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SETD2 loss-of-function promotes renal cancer branched
evolution through replication stress and impaired DNA repair
N Kanu1,10, E Grönroos2,10, P Martinez2,10, RA Burrell2, X Yi Goh2, J Bartkova3, A Maya-Mendoza3, M Mistrík4, AJ Rowan2, H Patel2,
A Rabinowitz2, P East2, G Wilson2, CR Santos2, N McGranahan2, S Gulati2, M Gerlinger2, NJ Birkbak1,2,5, T Joshi5, LB Alexandrov6,
MR Stratton6, T Powles7, N Matthews2, PA Bates2, A Stewart2, Z Szallasi5,8, J Larkin9, J Bartek3,4 and C Swanton1,2

Defining mechanisms that generate intratumour heterogeneity and branched evolution may inspire novel therapeutic approaches
to limit tumour diversity and adaptation. SETD2 (Su(var), Enhancer of zeste, Trithorax-domain containing 2) trimethylates histone-3
lysine-36 (H3K36me3) at sites of active transcription and is mutated in diverse tumour types, including clear cell renal carcinomas
(ccRCCs). Distinct SETD2 mutations have been identified in spatially separated regions in ccRCC, indicative of intratumour
heterogeneity. In this study, we have addressed the consequences of SETD2 loss-of-function through an integrated bioinformatics
and functional genomics approach. We find that bi-allelic SETD2 aberrations are not associated with microsatellite instability in
ccRCC. SETD2 depletion in ccRCC cells revealed aberrant and reduced nucleosome compaction and chromatin association of the
key replication proteins minichromosome maintenance complex component (MCM7) and DNA polymerase δ hindering replication
fork progression, and failure to load lens epithelium-derived growth factor and the Rad51 homologous recombination repair factor
at DNA breaks. Consistent with these data, we observe chromosomal breakpoint locations are biased away from H3K36me3 sites in
SETD2 wild-type ccRCCs relative to tumours with bi-allelic SETD2 aberrations and that H3K36me3-negative ccRCCs display elevated
DNA damage in vivo. These data suggest a role for SETD2 in maintaining genome integrity through nucleosome stabilization,
suppression of replication stress and the coordination of DNA repair.
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INTRODUCTION
Renal cell carcinoma (RCC) is associated with a 5-year survival
of o10% for patients with metastatic disease at diagnosis.1

Clear cell RCC (ccRCC) is the most common histological subtype,
accounting for 80–90% of RCCs. Exome sequencing studies
of ccRCC have defined the mutational landscapes of these
tumours, revealing that histone-modifying enzymes and
chromatin-remodelling complexes are subject to recurrent
mutations.2,3 The most frequent genomic aberrations are
the inactivation of the tumour-suppressor von Hippel-Lindau
(VHL, 450% of cases)2–5 and loss of heterozygosity (LOH) of
chromosome 3p (480% of ccRCCs),6 which encodes VHL as
well as the candidate ccRCC tumour-suppressor genes PBRM1,
BAP1 and SETD2.3,7 Polybromo 1 (PBRM1 or BAF8), a SWI/SNF
chromatin-remodelling complex component, and the deubi-
quitylase BAP1 are mutated in 40% and 10% of ccRCCs
respectively.2,3

SETD2 is estimated to be mutated in 4–8% of ccRCCs.2,3,5 We
have previously observed multiple distinct SETD2 mutations in
spatially separated regions of the same tumour occurring in the
proximal branches of the tumour phylogenetic tree, indicating a
strong selection pressure for SETD2 inactivation in a subset of

ccRCCs around the time of branched evolution.4 SETD2 is the main
methyltransferase responsible for trimethylation of histone-3 at
lysine-36 (H3K36me3),8 and is recruited to sites of active
transcription by interaction with the C-terminal domain of RNA
polymerase II (RNA Pol II).9,10

In this study, we used an integrated bioinformatics and
functional approach to investigate the consequences of SETD2
loss-of-function in ccRCC.

RESULTS
SETD2 mutations and LOH in ccRCC
Using data from The Cancer Genome Atlas (TCGA) Research
Network, we assembled a ccRCC data set of 450 tumours with
copy number data and 293 tumours with somatic mutation data
(whole-exome sequencing data from the Broad institute consist-
ing of 262 overlapping samples, Supplementary Table S1). MutSig
analysis,11 which identifies significantly recurrent mutations based
on variable mutation rates across the genome, gene size and
replication timing, identified 14 genes that were significantly
mutated in the data set suggestive of driver status, including
SETD2 (Q-value = 0, Supplementary Table S2).

1UCL Cancer Institute, Paul O’Gorman Building, London, UK; 2Cancer Research UK London Research Institute, London, UK; 3Danish Cancer Society Research Center, Copenhagen,
Denmark; 4Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacky University, Olomouc, Czech Republic; 5Department of Systems Biology,
Center for Biological Sequence Analysis, Technical University of Denmark, Kongens Lyngby, Denmark; 6Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust
Genome Campus, Cambridgeshire, UK; 7Barts Cancer Institute, Experimental Cancer Medicine Centre, Queen Mary University of London, London, UK; 8Children's Hospital Boston,
Informatics—Enders 1506, Boston, MA, USA and 9Department of Medicine, The Royal Marsden Hospital, London, UK. Correspondence: Professor J Bartek, Danish Cancer Society
Research Center, Strandboulevarden 49, DK-2100 Copenhagen, Denmark or Dr C Swanton, Translational Cancer Therapeutics Laboratory, Cancer Research UK London Research
Institute, 44 Lincoln’s Inn Fields, London, WC2A 3LY, UK.
E-mail: jb@cancer.dk or charles.swanton@cancer.org.uk
10These authors contributed equally to this work.
Received 28 November 2014; revised 29 December 2014; accepted 6 January 2015; published online 2 March 2015

Oncogene (2015) 34, 5699–5708
© 2015 Macmillan Publishers Limited All rights reserved 0950-9232/15

www.nature.com/onc

http://dx.doi.org/10.1038/onc.2015.24
mailto:jb@cancer.dk
mailto:charles.swanton@cancer.org.uk
http://www.nature.com/onc


SETD2 is encoded on chromosome 3, and 3p LOH has previously
been reported to be an early event in RCC.12,13 In all, 98.8%
(391/396) of TCGA samples with LOH at the VHL locus (3p25.3)
also displayed LOH at the SETD2 locus (3p21.31) (Figure 1a and
Supplementary Table S1). Non-synonymous SETD2 mutations or
homozygous SETD2 deletions were found in 34 samples
(Figure 1b), with paired DNA copy number data available for 30
samples. In total, 93.3% of these cases (28/30) showed LOH at the
SETD2 locus. Ten of the 28 mutations were missense mutations
(five were in the SET domain, one in the SRI domain and four in
uncharacterized regions of the protein). One sample harboured

homozygous deletion of SETD2. Therefore in total, both SETD2
alleles were mutated or deleted in 29 samples, collectively referred
to as SETD2mut. The 210 samples with LOH at the SETD2 locus but
no mutation of the gene are referred to as SETD2LOH.

Chromosomal instability at H3K36me3 sites in SETD2 mutant
ccRCC
Increasing evidence implicates transcriptional aberrations as one
route to influence genome stability,14 we hence hypothesized that
reduced H3K36me3 in the context of SETD2 bi-allelic aberrations
may affect genomic stability in a site-specific manner. Genome-
wide distributions of histone marks were obtained from publicly
available ChIP-Seq data derived from two normal adult kidney
samples (H3K36me3) and one fetal kidney (H3K27me3) from
the ENCODE Consortium.15–17 We then mapped genomic
H3K36me3 distributions to chromosomal breakpoint regions in
the 29 SETD2mut and 210 SETD2LOH TCGA samples.
Chromosomal breakpoints were identified using single-

nucleotide polymorphism (SNP) array data, the resolution of
which only permits identification of breakpoint regions (between
two genomic segments present at different copy numbers), rather
than specific sites of breakage. Breakpoint regions were then
defined using 16 different threshold combinations for minimum
flanking segment length and maximum breakpoint region length,
to take into account the occurrence of false positives in the
predicted chromosomal aberrations (Supplementary Table S3 and
Supplementary Methods). Using this cohort, we assessed the
location of breakpoint regions, with respect to H3K36me3 sites in
normal adult kidney, in the 210 SETD2LOH tumours and the 29
SETD2mut tumours (Figure 2a and Supplementary Figure S1a). We
generated 5000 random breakpoint region profiles to estimate the
expected background frequency distributions of H3K36me3 sites
within breakpoint regions for SETD2mut versus SETD2LOH TCGA
tumours, for each threshold combination.
SETD2mut tumours did not harbour more breakpoints on

average (Supplementary Table S3) and did not show higher
chromosomal complexity as measured by the weighted genome
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Figure 1. (a) Proportion of samples showing LOH along chromo-
some 3 using SNP 6.0 array data in 450 RCCs from TCGA. The
genomic loci of VHL, SETD2 and PBRM1 are indicated. (b) Schematic
of the locations of mutations reported in the SETD2 gene from
published studies (2–5). Arrows indicate distinct mutations found
within spatially separated regions of the same tumour.4
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Figure 2. SETD2 mutation exposes H3K36me3 sites to chromosome breakage. (a) Schematic illustrating the mapping of chromosomal
breakpoint regions to sites of H3K36me3/H3K27me3 (data from the ENCODE consortium) in both SETD2LOH and SETD2mut. Breakpoint regions,
identified from SNP 6.0 array data, are the regions between two segments of a chromosome present at different allele-specific copy numbers.
(b) Representative plots of observed H3K36me3 frequencies against expected frequencies in SETD2LOH and SETD2mut tumours, using a
minimum segment length of 10 Mb and a maximum breakpoint region length of 20 kb.
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instability index18 (Supplementary Figure S1b). However, break-
point regions from SETD2LOH samples were significantly depleted
of H3K36me3 marks (12/16 threshold combinations with Po0.05;
Supplementary Table S3 and Supplementary Figure S2). In
contrast, such depletion was not observed when mapping the
locations of breakpoint regions and H3K36me3 sites in SETD2mut

tumours. Breakpoint regions in the SETD2mut samples were
marginally enriched for H3K36me3 marks (3/16 threshold
combinations with Po0.05; Supplementary Table S3 and
Supplementary Figure S2). Representative plots of observed
H3K36me3 frequencies against expected frequencies in
SETD2LOH and SETD2mut samples are shown in Figure 2b. No
depletion of H3K27me3, a histone mark found across the genome
at similar frequencies to H3K36me3 (12.6% and 12.1%, respec-
tively),15–17 could be observed in SETD2LOH breakpoint regions,
suggesting that the depletion of H3K36me3 from breakpoint
regions in these tumours is specific. In addition to the apparent
association between chromosomal breakage and H3K36me3 sites,
there was a moderately higher co-occurrence of point mutations
with H3K36me3 marks in the SETD2mut samples compared with
the SETD2LOH samples (Supplementary Table S4, P= 0.04, one-
tailed Fisher’s test). Taken together, these data suggest that
normally H3K36me3 sites are less prone to breakage than the rest
of the genome in SETD2 wild-type cells, whereas following SETD2
bi-allelic mutation or deletion, this apparent site-specific protec-
tion is lost, increasing the probability of chromosome breaks at
these sites to an equivalent or possibly higher level than the rest
of the genome in SETD2 wild-type cells. The fact that H3K27me3 is
not depleted in breakpoint regions from the SETD2LOH samples
further suggests that this putative protection is specific to
H3K36me3. These data suggested a potential role for SETD2 in
the maintenance of genomic integrity, mediated through
H3K36me3.

Reduced H3K36me3 and SETD2 expression are associated with
DNA damage in vivo
In light of the apparent protective role for SETD2 and the selection
pressure for SETD2 inactivation in ccRCC as an intermediate event
that occurs around the time of detectable branched ccRCC
evolution, we explored the relationship between SETD2 mutation
and genomic instability in vivo. We assessed SETD2 expression,
H3K36me3 levels and DNA damage in a cohort of 202 samples
from 100 RCC tumours, assayed by immunohistochemistry on
tissue microarrays (Figures 3a and b and Supplementary Table S5).
SETD2 mutation status was not available for this cohort. However,
as SETD2 is the main H3K36 trimethylase8 and the majority of
mutations identified to date result in frameshifts or premature
stop codons in the N-terminal half of the gene, we used a
C-terminal SETD2 antibody that would not detect SETD2 affected
by protein truncations distal to the reported mutations, the
majority of which occur before the C-terminal SRI domain
(Figure 1b). Therefore, SETD2 and H3K36me3 immunohistochemical
staining were used as surrogate markers for SETD2 loss-of-
function. A highly significant correlation was observed between
SETD2 and H3K36me3 immunohistochemical staining (P= 3.8e-14,
Cochran-Armitage test, Supplementary Figure S3a), suggesting
that absence of H3K36me3 staining is a good surrogate for SETD2
loss-of-function.8 DNA damage was assessed by staining for
phosphorylated histone 2 A.X (γH2AX), which marks ongoing DNA
damage signalling and DNA double-strand breaks.19 Both SETD2
and H3K36me3 levels were significantly anti-correlated with
γH2AX staining (Po0.05, Supplementary Figures S3b and c),
suggesting that SETD2 loss-of-function may contribute to DNA
damage and double-strand breaks. These data further suggest a
role for SETD2 and H3K36me3 in the maintenance of genome
stability.

SETD2 is required for efficient DNA repair
The transcriptional co-activator lens epithelium-derived growth
factor (LEDGF/p75) contains a proline-tryptophan-tryptophan-
proline domain, which has been shown to interact with
H3K36me3.20 LEDGF is required for CtIP recruitment leading to
RAD51 loading and DNA repair.21 We first investigated the
proficiency of homologous recombination (HR) following SETD2
depletion in RCC cell lines by small-interfering RNA (siRNA). We
used two alternative siRNA pools targeting SETD2, having
excluded some sequences because of off-target effects
(Supplementary Figures S4a and b). After 48 h both the pools
and individual siRNA sequences efficiently silenced SETD2 and
depleted H3K36me3 levels (Supplementary Figures sS4c and e).
Consistent with a defect in HR, SETD2-depleted cells displayed
reduced RAD51 foci formation, used as surrogate for detecting
active HR, following induction of DNA damage with ionizing
irradiation (IR) (Figure 4a and Supplementary Figure S5a). Using
our newly developed quantitative method to assess RAD51 foci
formation in large numbers of cells, we found that the proportion of
RAD51-positive cells was reduced from 15.1% in control to 2.2% in
SETD2-depleted cells and 2.9% in cells depleted of Nijmegen
breakage syndrome 1, which was used as a positive control (both
P=0.003, average from n= 3 independent experiments, Figure 4b).
Similar results were obtained in U2OS cells (SETD2 wild-type)
(Supplementary Figures S5b and c), and RCC-JW cells (SETD2
missense mutation, H3K36me3 competent) (Supplementary Figure
S5d). In order to support the specificity of the RNA interference
phenotype, we repeated these experiments in the RCC-FG2 line,
which harbours bi-allelic aberrations in SETD2 (no detectable SETD2
protein and barely detectable H3K36me3, Supplementary Figures
S4c and S5e). No decrease in RAD51 foci formation after IR was
observed following SETD2 silencing in RCC-FG2. Consistent with a
defect in HR, SETD2-depleted cells were also more sensitive to IR
(P=0.035, two-tailed t-test, Figure 4c). As Rad51 foci formation and
HR repair require CtIP-mediated double-strand break end resection,
and CtIP recruitment to active-chromatin-associated double-strand
breaks relies on the proline-tryptophan-tryptophan-proline domain-
containing LEDGF,21,22 we speculated that chromatin loading of
LEDGF may depend on SETD2 function. Indeed, we observed
reduced chromatin-bound LEDGF/p75 following SETD2 depletion in
RCC cell lines, while there was no decrease in total cellular LEDGF
levels (Figure 4d). Our data therefore support the hypothesis that the
defective DNA repair in the absence of SETD2 could exacerbate the
DNA damage observed in vivo. This conclusion is further supported
by two recent studies, submitted while the manuscript was
under preparation, reporting the link between SETD2, H3K36me3
and HR.20,22
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Figure 3. Reduced H3K36me3 is associated with elevated DNA
damage in primary ccRCC tumours. (a) Images of tumour cells from
a ccRCC case stained negatively for SETD2 and H3K36me3 but
strongly positive for γH2AX (scale bar: 50 μm). (b) Images of tumour
cells from a ccRCC case stained positive for SETD2 and H3K36me3,
but weakly stained for γH2AX (scale bar: 50 μm).
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SETD2 mutations are not associated with mutational signatures of
microsatellite instability in ccRCC tumours or cell lines
A recent study has described a novel role for SETD2 in mismatch
repair and microsatellite instability (MSI) in a renal cancer cell line
harbouring a SETD2 mutation.23 We decided to investigate
the contribution of SETD2 mutation-induced MSI on genomic
instability in vivo. As MSI is associated with a high frequency of
point mutations, we first assessed mutational load in a cohort of
SETD2mut tumours from the TCGA,24 in comparison with colon
tumours with MSI. The mutational load in the SETD2mut tumours
was substantially lower than that observed in MSI colon tumours
(Figure 5a and Supplementary Figure S6). We next assessed MSI
in an extended cohort of SETD2mut tumours, in comparison
with colon tumours with MSI. We took advantage of a recently
defined mutational signature associated with mismatch repair

deficiency.25 Using the same data set as Alexandrov et al. (which
included 281 of the 293 TCGA samples described above, as well as
additional samples from other sources25), we investigated whether
there was a relationship between SETD2 mutation status and
the mismatch repair deficiency signature. Thirty-five out of 324
samples (10.8%) bore a SETD2mutation. Only 2 of the 324 samples
presented a clear mismatch repair deficiency signature, with one
of them also bearing a SETD2 mutation. However, the sample with
the SETD2 mutation presented LOH on the whole 3p arm, which
also encodes the mismatch repair gene MLH1. This tumour also
had a MLH1 frameshift insertion on the other allele, leading to the
loss of both copies of MLH1. Therefore, it is likely that the MSI
signature in this tumour is explained by loss of MLH1 function. In
total, 30 samples harboured a SETD2 mutation in addition to
SETD2LOH, of which 29 showed no evidence of mismatch repair
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deficiency according to mutational signatures. To extend our
findings and to investigate the relationship between SETD2
mutational status and MSI in tumours, we assessed MSI in 21
tumours for which we had obtained multiple biopsies from each
tumour and for which SETD2 mutation and chromosome 3p status
were known for each biopsy (n= 140; 23 regions with SETD2
mutations).4,13 We examined five markers (D2S123, D5S346,
D17S250, BAT25 and D11S904), including four established markers
from the Bethesda panel for identification of MSI in colorectal
cancer.26 As a positive control, we included five MSI positive
colorectal cell lines. We observed no evidence of MSI across the
five different markers (Figure 5b) including BAT25 (Supplementary
Figures S7i and iv). Finally, we did not observe MSI over five
markers in six ccRCC cell lines, SETD2-wild-type (RCC4, RCC-JW and
UOK121) and SETD2 mutant (A498, RCC-FG2 and UOK143 cells;
Supplementary Figure S7v). Taken together, our data suggest that
SETD2 mutations are not associated with MSI in ccRCC.

SETD2 depletion does not result in cryptic transcriptional initiation
or altered splicing
SETD2 has been implicated in regulating the splicing machinery,27

and also in the suppression of cryptic transcription initiation

within coding exons by coordinating nucleosome assembly
following RNA Pol II elongation.28 We hypothesized that global
transcriptional defects because of loss of SETD2-dependent
trimethylation may contribute to the elevated DNA damage and
genomic instability observed in the tumour samples. To assess this
in ccRCC models, we first performed ChIP-Seq for H3K36me3
following SETD2 depletion to identify genes that were significantly
dependent on SETD2 for trimethylation (Figure 6a). Having
identified 2513 genes (false discovery rate (FDR)⩽0.05, logFC⩽−1.5
and logCPM≥ 1) as being dependent on SETD2 for H3K36me3, we
then performed ChIP-Seq for RNA Pol II and gene body profiling
for the distribution of RNA Pol II across these genes. We observed
no global changes in RNA Pol II distribution following SETD2
depletion in RCC4 cells (Figure 6b).
In the absence of global changes in RNA Pol II occupancy, we

directly assessed the effect of SETD2 depletion on gene
expression, by performing RNA-Seq in RCC4 cells. Surprisingly,
only 326 genes (FDR⩽ 0.05) showed a significant differential
expression between SETD2 siRNA-depleted versus non-depleted
samples across the three experiments. The most significant
upregulated and downregulated genes were validated by
quantitative PCR (Supplementary Figure S8a). A significant overlap
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was found (Fisher’s exact test, P-value = 0.001211) between these
genes and those determined to exhibit differential expression in
the TCGA ccRCC24 data set (n= 392) for SETD2mut (n= 49) and
SETD2wt (n= 343) cohorts (Supplementary Figure S8b).
In order to examine whether RNA processing was defective

following SETD2 depletion in RCC4 cells, we performed differential
exon usage analysis using DEXSeq.29 and also calculated intron
retention scores14 using our RNA-Seq data (Supplementary Figure 8c).
We observed no evidence of differential exon usage or intron
retention, arguing against a role for SETD2-dependent trimethyla-
tion as a global transcriptional regulator in this ccRCC model
system.

SETD2 depletion results in altered nucleosome dynamics and DNA
replication stress
Previous studies have suggested impaired loading of the FACT
(Facilitates Chromatin Transcription) complex as well as changes in
chromatin compaction following SETD2 depletion.14,28 In order to
study if chromatin architecture was changed following SETD2
depletion in RCC cells, we next investigated chromatin organiza-
tion by micrococcal nuclease sensitivity assays. Quantitative PCR
was performed over regions identified by ChIP-Seq as the most
dependent on SETD2 for H3K36me3 trimethylation (Figure 6c).
The relative amount of micrococcal nuclease-resistant DNA was
calculated relative to a region that was not trimethylated in
control cells. These data revealed that in the absence of SETD2,
normally trimethylated regions had reduced nucleosome
compaction.
Histone dynamics have an important role in DNA replication,

where the stability of the replication complex is dependent on the
reassembly of nucleosomes behind the advancing fork.30,31 In line
with this, the FACT complex has been demonstrated to recruit the
MCM complex to chromatin during replication.32,33 In order to
specifically study the role of SETD2 during S phase, SETD2- and
control siRNA-treated cells were studied after release from a
double thymidine block. SETD2-depleted cells exited the block
and entered into S phase with similar dynamics as control-treated
cells (Figure 6d). We observed reduced chromatin association of
MCM7, DNA polymerase δ and histone H3, whereas overall protein
levels of the replisome components were unaffected in RCC4,
RCC-FG2, UOK121 and U2OS cell lines by SETD2 depletion,
indicating that impaired nucleosome assembly may affect
replication dynamics (Figure 6e and Supplementary Figure 8d).
In support of this, RCC-FG2 cells, possessing SETD2 loss-of-function
and absent H3K36me3, also exhibited reduced loading of
replisome components onto chromatin (Supplementary Figure 8e).
Nucleosome integrity has been demonstrated to have a key role in
replisome stability during replication fork progression.30 Given
the aberrant nucleosome occupancy and reduced chromatin
association of several DNA replication factors (Figures 6c and e

and Supplementary Figures 8d and e), we wished to directly assess
any impact of SETD2 status on replication fork progression using
DNA fibre assays. Replication fork progression was significantly
slower following SETD2 depletion (Figures 7a and b) decreasing
from 1.0 kb/min in control to 0.75 kb/min in SETD2-depleted cells,
P= 8.3e–104, two-tailed unpaired t-test with Welch’s correction
(Supplementary Figure S9a). In agreement with this finding, we
observed significantly slower replication fork progression in A498
cells (0.73 kb/min), which have a homozygous truncating SETD2
mutation2 and reduced H3K36me3 levels (Supplementary Figure
S4f), compared with RCC4 cells that have one SETD2 allele intact
(1.1 kb/min, P= 2.35e–75, two-tailed unpaired t-test with Welch’s
correction, Supplementary Figure S9b). RCC-FG2 cells, which are
SETD2 deficient, also had a slower replication fork speed than
RCC4 cells (0.85 kb/min), and no further reduction in replication
speed was observed following depletion of SETD2 (Supplementary
Figure S9c). Consistent with slower replication rates, we noted an
accumulation of cells in S phase after SETD2 depletion (50% cells
versus 36% in control cells, P= 0.048, two-tailed t-test,) and an
extended S phase duration (Supplementary Figures S10a and c).
These results suggest that in the absence of SETD2, defective
nucleosome assembly during S phase contributes to DNA
replication fork instability leading to genomic damage.

DISCUSSION
In this study, we provide several novel insights into the impact of
SETD2 loss-of-function on nucleosome structure, replisome
occupancy, replication fork progression and DNA repair by
homologous recombination. These are all important cellular
functions whose deregulation collectively could contribute to
enhanced genomic instability, heterogeneity and adaptability of
ccRCCs, thereby conceivably potentiating branched evolution in
this disease.
First, in terms of DNA damage and repair, we have shown that

tumours harbouring SETD2 bi-allelic aberrations display an altered
distribution of both chromosomal breakpoints and mutations
around H3K36me3 sites compared with tumours with at least one
wild-type SETD2 allele (Figure 1). RNA interference experiments
revealed a role for SETD2-dependent H3K36me3 in DNA repair
by homologous recombination, mechanistically reflecting the
requirement for H3K36me3-mediated recruitment of the LEDGF/
CtIP complex20 critical for double-strand break end resection and
thereby eventually for Rad51 loading and HR. These results
complement other recent studies,22,34,35 collectively providing
evidence for a function of SETD2-mediated H3K36 trimethylation
in coordinating homologous recombination repair (Figures 4, 6
and 7).
Furthermore, in contrast to a recent in vitro study,23 we do not

find an association between SETD2 loss-of-function and MSI in
ccRCC in either the publicly available TCGA data set, in patient-
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derived tumour material or in SETD2mut ccRCC cell lines (Figure 5b
and Supplementary Figure S7). The mutational load in SETD2mut

tumours was substantially lower than that observed in MSI colon
cancers (Figure 5a and Supplementary Figure S6) and we
therefore conclude that there is no tangible evidence for an
association between SETD2 mutations and MSI in ccRCC. It is
possible that in vivo, in contrast to the reported in vitro findings,
there is rapid adaptation to prevent MSI following SETD2
mutation. Another possibility is that MSI following SETD2
inactivation is confined to genomic loci normally marked by
H3K36me3.23 Although no association was found with MSI, levels
of H3K36me3 were inversely correlated with DNA damage in vivo
(Figure 3), and we observed a shift in the distribution of
chromosome breakpoints in SETD2mut tumours (Figure 2).
Although in wild-type tumours, H3K36me3 sites were significantly
depleted of chromosome breakpoints, this depletion was not
observed in SETD2mut tumours, suggesting that loss-of-function of
SETD2 may unmask sites that are normally protected by
H3K36me3. However, we did not observe an overall increase in
the number of breakpoints in SETD2mut tumours, as determined by
SNP array analysis. This may be explained by relative confinement
of the instability to H3K36me3 sites, and the fact that copy
number changes identified by SNP array represent only those
aberrations that are compatible with clonal expansion. Further-
more, along with others, we have previously found evidence for
an optimal degree of genomic instability in tumours,36–38

suggesting that excessive genomic instability can be deleterious
and result in autonomous cell lethality and that tumours may align
to a ‘just-right threshold’ of genomic aberrations sufficient to
adapt to environmental pressures.12

Whereas SETD2 has been implicated in RNA processing
defects,14,28 we were unable to find any global transcriptional
defects in the absence of SETD2 (Figure 6b and Supplementary
Figure S8c). A possible explanation for the difference could be the
systems used; a cell line derived from cervical cancer (HeLa)28

versus RCC4 cells derived from renal clear cell carcinoma, which
harbours 3pLOH. Interestingly, no significant overlap was
observed between genes that had lost H3K36 trimethylation
and those exhibiting altered expression levels following SETD2
depletion, suggesting that SETD2-dependent trimethylation does
not have a significant role in permitting transcription of genes
neighbouring H3K36me3 sites in ccRCC cells. In contrast, there
was a significant overlap between the genes deregulated
following SETD2 siRNA in RCC4 cells and genes with differential
expression in SETD2 mutant tumours versus non-mutant tumours
in the TCGA ccRCC set, supporting the use of this approach to
investigate the consequences of exclusive SETD2 loss
(Supplementary Figure S8b). In conclusion, our data does not
support a global transcriptional role for SETD2 in the system
studied.
Interestingly, we find that in the absence of SETD2, chromatin

compaction is impaired, nucleosome occupancy is aberrantly low
and replication fork progression is slowed the latter phenomenon
being shared by various conditions that evoke replication stress.18

The increased sensitivity to micrococcal nuclease in SETD2-
depleted cells over normally trimethylated regions, and reduced
chromatin association of histone H3 indicates that replication fork
stability may be reduced by altered nucleosome reassembly
(Figures 6c, e and 7).39 SPT16, a component of the FACT complex,
previously demonstrated to interact directly with H3K36me3,28

has also been implicated in the recruitment of the MCM complex
to chromatin during replication.32 DT40 cells with a conditional
deletion of the FACT component SSRP1 exhibited S phase defects
and impeded replication fork progression.33 In line with this, we
observed that SETD2 depletion resulted in reduced chromatin
levels of MCM7 and DNA polymerase δ as well as reduced
replication fork progression and a prolonged S phase (Figures 4, 6
and 7), providing a potential explanation for the increased

replication stress and DNA damage observed in tumours with
reduced H3K36me3 levels.
Oncogene-induced replication stress is thought to occur widely

across human malignancies,40 and replication stress has also been
observed with the loss of tumour suppressors18,41 As there are few
described oncogenic mutations in renal cancer, loss of tumour
suppressors may be particularly important in this tumour type.
These studies suggest there may be a broader role for replication
stress in the initiation of intratumour genetic heterogeneity,
mediated through somatic events in distinct genes across
different tumour types.
Our findings may have broader relevance to genetic hetero-

geneity across different malignancies, as SETD2 is recurrently
mutated in 9% of non-small cell lung carcinomas,42 1 paediatric
high-grade gliomas and 8% of adult high-grade gliomas,43 albeit
usually in the absence of 3p LOH. In addition, the distribution of
H3K36me3 is affected by the mutation of glycine-34 (G34V) on the
histone variant H3.3, occurring in 60% of paediatric high-grade
gliomas.39

Previously, we described that all recurrent somatic copy number
aberrations in ccRCC other than 3pLOH are subclonal, present in
some cells but not others in the branches of the tumour
phylogenetic tree. We also found that SETD2 mutations often
occur following the 3pLOH truncal event in the early branches of
the tumour phylogenetic trees, coincident with the onset of
tumour diversification.13

Consistent with the hypothesis that SETD2 loss-of-function
contributes to branched evolution, in this study we find that
H3K36me3 sites are enriched around breakpoint regions in SETD2
mutant tumours and SETD2 inactivation results in dysfunctional
DNA replication and repair, fuelling subclonal diversification.
In summary, our study suggests that SETD2 mutations are not

associated with MSI in renal cancer, and has revealed a relation-
ship between nucleosome reassembly, replication stress, DNA
repair by HR, chromosomal breakpoints and H3K36 trimethylation
in ccRCC. This integrative approach may provide useful insights
into the contribution of chromatin regulation to genomic
instability more generally, by revealing how an altered histone
mark unmasks fragile regions within the genome and, as a
consequence, find order within chaotic cancer genomes.

MATERIALS AND METHODS
Cell lines
RCC4, A498 and U2OS cell lines used were obtained from American Type
Culture Collection (ATCC, Manassas, VA, USA). RCC-FG2 and RCC-JW were
purchased from Cell Lines Service (Eppelheim, Germany). UOK121 and
UOK143 were a kind gift from Dr Linehan, Center for Cancer Research, NCI
(Bethesda, MD, USA). All cell lines used in this study were maintained at
37 °C in 5% CO2 in Dulbecco’s modified Eagle’s medium with L-glutamine
or RPMI 1640 media (Gibco/Life Technologies Ltd, Paisley, UK), supplemen-
ted with 10% fetal bovine serum and 1/10 000 units of penicillin–
streptomycin (Sigma-Aldrich, Dorset, UK).

RNA interference
All siRNA (Dharmacon/GE Healthcare, Buckinghamshire, UK) transfections
were performed at 40 nM final concentrations by reverse transfection
with Lipofectamine RNAiMax (Invitrogen/Life Technologies Ltd, Paisley,
UK). SETD2 (MU-012448) siRNA pool was made up of equal concentrations
of siRNA 2 (5'-GCUCAGAGUUAACGUUUGA-3'), siRNA 3 (5'-GAAACCGUCUC
CAGUCUGU-3') and siRNA 4 (5'-GGAGACAUUUGUAUGAGGA-3'). siRNA #1
was excluded in all experiments because of its nonspecific effects on other
mitotic proteins (Supplementary Figure S4a). Additional siRNA oligos
#7 (5'-GCUCAGAGUUAACGUUUGA-3') and #8 (5'-CCAAAGAUUCAGACAU
AUA-3') were also used to deplete SETD2 levels. Non-targeting control
siRNA was used as control in all experiments.
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Protein extraction and western blotting
Total cell lysates were generated as described previously.18 Following
sodium dodecyl sulphate–polyacrylamide gel electrophoresis, blots were
probed with indicated antibodies diluted in 5% milk or bovine serum
albumin in Tris-buffered saline. Antibodies used are as follows: SETD2
#ab31358, H3K36me3 #ab9050, total H3 #ab10799, RAD51 #ab213 (Abcam,
Cambridge, UK). MAD2 #610678, LEDGF #611714 (BD Biosciences, San
Diego, CA, USA), H2B #sc-8650, DNA polymerase δ, #sc-10784, MCM7,
#sc-9966 (Santa Cruz Biotechnology, Santa Cruz, CA, USA), horseradish
peroxidase-conjugated anti-β-actin antibody #A3854 (Sigma-Aldrich) and
horseradish peroxidase conjugated secondary antibodies (Dako, Cambrid-
geshire, UK). Immobilon Westerns (Millipore, Hertfordshire, UK) was used for
detection.

MSI analyses
DNA was extracted according to manufacturer’s protocols (DNeasy,
Qiagen, Manchester, UK). The occurrence of microsatellite instability was
investigated using seven markers (D2S123, D5S346, D5S652, D17S250,
BAT25, BAT26 or D11S904).26,44 Samples were defined as having MSI if ⩾ 2
microsatellite markers tested positive.24 PCR reactions were performed
using two different DNA polymerase enzymes to exclude any enzyme-
specific effects, and the products were subsequently subjected to
fragment analysis using the ABI3130XL Genetic Analyzer (Life Technologies
Ltd, Paisley, UK)

Thymidine block
Cells were treated with 2mM thymidine for 18 h, washed with phosphate-
buffered saline and released into complete media for 9 h. Cells were
subsequently treated with a second thymidine block for a further 18 h.
Cells were washed, released into complete media and harvested at the
indicated time points.

DNA fibre assays
At 48-h posttransfection, cells were pulse labelled with CldU and IdU
(Sigma-Aldrich) sequentially (20min each). Assays were performed as
described previously.18 Three independent experiments were performed
and 4200 double-labelled replication forks were counted per experiment.

Immunohistochemistry staining
For immunohistochemical analysis of archival formalin-fixed, paraffin-
embedded human kidney tumour TMA, the tissue sections were de-
paraffinized and processed for sensitive immunoperoxidase staining with
the primary antibodies to SETD2 (Sigma-Aldrich HPA042451), H3K36me3
(Abcam ab9050) and phospho-histone H2AX Ser 139 (Millipore 05-636).
The staining procedure was using the Vectastain Elite kit (Vector
Laboratories, Peterborough, UK) and nickel sulphate enhancement without
nuclear counterstaining, as described previously,45 followed by evaluation
of the staining patterns by an experienced oncopathologist.

RAD51 foci formation assay
At 72-h post-siRNA transfection, cells were irradiated with 8 Gy IR (160 kV,
6 mA, 3 mm Alu filter), stained and scanned. For a detailed protocol, see
Supplementary Information.

Colony formation assay
Cells were exposed to 0 (non-irradiated) or 3 Gy IR, then seeded at 500 cells
per well and allowed to form colonies over 16 days, before quantification
of colony numbers.

Patient tumour samples and tissue microarrays
For microsatellite analysis, we used DNA from ccRCC primary tumours (and
corresponding normal tissue), as well as five MSI+ colorectal cell lines)
available in the lab. All patients gave consent for use of their samples.
Affymetrix SNP 6 array data were obtained for ccRCC (n=450) from TCGA
Kidney ccRCC data set. Mutation data were obtained for ccRCC (n= 403,
resulting in 366 overlapping samples with both mutation and copy
number data available) using the Broad GDAC firehose tool. ChIP-Seq data
were retrieved from the Human Reference Epigenome Mapping Project
(GEO accession: GSE19465), as part of the ENCODE Consortium.15–17 Tissue

microarrays were provided by the Royal Marsden Hospital, London, UK
(JL).46 The mutational loads and characterization of MSI (n=11) and MSS
(n=217) colon tumours were retrieved using the Supplementary
Information provided by a comprehensive analysis by TCGA.47 The
relationship between SETD2 mutations and the mismatch repair deficiency
mutational signature was assessed in the same cohort as Alexandrov et al.48

Micrococcal nuclease assays
At 72-h posttransfection, cells were harvested and processed for
micrococcal nuclease sensitivity as described previously49 with minor
modifications. Briefly, 100 μl of nuclei were incubated with 10 units of
Micrococcal nuclease for 20min at room temperature. An aliquot was
analysed by real-time quantitative PCR. Primer sequences are available on
request. The relative amount of Micrococcal nuclease-resistant DNA was
calculated using the ΔΔCt method. Values were further normalized to the
relative amount of Micrococcal nuclease-resistant DNA in a non-
trimethylated region.

Chromatin fractionation
Following trypsinization, cell pellets were washed in phosphate-buffered
saline processed as detailed by others into nucleosolic and chromatin
fractions.50

Chromatin immunoprecipitation
Chromatin immunoprecipitation was carried out on RCC4 cells as
described previously5 using antibodies against H3K36me3 (ab9050,
Abcam), RNA Pol II (sc-899, Santa Cruz) or rabbit immunoglobulin G at
4 °C overnight.

SNP array data normalization and copy number data analysis
The aroma R package (TumourBoost and CalMaTe)52,53 was used to obtain
logR and bi-allelic frequency values for all TCGA samples. All samples were
analysed using hg19/Genome 37 coordinates. Sex chromosomes were
excluded from the analysis. ASCAT (allele-specific copy number analysis of
tumours) was run on all samples to obtain segmented allele-specific copy
number profiles and ploidy.54 Segments consisting of o10 probes were
discarded.

H3K36me3 ChIP-seq data for breakpoint analysis
ChIP-seq data were retrieved from the Human Reference Epigenome
Mapping Project (GEO accession GSE19465). Samples GSM621634 and
GSM773000 (adult kidney) were analysed using sample GSM621638 (adult
kidney) as input control. Peaks were called using ChromaBlocks from the
Repitools package,55 using ‘small’ as preset and a FDR cut-off of 0.1.
H3K36me3 sites were defined as the overlap between peaks from samples
GSM621634 and GSM7733000. H3K27me3 sites were similarly derived from
fetal kidney sample GSM621424 using sample GSM772733 as input
control.

Differential binding analysis
ChIP-sequencing was carried out on the Illumina HiSeq 2500 platform and
typically generated ~ 45 million 101- bp single-end reads per IP sample.
Alignments were performed to the human genome (UCSC version hg19,
University of California Santa Cruz Genomics Institute, Santa Cruz, CA, USA)
using bwa (version 0.5.9-r16)56 permitting a maximum of three mismatches
per read. Duplicate alignments were removed using the Picard MarkDu-
plicates program (picard-tools package version 1.81; http://picard.source
forge.net) with default parameters. Differential binding analysis was
performed against the Ensembl gene annotation (downloaded from UCSC
on 15 April 2014) using edgeR (version 3.4.2)57 to assess the effect of
SETD2 knockdown on H3K36me3 binding.

Statistics
For all experiments, the means of three experiments ± s.e.m. were shown
unless stated otherwise. Statistical significance of differences between
means in immunofluorescence experiments was determined using
Student’s t-test (two-tailed). In immunohistochemistry analyses, statistical
significance of association between different protein markers was
computed using Cochran–Armitage test. DNA fibre assays were analysed
using two-tailed unpaired t-test with Welch’s correction.
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