Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Hypoxia upregulates Rab11-family interacting protein 4 through HIF-1α to promote the metastasis of hepatocellular carcinoma

Subjects

Abstract

Hypoxic microenvironment is a powerful driving force for the invasion and metastasis of hepatocellular carcinoma (HCC). Hypoxia-inducible factor 1α (HIF-1α), as a crucial regulator of transcriptional responses to hypoxia, induces the expression of multiple target genes involved in different steps of HCC metastatic process. It is critical to find target genes associated with metastasis under hypoxia for shedding new light on molecular mechanism of HCC metastasis. In this study, we uncovered that hypoxia could induce the upregulation of Rab11-family interacting protein 4 (Rab11-FIP4) and activation of Rab11-FIP4 promoter by HIF-1α. The overexpression of Rab11-FIP4 significantly enhanced the mobility and invasiveness of HCC cells in vitro, also contributed to distant lung metastasis in vivo, whereas silencing of Rab11-FIP4 decreased the ability of migration and invasion in HCC cells in vitro and suppressed lung metastasis in vivo. Rab11-FIP4 facilitated HCC metastasis through the phosphorylation of PRAS40, which was regulated by mTOR. Furthermore, the expression level of Rab11-FIP4 was significantly increased in HCC tissues and high expression of Rab11-FIP4 was closely correlated with vascular invasion and poor prognosis in HCC patients. A markedly positive correlation between the expression of Rab11-FIP4 and HIF-1α was observed in HCC tissues and combination of Rab11-FIP4 and HIF-1α was a more valuable predictor of poor prognosis for HCC patients. In conclusion, Rab11-FIP4 is a target gene of HIF-1α and has a pro-metastatic role in HCC, suggesting that Rab11-FIP4 may be a promising candidate target for HCC treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

HCC:

hepatocellular carcinoma

HIF-1α:

hypoxia-inducible factor 1α

PHDs:

prolyl hydroxylases

HREs:

hypoxia-responsive elements

CoCl2:

cobalt chloride

Rab11-FIP4:

Rab11-family interacting protein 4

OS:

overall survival

DFS:

disease-free survival

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D . Global cancer statistics. Cancer J Clin 2011; 61: 69–90.

    Article  Google Scholar 

  2. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM . Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 2010; 127: 2893–2917.

    Article  CAS  PubMed  Google Scholar 

  3. Forner A, Llovet JM, Bruix J . Hepatocellular carcinoma. Lancet 2012; 379: 1245–1255.

    Article  PubMed  Google Scholar 

  4. Portolani N, Coniglio A, Ghidoni S, Giovanelli M, Benetti A, Tiberio GA et al. Early and late recurrence after liver resection for hepatocellular carcinoma: prognostic and therapeutic implications. Ann Surg 2006; 243: 229–235.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Aravalli RN, Steer CJ, Cressman EN . Molecular mechanisms of hepatocellular carcinoma. Hepatology 2008; 48: 2047–2063.

    CAS  PubMed  Google Scholar 

  6. Hernandez-Gea V, Toffanin S, Friedman SL, Llovet JM . Role of the microenvironment in the pathogenesis and treatment of hepatocellular carcinoma. Gastroenterology 2013; 144: 512–527.

    Article  PubMed  Google Scholar 

  7. Semenza GL . Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci 2012; 33: 207–214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bertout JA, Patel SA, Simon MC . The impact of O2 availability on human cancer. Nat Rev Cancer 2008; 8: 967–975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sullivan R, Graham CH . Hypoxia-driven selection of the metastatic phenotype. Cancer Metastasis Rev 2007; 26: 319–331.

    Article  CAS  PubMed  Google Scholar 

  10. Semenza GL . Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 2010; 29: 625–634.

    CAS  PubMed  Google Scholar 

  11. Wu XZ, Xie GR, Chen D . Hypoxia and hepatocellular carcinoma: the therapeutic target for hepatocellular carcinoma. J Gastroenterol Hepatol 2007; 22: 1178–1182.

    Article  CAS  PubMed  Google Scholar 

  12. Majmundar AJ, Wong WJ, Simon MC . Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell 2010; 40: 294–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 2001; 292: 464–468.

    Article  CAS  PubMed  Google Scholar 

  14. Semenza GL . HIF-1 and mechanisms of hypoxia sensing. Curr Opin Cell Biol 2001; 13: 167–171.

    Article  CAS  PubMed  Google Scholar 

  15. Maxwell PH, Pugh CW, Ratcliffe PJ . Activation of the HIF pathway in cancer. Curr Opin Genet Dev 2001; 11: 293–299.

    Article  CAS  PubMed  Google Scholar 

  16. Nagase T, Kikuno R, Ohara O . Prediction of the coding sequences of unidentified human genes. XXII. The complete sequences of 50 new cDNA clones which code for large proteins. DNA Res 2001; 8: 319–327.

    Article  CAS  PubMed  Google Scholar 

  17. Wallace DM, Lindsay AJ, Hendrick AG, McCaffrey MW . The novel Rab11-FIP/Rip/RCP family of proteins displays extensive homo- and hetero-interacting abilities. Biochem Biophys Res Commun 2002; 292: 909–915.

    Article  CAS  PubMed  Google Scholar 

  18. Ullrich O, Reinsch S, Urbe S, Zerial M, Parton RG . Rab11 regulates recycling through the pericentriolar recycling endosome. J Cell Biol 1996; 135: 913–924.

    Article  CAS  PubMed  Google Scholar 

  19. Chen W, Feng Y, Chen D, Wandinger-Ness A . Rab11 is required for trans-golgi network-to-plasma membrane transport and a preferential target for GDP dissociation inhibitor. Mol Biol Cell 1998; 9: 3241–3257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wilcke M, Johannes L, Galli T, Mayau V, Goud B, Salamero J . Rab11 regulates the compartmentalization of early endosomes required for efficient transport from early endosomes to the trans-golgi network. J Cell Biol 2000; 151: 1207–1220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Deneka M, van der Sluijs P . 'Rab'ing up endosomal membrane transport. Nat Cell Biol 2002; 4: E33–E35.

    Article  CAS  PubMed  Google Scholar 

  22. Wallace DM, Lindsay AJ, Hendrick AG, McCaffrey MW . Rab11-FIP4 interacts with Rab11 in a GTP-dependent manner and its overexpression condenses the Rab11 positive compartment in HeLa cells. Biochem Biophys Res Commun 2002; 299: 770–779.

    Article  CAS  PubMed  Google Scholar 

  23. Prekeris R, Davies JM, Scheller RH . Identification of a novel Rab11/25 binding domain present in Eferin and Rip proteins. J Biol Chem 2001; 276: 38966–38970.

    Article  CAS  PubMed  Google Scholar 

  24. Horgan CP, McCaffrey MW . The dynamic Rab11-FIPs. Biochem Soc Trans 2009; 37: 1032–1036.

    Article  CAS  PubMed  Google Scholar 

  25. Meyers JM, Prekeris R . Formation of mutually exclusive Rab11 complexes with members of the family of Rab11-interacting proteins regulates Rab11 endocytic targeting and function. J Biol Chem 2002; 277: 49003–49010.

    Article  CAS  PubMed  Google Scholar 

  26. Fielding AB, Schonteich E, Matheson J, Wilson G, Yu X, Hickson GR et al. Rab11-FIP3 and FIP4 interact with Arf6 and the exocyst to control membrane traffic in cytokinesis. EMBO J 2005; 24: 3389–3399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Krzyzaniak MA, Mach M, Britt WJ . HCMV-encoded glycoprotein M (UL100) interacts with Rab11 effector protein FIP4. Traffic 2009; 10: 1439–1457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Muto A, Aoki Y, Watanabe S . Mouse Rab11-FIP4 regulates proliferation and differentiation of retinal progenitors in a Rab11-independent manner. Dev Dyn 2007; 236: 214–225.

    Article  CAS  PubMed  Google Scholar 

  29. Muto A, Arai K, Watanabe S . Rab11-FIP4 is predominantly expressed in neural tissues and involved in proliferation as well as in differentiation during zebrafish retinal development. Dev Biol 2006; 292: 90–102.

    Article  CAS  PubMed  Google Scholar 

  30. Wiza C, Nascimento EB, Ouwens DM . Role of PRAS40 in Akt and mTOR signaling in health and disease. Am J Physiol Endocrinol Metab 2012; 302: E1453–E1460.

    Article  CAS  PubMed  Google Scholar 

  31. Xiong X, Xie R, Zhang H, Gu L, Xie W, Cheng M et al. PRAS40 plays a pivotal role in protecting against stroke by linking the Akt and mTOR pathways. Neurobiol Dis 2014; 66: 43–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Semenza GL . Targeting HIF-1 for cancer therapy. Nat Rev Cancer 2003; 3: 721–732.

    Article  CAS  PubMed  Google Scholar 

  33. Lee JW, Bae SH, Jeong JW, Kim SH, Kim KW . Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions. Exp Mol Med 2004; 36: 1–12.

    Article  PubMed  Google Scholar 

  34. Wu MZ, Tsai YP, Yang MH, Huang CH, Chang SY, Chang CC et al. Interplay between HDAC3 and WDR5 is essential for hypoxia-induced epithelial-mesenchymal transition. Mol Cell 2011; 43: 811–822.

    Article  CAS  PubMed  Google Scholar 

  35. Oshiro N, Takahashi R, Yoshino K, Tanimura K, Nakashima A, Eguchi S et al. The proline-rich Akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1. J Biol Chem 2007; 282: 20329–20339.

    Article  CAS  PubMed  Google Scholar 

  36. Vander Haar E, Lee SI, Bandhakavi S, Griffin TJ, Kim DH . Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol 2007; 9: 316–323.

    Article  CAS  PubMed  Google Scholar 

  37. Nascimento EB, Ouwens DM . PRAS40: target or modulator of mTORC1 signalling and insulin action? Arch Physiol Biochem 2009; 115: 163–175.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from National Key Sci-Tech Special Project of China (2012ZX10002011-004), National Natural Science Foundation of China (81201627 and 81371883), Shanghai Municipal Program of International Cooperation in Science and Technology (12410709800), Research Fund for the Doctoral Program of Higher Education of China (20120073110091), Key Basic Research Program of Shanghai Committee of Science and Technology (11JC1412201), Grant from the State Key Laboratory of Oncogenes and Related Genes (91-1201, 91-1305), Doctoral Innovation Fund of Shanghai Jiao Tong University School of Medicine (BXJ201243) and Key Discipline and Specialty Foundation of Shanghai Municipal Commission of Health and Family Planning.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J Fan or W Qin.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, F., Deng, X., Yang, X. et al. Hypoxia upregulates Rab11-family interacting protein 4 through HIF-1α to promote the metastasis of hepatocellular carcinoma. Oncogene 34, 6007–6017 (2015). https://doi.org/10.1038/onc.2015.49

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.49

This article is cited by

Search

Quick links