Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Anti-apoptotic BCL-2 proteins govern cellular outcome following B-RAFV600E inhibition and can be targeted to reduce resistance

Abstract

In theory, pharmacological inhibition of oncogenic signaling is an effective strategy to halt cellular proliferation, induce apoptosis and eliminate cancer cells. In practice, drugs (for example, PLX-4032) that inhibit oncogenes like B-RAFV600E provide relatively short-term success in patients, owing to a combination of incomplete cellular responses and the development of resistance. To define the relationship between PLX-4032-induced responses and resistance, we interrogated the contributions of anti-apoptotic BCL-2 proteins in determining the fate of B-RAFV600E-inhibited melanoma cells. Although PLX-4032 eliminated B-RAFV600E signaling leading to marked cell cycle arrest, only a fraction of cells eventually underwent apoptosis. These data proposed two hypotheses regarding B-RAFV600E inhibition: (1) only a few cells generate a pro-apoptotic signal, or (2) all the cells generate a pro-apoptotic signal but the majority silences this pathway to ensure survival. Indeed, the latter hypothesis is supported by our observations as the addition of ABT-737, an inhibitor to anti-apoptotic BCL-2 proteins, revealed massive apoptosis following PLX-4032 exposure. B-RAFV600E inhibition alone sensitized cells to the mitochondrial pathway of apoptosis characterized by the rapid accumulation of BIM on the outer mitochondrial membrane, which could be functionally revealed by ABT-737 to promote apoptosis and loss of clonogenic survival. Furthermore, PLX-4032-resistant cells demonstrated collateral resistance to conventional chemotherapy, yet could be re-sensitized to PLX-4032 by BCL-2 family inhibition in vivo and conventional chemotherapies in vitro. Our data suggest that inhibiting anti-apoptotic BCL-2 proteins will enhance primary responses to PLX-4032, along with reducing the development of resistance to both targeted and conventional therapies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  PubMed  Google Scholar 

  2. Whittaker S, Kirk R, Hayward R, Zambon A, Viros A, Cantarino N et al Gatekeeper mutations mediate resistance to BRAF-targeted therapies. Sci Transl Med 2010; 2: 35ra41.

    Article  PubMed  Google Scholar 

  3. Young A, Lyons J, Miller AL, Phan VT, Alarcon IR, McCormick F . Ras signaling and therapies. Adv Cancer Res 2009; 102: 1–17.

    Article  CAS  PubMed  Google Scholar 

  4. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S et al Mutations of the BRAF gene in human cancer. Nature 2002; 417: 949–954.

    Article  CAS  PubMed  Google Scholar 

  5. Gray-Schopfer V, Wellbrock C, Marais R . Melanoma biology and new targeted therapy. Nature 2007; 445: 851–857.

    Article  CAS  PubMed  Google Scholar 

  6. Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA et al Inhibition of mutated, activated BRAF in metastatic melanoma. New Engl J Med 2010; 363: 809–819.

    Article  CAS  PubMed  Google Scholar 

  7. Montagut C, Settleman J . Targeting the RAF-MEK-ERK pathway in cancer therapy. Cancer Lett 2009; 283: 125–134.

    Article  CAS  PubMed  Google Scholar 

  8. Joseph EW, Pratilas CA, Poulikakos PI, Tadi M, Wang W, Taylor BS et al The RAF inhibitor PLX4032 inhibits ERK signaling and tumor cell proliferation in a V600E BRAF-selective manner. Proc Natl Acad Sci USA 2010; 107: 14903–14908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Poulikakos PI, Persaud Y, Janakiraman M, Kong X, Ng C, Moriceau G et al RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature 2011; 480: 387–390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Poulikakos PI, Rosen N . Mutant BRAF melanomas—dependence and resistance. Cancer Cell 2011; 19: 11–15.

    Article  CAS  PubMed  Google Scholar 

  11. Letai AG . Diagnosing and exploiting cancer's addiction to blocks in apoptosis. Nat Rev Cancer 2008; 8: 121–132.

    Article  CAS  PubMed  Google Scholar 

  12. Chipuk JE, Green DR . How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol 2008; 18: 157–164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chipuk JE, Moldoveanu T, Llambi F, Parsons MJ, Green DR . The BCL-2 family reunion. Mol Cell 2010; 37: 299–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kuwana T, Mackey MR, Perkins G, Ellisman MH, Latterich M, Schneiter R et al Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 2002; 111: 331–342.

    Article  CAS  PubMed  Google Scholar 

  15. Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ . Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2002; 2: 183–192.

    Article  CAS  PubMed  Google Scholar 

  16. Kuwana T, Bouchier-Hayes L, Chipuk JE, Bonzon C, Sullivan BA, Green DR et al BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol Cell 2005; 17: 525–535.

    Article  CAS  PubMed  Google Scholar 

  17. Chipuk JE, Fisher JC, Dillon CP, Kriwacki RW, Kuwana T, Green DR . Mechanism of apoptosis induction by inhibition of the anti-apoptotic BCL-2 proteins. Proc Natl Acad Sci USA 2008; 105: 20327–20332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Souers AJ, Leverson JD, Boghaert ER, Ackler SL, Catron ND, Chen J et al ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med 2013; 19: 202–208.

    Article  CAS  PubMed  Google Scholar 

  19. Anvekar RA, Asciolla JJ, Missert DJ, Chipuk JE . Born to be alive: a role for the BCL-2 family in melanoma tumor cell survival, apoptosis, and treatment. Front Oncol 2011; 1: 34.

    Article  PubMed Central  Google Scholar 

  20. Tse C, Shoemaker AR, Adickes J, Anderson MG, Chen J, Jin S et al ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res 2008; 68: 3421–3428.

    Article  CAS  PubMed  Google Scholar 

  21. Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA et al An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 2005; 435: 677–681.

    Article  CAS  PubMed  Google Scholar 

  22. Sosman JA, Kim KB, Schuchter L, Gonzalez R, Pavlick AC, Weber JS et al Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. New Engl J Med 2012; 366: 707–714.

    Article  CAS  PubMed  Google Scholar 

  23. McArthur GA, Puzanov I, Amaravadi R, Ribas A, Chapman P, Kim KB et al Marked, homogeneous, and early [18F]fluorodeoxyglucose-positron emission tomography responses to vemurafenib in BRAF-mutant advanced melanoma. J Clin Oncol 2012; 30: 1628–1634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mason KD, Carpinelli MR, Fletcher JI, Collinge JE, Hilton AA, Ellis S et al Programmed anuclear cell death delimits platelet life span. Cell 2007; 128: 1173–1186.

    Article  CAS  PubMed  Google Scholar 

  25. Hsu YT, Youle RJ . Nonionic detergents induce dimerization among members of the Bcl-2 family. J Biol Chem 1997; 272: 13829–13834.

    Article  CAS  PubMed  Google Scholar 

  26. Asciolla JJ, Renault TT, Chipuk JE . Examining BCL-2 Family Function with large unilamellar vesicles. J Vis Exp 2012; 68: 1–6.

    Google Scholar 

  27. Anvekar RA, Asciolla JJ, Lopez-Rivera E, Floros KV, Izadmehr S, Elkholi R et al Sensitization to the mitochondrial pathway of apoptosis augments melanoma tumor cell responses to conventional chemotherapeutic regimens. Cell Death Dis 2012; 3: e420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cragg MS, Jansen ES, Cook M, Harris C, Strasser A, Scott CL . Treatment of B-RAF mutant human tumor cells with a MEK inhibitor requires Bim and is enhanced by a BH3 mimetic. J Clin Invest 2008; 118: 3651–3659.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Suzuki M, Youle RJ, Tjandra N . Structure of Bax: coregulation of dimer formation and intracellular localization. Cell 2000; 103: 645–654.

    Article  CAS  PubMed  Google Scholar 

  30. Logue SE, Elgendy M, Martin SJ . Expression, purification and use of recombinant annexin V for the detection of apoptotic cells. Nat Protoc 2009; 4: 1383–1395.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank everyone in the Chipuk Laboratory for their assistance and support; Dr Stuart Aaronson, Dr Mark Lebwohl, Dr Emily Bernstein, Dr E Premkumar Reddy and Dr Poulikos Poulikakos for mentorship, guidance and/or discussion about the melanoma field; and Dr Suvendu Das, Eliana Sarrou, Rana Elkholi and Andrew Cruz for technical assistance. This work was supported by: NIH CA157740 (to JEC), NIH KL2TR000069 (to SI), the JJR Foundation (to JEC), the Breast Cancer Alliance (MS), the William A. Spivak Fund (to JEC), and the Fridolin Charitable Trust (to JEC). This work was also supported in part by a Research Grant FY13-238 from the March of Dimes Foundation (to JEC), a developmental PO1 grant from the Department of Oncological Sciences at Mount Sinai (to JEC), an Albert Einstein College of Medicine Research Fellowship (to SYW) and an American Skin Association Medical Students Grant (to SYW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J E Chipuk.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serasinghe, M., Missert, D., Asciolla, J. et al. Anti-apoptotic BCL-2 proteins govern cellular outcome following B-RAFV600E inhibition and can be targeted to reduce resistance. Oncogene 34, 857–867 (2015). https://doi.org/10.1038/onc.2014.21

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.21

This article is cited by

Search

Quick links