Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The WIP1 oncogene promotes progression and invasion of aggressive medulloblastoma variants

Abstract

Recent studies suggest that medulloblastoma, the most common malignant brain tumor of childhood, is comprised of four disease variants. The WIP1 oncogene is overexpressed in Group 3 and 4 tumors, which contain medulloblastomas with the most aggressive clinical behavior. Our data demonstrate increased WIP1 expression in metastatic medulloblastomas, and inferior progression-free and overall survival of patients with WIP1 high-expressing medulloblastoma. Microarray analysis identified upregulation of genes involved in tumor metastasis, including the G protein-coupled receptor CXCR4, in medulloblastoma cells with high WIP1 expression. Stimulation with the CXCR4 ligand SDF1α activated PI-3 kinase signaling, and promoted growth and invasion of WIP1 high-expressing medulloblastoma cells in a p53-dependent manner. When xenografted into the cerebellum of immunodeficient mice, medulloblastoma cells with stable or endogenous high WIP1 expression exhibited strong expression of CXCR4 and activated AKT in primary and invasive tumor cells. WIP1 or CXCR4 knockdown inhibited medulloblastoma growth and invasion. WIP1 knockdown also improved the survival of mice xenografted with WIP1 high-expressing medulloblastoma cells. WIP1 knockdown inhibited cell surface localization of CXCR4 by suppressing expression of the G protein receptor kinase 5, GRK5. Restoration of wild-type GRK5 promoted Ser339 phosphorylation of CXCR4 and inhibited the growth of WIP1-stable medulloblastoma cells. Conversely, GRK5 knockdown inhibited Ser339 phosphorylation of CXCR4, increased cell surface localization of CXCR4 and promoted the growth of medulloblastoma cells with low WIP1 expression. These results demonstrate crosstalk among WIP1, CXCR4 and GRK5, which may be important for the aggressive phenotype of a subclass of medulloblastomas in children.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. McNeil DE, Cote TR, Clegg L, Rorke LB . Incidence and trends in pediatric malignancies medulloblastoma/primitive neuroectodermal tumor: a SEER update. Surveillance Epidemiology and End Results. Med Pediatr Oncol 2002; 39: 190–194.

    Article  PubMed  Google Scholar 

  2. Gajjar A, Chintagumpala M, Ashley D, Kellie S, Kun LE, Merchant TE et al. Risk-adapted craniospinal radiotherapy followed by high-dose chemotherapy and stem-cell rescue in children with newly diagnosed medulloblastoma (St Jude Medulloblastoma-96): long-term results from a prospective, multicentre trial. Lancet Oncol 2006; 7: 813–820.

    Article  PubMed  Google Scholar 

  3. Dhall G . Medulloblastoma. J Child Neurol 2009; 24: 1418–1430.

    Article  PubMed  Google Scholar 

  4. von Hoff K, Hinkes B, Gerber NU, Deinlein F, Mittler U, Urban C et al. Long-term outcome and clinical prognostic factors in children with medulloblastoma treated in the prospective randomised multicentre trial HIT'91. Eur J Cancer 2009; 45: 1209–1217.

    Article  Google Scholar 

  5. Mabbott DJ, Spiegler BJ, Greenberg ML, Rutka JT, Hyder DJ, Bouffet E . Serial evaluation of academic and behavioral outcome after treatment with cranial radiation in childhood. J Clin Oncol 2005; 23: 2256–2263.

    Article  PubMed  Google Scholar 

  6. Belza MG, Donaldson SS, Steinberg GK, Cox RS, Cogen PH . Medulloblastoma: freedom from relapse longer than 8 years—a therapeutic cure? J Neurosurg 1991; 75: 575–582.

    Article  CAS  PubMed  Google Scholar 

  7. Torres CF, Rebsamen S, Silber JH, Sutton LN, Bilaniuk LT, Zimmerman RA et al. Surveillance scanning of children with medulloblastoma. New Engl J Med 1994; 330: 892–895.

    Article  CAS  PubMed  Google Scholar 

  8. Taylor MD, Northcott PA, Korshunov A, Remke M, Cho YJ, Clifford SC et al. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol 2012; 123: 465–472.

    Article  CAS  PubMed  Google Scholar 

  9. Kool M, Korshunov A, Remke M, Jones DT, Schlanstein M, Northcott PA et al. Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathol 2012; 123: 473–484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pugh TJ, Weeraratne SD, Archer TC, Pomeranz Krummel DA, Auclair D, Bochicchio J et al. Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature 2012; 488: 106–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ellison DW, Kocak M, Dalton J, Megahed H, Lusher ME, Ryan SL et al. Definition of disease-risk stratification groups in childhood medulloblastoma using combined clinical, pathologic, and molecular variables. J Clin Oncol 2011; 29: 1400–1407.

    Article  PubMed  Google Scholar 

  12. Northcott PA, Korshunov A, Witt H, Hielscher T, Eberhart CG, Mack S et al. Medulloblastoma comprises four distinct molecular variants. J Clin Oncol 2011; 29: 1408–1414.

    Article  PubMed  Google Scholar 

  13. Ellison DW, Dalton J, Kocak M, Nicholson SL, Fraga C, Neale G et al. Medulloblastoma: clinicopathological correlates of SHH, WNT, and non-SHH/WNT molecular subgroups. Acta Neuropathol 2011; 121: 381–396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gessi M, von Bueren AO, Rutkowski S, Pietsch T . p53 expression predicts dismal outcome for medulloblastoma patients with metastatic disease. J Neurooncol 2011; 106: 135–141.

    Article  PubMed  Google Scholar 

  15. Sengupta R, Dubuc A, Ward S, Yang L, Northcott P, Woerner BM et al. CXCR4 activation defines a new subgroup of Sonic hedgehog-driven medulloblastoma. Cancer Res 2012; 72: 122–132.

    Article  CAS  PubMed  Google Scholar 

  16. Yauch RL, Dijkgraaf GJ, Alicke B, Januario T, Ahn CP, Holcomb T et al. Smoothened mutation confers resistance to a Hedgehog pathway inhibitor in medulloblastoma. Science 2009; 326: 572–574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gajjar AJ, Stewart CF, Ellison DW, Curran T, Phillips P, Goldman S et al. A phase I pharmacokinetic trial of sonic hedgehog (SHH) antagonist GDC-0449 in pediatric patients with recurrent of refractory medulloblastoma: A Pediatric Brain Tumor Consortium study (PBTC 25). J Clin Oncol 2010; 28: 18s.

    Article  Google Scholar 

  18. Northcott PA, Shih DJ, Peacock J, Garzia L, Morrissy AS, Zichner T et al. Subgroup-specific structural variation across 1000 medulloblastoma genomes. Nature 2012; 488: 49–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cho YJ, Tsherniak A, Tamayo P, Santagata S, Ligon A, Greulich H et al. Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that drives poor clinical outcome. J Clin Oncol 2011; 29: 1424–1430.

    Article  PubMed  Google Scholar 

  20. Kool M, Koster J, Bunt J, Hasselt NE, Lakeman A, van Sluis P et al. Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PLoS One 2008; 3: e3088.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bulavin DV, Demidov ON, Saito S, Kauraniemi P, Phillips C, Amundson SA et al. Amplification of PPM1D in human tumors abrogates p53 tumor-suppressor activity. Nat Genet 2002; 31: 210–215.

    Article  CAS  PubMed  Google Scholar 

  22. Nannenga B, Lu X, Dumble M, Van Maanen M, Nguyen TA, Sutton R et al. Augmented cancer resistance and DNA damage response phenotypes in PPM1D null mice. Mol Carcinog 2006; 45: 594–604.

    Article  CAS  PubMed  Google Scholar 

  23. Li J, Yang Y, Peng Y, Austin RJ, van Eyndhoven WG, Nguyen KC et al. Oncogenic properties of PPM1D located within a breast cancer amplification epicenter at 17q23. Nat Genet 2002; 31: 133–134.

    Article  CAS  PubMed  Google Scholar 

  24. Saito-Ohara F, Imoto I, Inoue J, Hosoi H, Nakagawara A, Sugimoto T et al. PPM1D is a potential target for 17q gain in neuroblastoma. Cancer Res 2003; 63: 1876–1883.

    CAS  PubMed  Google Scholar 

  25. Castellino RC, De Bortoli M, Lu X, Moon SH, Nguyen TA, Shepard MA et al. Medulloblastomas overexpress the p53-inactivating oncogene WIP1/PPM1D. J Neurooncol 2008; 86: 245–256.

    Article  CAS  PubMed  Google Scholar 

  26. Mendrzyk F, Radlwimmer B, Joos S, Kokocinski F, Benner A, Stange DE et al. Genomic and protein expression profiling identifies CDK6 as novel independent prognostic marker in medulloblastoma. J Clin Oncol 2005; 23: 8853–8862.

    Article  CAS  PubMed  Google Scholar 

  27. Buss MC, Read TA, Schniederjan MJ, Gandhi K, Castellino RC . HDM2 promotes WIP1-mediated medulloblastoma growth. Neuro Oncol 2012; 14: 440–458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Remke M, Hielscher T, Northcott PA, Witt H, Ryzhova M, Wittmann A et al. Adult medulloblastoma comprises three major molecular variants. J Clin Oncol 2011; 29: 2717–2723.

    Article  PubMed  Google Scholar 

  29. Siu IM, Lal A, Blankenship JR, Aldosari N, Riggins GJ . c-Myc promoter activation in medulloblastoma. Cancer Res 2003; 63: 4773–4776.

    CAS  PubMed  Google Scholar 

  30. Pfister S . Medulloblastoma: a potpourri of distinct entities. Acta Neuropathol 2012; 123: 463–464.

    Article  PubMed  Google Scholar 

  31. Rubin JB, Kung AL, Klein RS, Chan JA, Sun Y, Schmidt K et al. A small-molecule antagonist of CXCR4 inhibits intracranial growth of primary brain tumors. Proc Natl Acad Sci USA 2003; 100: 13513–13518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Woerner BM, Warrington NM, Kung AL, Perry A, Rubin JB . Widespread CXCR4 activation in astrocytomas revealed by phospho-CXCR4-specific antibodies. Cancer Res 2005; 65: 11392–11399.

    Article  CAS  PubMed  Google Scholar 

  33. Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 2004; 303: 844–848.

    Article  CAS  PubMed  Google Scholar 

  34. Shangary S, Wang S . Small-molecule inhibitors of the MDM2-p53 protein-protein interaction to reactivate p53 function: a novel approach for cancer therapy. Annu Rev Pharmacol Toxicol 2009; 49: 223–241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Issaeva N, Bozko P, Enge M, Protopopova M, Verhoef LG, Masucci M et al. Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Nat Med 2004; 10: 1321–1328.

    Article  CAS  PubMed  Google Scholar 

  36. Grinkevich VV, Nikulenkov F, Shi Y, Enge M, Bao W, Maljukova A et al. Ablation of key oncogenic pathways by RITA-reactivated p53 is required for efficient apoptosis. Cancer Cell 2009; 15: 441–453.

    Article  CAS  PubMed  Google Scholar 

  37. Wang Z, Sun Y . Targeting p53 for novel anticancer therapy. Transl Oncol 2010; 3: 1–12.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wu X, Northcott PA, Dubuc A, Dupuy AJ, Shih DJ, Witt H et al. Clonal selection drives genetic divergence of metastatic medulloblastoma. Nature 2012; 482: 529–533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Barker BL, Benovic JL . G protein-coupled receptor kinase 5 phosphorylation of hip regulates internalization of the chemokine receptor CXCR4. Biochemistry 2011; 50: 6933–6941.

    Article  CAS  PubMed  Google Scholar 

  40. Pfister S, Remke M, Benner A, Mendrzyk F, Toedt G, Felsberg J et al. Outcome prediction in pediatric medulloblastoma based on DNA copy-number aberrations of chromosomes 6q and 17q and the MYC and MYCN loci. J Clin Oncol 2009; 27: 1627–1636.

    Article  PubMed  Google Scholar 

  41. Clifford SC, Lusher ME, Lindsey JC, Langdon JA, Gilbertson RJ, Straughton D et al. Wnt/Wingless pathway activation and chromosome 6 loss characterize a distinct molecular sub-group of medulloblastomas associated with a favorable prognosis. Cell Cycle 2006; 5: 2666–2670.

    Article  CAS  PubMed  Google Scholar 

  42. Lamont JM, McManamy CS, Pearson AD, Clifford SC, Ellison DW . Combined histopathological and molecular cytogenetic stratification of medulloblastoma patients. Clin Cancer Res 2004; 10: 5482–5493.

    Article  CAS  PubMed  Google Scholar 

  43. Pan E, Pellarin M, Holmes E, Smirnov I, Misra A, Eberhart CG et al. Isochromosome 17q is a negative prognostic factor in poor-risk childhood medulloblastoma patients. Clin Cancer Res 2005; 11: 4733–4740.

    Article  CAS  PubMed  Google Scholar 

  44. Traenka C, Remke M, Korshunov A, Bender S, Hielscher T, Northcott PA et al. Role of LIM and SH3 protein 1 (LASP1) in the metastatic dissemination of medulloblastoma. Cancer Res 2010; 70: 8003–8014.

    Article  CAS  PubMed  Google Scholar 

  45. Fiscella M, Zhang H, Fan S, Sakaguchi K, Shen S, Mercer WE et al. Wip1, a novel human protein phosphatase that is induced in response to ionizing radiation in a p53-dependent manner. Proc Natl Acad Sci USA 1997; 94: 6048–6053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Takekawa M, Adachi M, Nakahata A, Nakayama I, Itoh F, Tsukuda H et al. p53-inducible wip1 phosphatase mediates a negative feedback regulation of p38 MAPK-p53 signaling in response to UV radiation. EMBO J 2000; 19: 6517–6526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lu X, Ma O, Nguyen TA, Jones SN, Oren M, Donehower LA . The Wip1 Phosphatase acts as a gatekeeper in the p53-Mdm2 autoregulatory loop. Cancer Cell 2007; 12: 342–354.

    Article  CAS  PubMed  Google Scholar 

  48. Shreeram S, Demidov ON, Hee WK, Yamaguchi H, Onishi N, Kek C et al. Wip1 phosphatase modulates ATM-dependent signaling pathways. Mol Cell 2006; 23: 757–764.

    Article  CAS  PubMed  Google Scholar 

  49. Lu X, Nannenga B, Donehower LA . PPM1D dephosphorylates Chk1 and p53 and abrogates cell cycle checkpoints. Genes Dev 2005; 19: 1162–1174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fujimoto H, Onishi N, Kato N, Takekawa M, Xu XZ, Kosugi A et al. Regulation of the antioncogenic Chk2 kinase by the oncogenic Wip1 phosphatase. Cell Death Differ 2006; 13: 1170–1180.

    Article  CAS  PubMed  Google Scholar 

  51. Yoda A, Xu XZ, Onishi N, Toyoshima K, Fujimoto H, Kato N et al. Intrinsic kinase activity and SQ/TQ domain of Chk2 kinase as well as N-terminal domain of Wip1 phosphatase are required for regulation of Chk2 by Wip1. J Biol Chem 2006; 281: 24847–24862.

    Article  CAS  PubMed  Google Scholar 

  52. Demidov ON, Timofeev O, Lwin HN, Kek C, Appella E, Bulavin DV . Wip1 phosphatase regulates p53-dependent apoptosis of stem cells and tumorigenesis in the mouse intestine. Cell Stem Cell 2007; 1: 180–190.

    Article  CAS  PubMed  Google Scholar 

  53. Pandolfi S, Montagnani V, Penachioni JY, Vinci MC, Olivito B, Borgognoni L et al. WIP1 phosphatase modulates the Hedgehog signaling by enhancing GLI1 function. Oncogene 2012; 32: 4737–4747.

    Article  PubMed  Google Scholar 

  54. Demidov ON, Kek C, Shreeram S, Timofeev O, Fornace AJ, Appella E et al. The role of the MKK6/p38 MAPK pathway in Wip1-dependent regulation of ErbB2-driven mammary gland tumorigenesis. Oncogene 2007; 26: 2502–2506.

    Article  CAS  PubMed  Google Scholar 

  55. Kleiblova P, Shaltiel IA, Benada J, Sevcik J, Pechackova S, Pohlreich P et al. Gain-of-function mutations of PPM1D/Wip1 impair the p53-dependent G1 checkpoint. J Cell Biol 2013; 201: 511–521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dudgeon C, Shreeram S, Tanoue K, Mazur SJ, Sayadi A, Robinson RC et al. Genetic variants and mutations of PPM1D control the response to DNA damage. Cell Cycle 2013; 12: 2656–2664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ruark E, Snape K, Humburg P, Loveday C, Bajrami I, Brough R et al. Mosaic PPM1D mutations are associated with predisposition to breast and ovarian cancer. Nature 2013; 493: 406–410.

    Article  CAS  PubMed  Google Scholar 

  58. Dorsam RT, Gutkind JS . G-protein-coupled receptors and cancer. Nat Rev Cancer 2007; 7: 79–94.

    Article  CAS  PubMed  Google Scholar 

  59. Klein RS, Rubin JB, Gibson HD, DeHaan EN, Alvarez-Hernandez X, Segal RA et al. SDF-1 alpha induces chemotaxis and enhances Sonic hedgehog-induced proliferation of cerebellar granule cells. Development 2001; 128: 1971–1981.

    CAS  PubMed  Google Scholar 

  60. Domanska UM, Kruizinga RC, Nagengast WB, Timmer-Bosscha H, Huls G, de Vries EG et al. A review on CXCR4/CXCL12 axis in oncology: No place to hide. Eur J Cancer 2013; 49: 219–230.

    Article  CAS  PubMed  Google Scholar 

  61. Bian XW, Yang SX, Chen JH, Ping YF, Zhou XD, Wang QL et al. Preferential expression of chemokine receptor CXCR4 by highly malignant human gliomas and its association with poor patient survival. Neurosurgery 2007; 61: 570–578 (discussion 578–579).

    Article  PubMed  Google Scholar 

  62. Calatozzolo C, Maderna E, Pollo B, Gelati M, Marras C, Silvani A et al. Prognostic value of CXCL12 expression in 40 low-grade oligodendrogliomas and oligoastrocytomas. Cancer Biol Ther 2006; 5: 827–832.

    Article  CAS  PubMed  Google Scholar 

  63. Krupnick JG, Benovic JL . The role of receptor kinases and arrestins in G protein-coupled receptor regulation. Annu Rev Pharmacol Toxicol 1998; 38: 289–319.

    Article  CAS  PubMed  Google Scholar 

  64. Orsini MJ, Parent JL, Mundell SJ, Marchese A, Benovic JL . Trafficking of the HIV coreceptor CXCR4. Role of arrestins and identification of residues in the c-terminal tail that mediate receptor internalization. J Biol Chem 1999; 274: 31076–31086.

    Article  CAS  PubMed  Google Scholar 

  65. Goodrich LV, Milenkovic L, Higgins KM, Scott MP . Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 1997; 277: 1109–1113.

    Article  CAS  PubMed  Google Scholar 

  66. Rao G, Pedone CA, Coffin CM, Holland EC, Fults DW . c-Myc enhances sonic hedgehog-induced medulloblastoma formation from nestin-expressing neural progenitors in mice. Neoplasia 2003; 5: 198–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mumert M, Dubuc A, Wu X, Northcott PA, Chin SS, Pedone CA et al. Functional genomics identifies drivers of medulloblastoma dissemination. Cancer Res 2012; 72: 4944–4953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Remke M, Hielscher T, Korshunov A, Northcott PA, Bender S, Kool M et al. FSTL5 is a marker of poor prognosis in non-WNT/non-SHH medulloblastoma. J Clin Oncol 2011; 29: 3852–3861.

    Article  CAS  PubMed  Google Scholar 

  69. Castellino RC, De Bortoli M, Lin LL, Skapura DG, Rajan JA, Adesina AM et al. Overexpressed TP73 induces apoptosis in medulloblastoma. BMC Cancer 2007; 7: 127.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Drs Jeffrey Benovic, Lawrence Donehower, H Trent Spencer, Laurent Brault, Jürg Schwaller and Rita Nahta for gene expression constructs, Gregory Doho for assistance with analysis of microarrays, and Dr Rita Nahta for editorial assistance. This work was supported by grants from the NIH (1R01CA172392–01, RCC; CA159859, MD Taylor), St Baldrick’s Foundation (RCC), CURE Childhood Cancer Foundation (RCC), Southeastern Brain Tumor Foundation (RCC), the Emory Egleston Children’s Research Center (RCC) and the Dr Mildred-Scheel Foundation (MR). Research reported in this publication was supported in part by the NIH/NCI under award number P30CA138292. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R C Castellino.

Ethics declarations

Competing interests

Dr Castellino’s and Dr Taylor’s work has been funded by the NIH. Other authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buss, M., Remke, M., Lee, J. et al. The WIP1 oncogene promotes progression and invasion of aggressive medulloblastoma variants. Oncogene 34, 1126–1140 (2015). https://doi.org/10.1038/onc.2014.37

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.37

This article is cited by

Search

Quick links