino D, Lalaoui N, Morizot A, Schneider P, Solary E, Micheau O . Differential inhibition of TRAIL-mediated DR5-DISC formation by decoy receptors 1 and 2. Mol Cell Biol 2006; 26: 7046–7055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Clancy L, Mruk K, Archer K, Woelfel M, Mongkolsapaya J, Screaton G et al. Preligand assembly domain-mediated ligand-independent association between TRAIL receptor 4 (TR4) and TR2 regulates TRAIL-induced apoptosis. Proc Natl Acad Sci USA 2005; 102: 18099–18104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ganten TM, Sykora J, Koschny R, Batke E, Aulmann S, Mansmann U et al. Prognostic significance of tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor expression in patients with breast cancer. J Mol Med 2009; 87: 995–1007.

    Article  CAS  PubMed  Google Scholar 

  15. Koksal IT, Sanlioglu AD, Karacay B, Griffith TS, Sanlioglu S . Tumor necrosis factor-related apoptosis inducing ligand-R4 decoy receptor expression is correlated with high Gleason scores, prostate-specific antigen recurrence, and decreased survival in patients with prostate carcinoma. Urol Oncol 2008; 26: 158–165.

    Article  CAS  PubMed  Google Scholar 

  16. Riccioni R, Pasquini L, Mariani G, Saulle E, Rossini A, Diverio D et al. TRAIL decoy receptors mediate resistance of acute myeloid leukemia cells to TRAIL. Haematologica 2005; 90: 612–624.

    CAS  PubMed  Google Scholar 

  17. Chamuleau ME, Ossenkoppele GJ, van Dreunen L, Jirka SM, Zevenbergen A, Schuurhuis GJ et al. High TRAIL-R3 expression on leukemic blasts is associated with poor outcome and induces apoptosis-resistance which can be overcome by targeting TRAIL-R2. Leuk Res 2011; 35: 741–749.

    Article  CAS  PubMed  Google Scholar 

  18. Dyer MJ, MacFarlane M, Cohen GM . Barriers to effective TRAIL-targeted therapy of malignancy. J Clin Oncol 2007; 25: 4505–4506.

    Article  PubMed  Google Scholar 

  19. Zhang XD, Franco A, Myers K, Gray C, Nguyen T, Hersey P . Relation of TNF-related apoptosis-inducing ligand (TRAIL) receptor and FLICE-inhibitory protein expression to TRAIL-induced apoptosis of melanoma. Cancer Res 1999; 59: 2747–2753.

    CAS  PubMed  Google Scholar 

  20. van Dijk M, Halpin-McCormick A, Sessler T, Samali A, Szegezdi E . Resistance to TRAIL in non-transformed cells is due to multiple redundant pathways. Cell Death Dis 2013. 4.

  21. Wu GS, Burns TF, Zhan Y, Alnemri ES, El-Deiry WS . Molecular cloning and functional analysis of the mouse homologue of the KILLER/DR5 tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor. Cancer Res 1999; 59: 2770–2775.

    CAS  PubMed  Google Scholar 

  22. Schneider P, Olson D, Tardivel A, Browning B, Lugovskoy A, Gong D et al. Identification of a new murine tumor necrosis factor receptor locus that contains two novel murine receptors for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). J Biol Chem 2003; 278: 5444–5454.

    Article  CAS  PubMed  Google Scholar 

  23. Tur V, van der Sloot AM, Reis CR, Szegezdi E, Cool RH, Samali A et al. DR4-selective tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) variants obtained by structure-based design. J Biol Chem 2008; 283: 20560–20568.

    Article  CAS  PubMed  Google Scholar 

  24. van der Sloot AM, Tur V, Szegezdi E, Mullally MM, Cool RH, Samali A et al. Designed tumor necrosis factor-related apoptosis-inducing ligand variants initiating apoptosis exclusively via the DR5 receptor. Proc Natl Acad Sci USA 2006; 103: 8634–8639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Reis CR, Van der Sloot AM, Natoni A, Szegezdi E, Setroikromo R, Meijer M et al. Rapid and efficient cancer cell killing mediated by high-affinity death receptor homotrimerizing TRAIL variants. Cell Death Dis 2010; ;1: e83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L . The FoldX web server: an online force field. Nucleic Acids Res 2005; 33: 382–388.

    Article  Google Scholar 

  27. Szegezdi E, Van der Sloot AM, Mahalingam D, O' Leary L, Cool RH, Munoz IG et al. Kinetics in signal transduction pathways involving promiscuous oligomerizing receptors can be determined by receptor specificity: apoptosis induction by TRAIL. Mol Cell Proteomics 2012. 11.

  28. Correa de Sampaio P, Auslaender D, Krubasik D, Failla AV, Skepper JN, Murphy G et al. A heterogeneous in vitro three dimensional model of tumour-stroma interactions regulating sprouting angiogenesis. PLoS One 2012; 7: e30753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Finnberg N, Klein-Szanto AJP, E-D. WS . TRAIL-R deficiency in mice promotes susceptibility to chronic inflammation and tumorigenesis. J Clin Invest 2008; 118: 111–123.

    Article  CAS  PubMed  Google Scholar 

  30. Lemke J, von Karstedt S, Zinngrebe J, Walczak H . Getting TRAIL back on track for cancer therapy. Cell Death Differ 2014; 21: 1350–1364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ashkenazi A, Pai RC, Fong S, Leung S, Lawrence DA, Marsters SA et al. Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 1999; 104: 155–162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Allen JE, Krigsfeld G, Mayes PA, Patel L, Dicker DT, Patel AS et al. Dual inactivation of Akt and ERK by TIC10 signals Foxo3a nuclear translocation, TRAIL gene induction, and potent antitumor effects. Sci Transl Med 2013; 5: 171ra17.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wang Q, Wang X, Hernandez A, Hellmich MR, Gatalica Z, Evers BM . Regulation of TRAIL expression by the phosphatidylinositol 3-kinase/Akt/GSK-3 pathway in human colon cancer cells. J Biol Chem 2002; 277: 36602–36610.

    Article  CAS  PubMed  Google Scholar 

  34. Boland K, Flanagan L, Prehn JHM . Paracrine control of tissue regeneration and cell proliferation by caspase-3. Cell Death Dis 2013; 4: e725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cullen SP, Henry CM, Kearney CJ, Logue SE, Feoktistova M, Tynan GA et al. Fas/CD95-induced chemokines can serve as "find-me" signals for apoptotic cells. Mol Cell 2013; 49: 1034–1048.

    Article  CAS  PubMed  Google Scholar 

  36. Perez-Garijo A, Fuchs Y, Steller H . Apoptotic cells can induce non-autonomous apoptosis through the TNF pathway. Elife 2013; 2: e01004.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Roulston A, Marcellus RC, Branton PE . Viruses and apoptosis. Annu Rev Microbiol 1999; 53: 577–628.

    Article  CAS  PubMed  Google Scholar 

  38. Furth PA, Bar-Peled U, Li M . Apoptosis and mammary gland involution: reviewing the process. Apoptosis 1997; 2: 19–24.

    Article  CAS  PubMed  Google Scholar 

  39. Ivanov VN, Hei TK . A role for TRAIL/TRAIL-R2 in radiation-induced apoptosis and radiation-induced bystander response of human neural stem cells. Apoptosis 2014; 19: 399–413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sanlioglu AD, Korcum AF, Pestereli E, Erdogan G, Karaveli S, Savas B et al. TRAIL death receptor-4 expression positively correlates with the tumor grade in breast cancer patients with invasive ductal carcinoma. Int J Radiat Oncol Biol Phys 2007; 69: 716–723.

    Article  CAS  PubMed  Google Scholar 

  41. Mahalingam D, Natoni A, Keane M, Samali A, Szegezdi E . Early growth response-1 is a regulator of DR5-induced apoptosis in colon cancer cells. Br J Cancer 2010; 102: 754–764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Szegezdi E, van der Sloot AM, Mahalingam D, O'Leary L, Cool RH, Munoz IG et al. Kinetics in signal transduction pathways involving promiscuous oligomerizing receptors can be determined by receptor specificity: apoptosis induction by TRAIL. Mol Cell Proteomics 2012; 11: 013730.

    Article  PubMed  Google Scholar 

  43. Szegezdi E, Reis CR, van der Sloot AM, Natoni A, O'Reilly A, Reeve J et al. Targeting AML through DR4 with a novel variant of rhTRAIL. J Cell Mol Med 2011; 15: 2216–2231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ander M, Beltrao P, Di Ventura B, Ferkinghoff-Borg J, Foglierini M, Kaplan A et al. SmartCell, a framework to simulate cellular processes that combines stochastic approximation with diffusion and localisation: analysis of simple networks. Syst Biol (Stevenage) 2004; 1: 129–138.

    Article  CAS  Google Scholar 

  45. Dublanche Y, Michalodimitrakis K, Kummerer N, Foglierini M, Serrano L . Noise in transcription negative feedback loops: simulation and experimental analysis. Mol Syst Biol 2006; 2: 41.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Milo R, Jorgensen P, Moran U, Weber G, Springer M . BioNumbers—the database of key numbers in molecular and cell biology. Nucleic Acids Res 2010; 38: D750–D753.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Teresa McHale (University College Hospital, Galway) for scoring the tissue microarrays and Paul Lohan for immunohistochemical assistance. We acknowledge the facilities and scientific and technical assistance of the Centre for Microscopy and Imaging at National University of Ireland, Galway (NUIG), a facility that is funded by NUIG and the Irish Government’s Programme for Research in Third Level Institutions, Cycles 4 and 5, National Development Plan. AMS was partially supported by a Juan de la Cierva grant of the Spanish ministry of Science and Education. Financial Support: The project was funded by Enterprise Ireland, National Development Plan of Ireland, Commercialisation Fund to AS and ES (CFTD/06/112), SFI SIRG award to ES (09/SIRG /B1575) and Millennium Grant to ES from the NUIG.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A Samali or E Szegezdi.

Ethics declarations

Competing interests

A Samali is a scientific founding member and Director of Aquila Ltd.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O'Leary, L., van der Sloot, A., Reis, C. et al. Decoy receptors block TRAIL sensitivity at a supracellular level: the role of stromal cells in controlling tumour TRAIL sensitivity. Oncogene 35, 1261–1270 (2016). https://doi.org/10.1038/onc.2015.180

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.180

This article is cited by

Search

Quick links