Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Methylation-independent repression of Dnmt3b contributes to oncogenic activity of Dnmt3a in mouse MYC-induced T-cell lymphomagenesis

Subjects

Abstract

DNA methyltransferase 3A (DNMT3A) catalyzes cytosine methylation of mammalian genomic DNA. In addition to myeloid malignancies, mutations in DNMT3A have been recently reported in T-cell lymphoma and leukemia, implying a possible involvement in the pathogenesis of human diseases. However, the role of Dnmt3a in T-cell transformation in vivo is poorly understood. Here we analyzed the functional consequences of Dnmt3a inactivation in a mouse model of MYC-induced T-cell lymphomagenesis (MTCL). Loss of Dnmt3a delayed tumorigenesis by suppressing cellular proliferation during disease progression. Gene expression profiling and pathway analysis identified upregulation of 17 putative tumor suppressor genes, including DNA methyltransferase Dnmt3b, in Dnmt3a-deficient lymphomas as molecular events potentially responsible for the delayed lymphomagenesis in Dnmt3aΔ/Δ mice. Interestingly, promoter and gene body methylation of these genes was not substantially changed between control and Dnmt3a-deficient lymphomas, suggesting that Dnmt3a may inhibit their expression in a methylation-independent manner. Re-expression of both wild type and catalytically inactive Dnmt3a in Dnmt3aΔ/Δ lymphoma cells in vitro inhibited Dnmt3b expression, indicating that Dnmt3b upregulation may be directly repressed by Dnmt3a. Importantly, genetic inactivation of Dnmt3b accelerated lymphomagenesis in Dnmt3aΔ/Δ mice, demonstrating that upregulation of Dnmt3b is a relevant molecular change in Dnmt3a-deficient lymphomas that inhibits disease progression. Collectively, our data demonstrate an unexpected oncogenic role for Dnmt3a in MTCL through methylation-independent repression of Dnmt3b and possibly other tumor suppressor genes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Fernandez AF, Huidobro C, Fraga MF . De novo DNA methyltransferases: oncogenes, tumor suppressors, or both? Trends Genet 2012; 28: 474–479.

    Article  CAS  Google Scholar 

  2. Pradhan S, Bacolla A, Wells RD, Roberts RJ . Recombinant human DNA (cytosine-5) methyltransferase. I. Expression, purification, and comparison of de novo and maintenance methylation. J Biol Chem 1999; 274: 33002–33010.

    Article  CAS  Google Scholar 

  3. Li E, Bestor TH, Jaenisch R . Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 1992; 69: 915–926.

    Article  CAS  Google Scholar 

  4. Okano M, Bell DW, Haber DA, Li E . DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999; 99: 247–257.

    Article  CAS  Google Scholar 

  5. Borgel J, Guibert S, Li Y, Chiba H, Schübeler D, Sasaki H et al. Targets and dynamics of promoter DNA methylation during early mouse development. Nat Genet 2010; 42: 1093–1100.

    Article  CAS  Google Scholar 

  6. Fuks F, Burgers WA, Godin N, Kasai M, Kouzarides T . Dnmt3a binds deacetylases and is recruited by a sequence-specific repressor to silence transcription. EMBO J. 2001; 20: 2536–2544.

    Article  CAS  Google Scholar 

  7. Datta J, Majumder S, Bai S, Ghoshal K, Kutay H, Smith DS et al. Physical and functional interaction of DNA methyltransferase 3A with Mbd3 and Brg1 in mouse lymphosarcoma cells. Cancer Res. 2005; 65: 10891–10900.

    Article  CAS  Google Scholar 

  8. Walter MJ, Ding L, Shen D, Shao J, Grillot M, McLellan M et al. Recurrent DNMT3A mutations in patients with myelodysplastic syndromes. Leukemia 2011; 25: 1153–1158.

    Article  CAS  Google Scholar 

  9. Odejide O, Weigert O, Lane AA, Toscano D, Lunning MA, Kopp N et al. A targeted mutational landscape of angioimmunoblastic T-cell lymphoma. Blood 2014; 123: 1293–1296.

    Article  CAS  Google Scholar 

  10. Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med 2010; 363: 2424–2433.

    Article  CAS  Google Scholar 

  11. Neumann M, Heesch S, Schlee C, Schwartz S, Gökbuget N, Hoelzer D et al. Whole-exome sequencing in adult ETP-ALL reveals a high rate of DNMT3A mutations. Blood 2013; 121: 4749–4752.

    Article  CAS  Google Scholar 

  12. Couronné L, Bastard C, Bernard OA . TET2 and DNMT3A mutations in human T-cell lymphoma. N Engl J Med 2012; 366: 95–96.

    Article  Google Scholar 

  13. Kim SJ, Zhao H, Hardikar S, Singh AK, Goodell MA, Chen T . A DNMT3A mutation common in AML exhibits dominant-negative effects in murine ES cells. Blood 2013; 122: 4086–4089.

    Article  CAS  Google Scholar 

  14. Weng AP, Millholland JM, Yashiro-Ohtani Y, Arcangeli ML, Lau A, Wai C et al. c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev 2006; 20: 2096–2109.

    Article  CAS  Google Scholar 

  15. Thorns C, Bastian B, Pinkel D, Roydasgupta R, Fridlyand J, Merz H et al. Chromosomal aberrations in angioimmunoblastic T-cell lymphoma and peripheral T-cell lymphoma unspecified: A matrix-based CGH approach. Genes Chromosomes Cancer 2007; 46: 37–44.

    Article  CAS  Google Scholar 

  16. Felsher DW, Bishop JM . Reversible tumorigenesis by MYC in hematopoietic lineages. Mol Cell 1999; 4: 199–207.

    Article  CAS  Google Scholar 

  17. Peters SL, Hlady RA, Opavska J, Klinkebiel D, Novakova S, Smith LM et al. Essential role for Dnmt1 in the prevention and maintenance of MYC-induced T-cell lymphomas. Mol Cell Biol 2013; 33: 4321–4333.

    Article  CAS  Google Scholar 

  18. Hlady RA, Novakova S, Opavska J, Klinkebiel D, Peters SL, Bies J et al. Loss of Dnmt3b function upregulates the tumor modifier Ment and accelerates mouse lymphomagenesis. J Clin Invest 2012; 122: 163–177.

    Article  CAS  Google Scholar 

  19. Peters SL, Hlady RA, Opavska J, Klinkebiel D, Pirruccello SJ, Talmon GA et al. Tumor suppressor functions of Dnmt3a and Dnmt3b in the prevention of malignant mouse lymphopoiesis. Leukemia 2014; 28: 1138–1142.

    Article  CAS  Google Scholar 

  20. Ball MP, Li JB, Gao Y, Lee JH, LeProust EM, Park IH et al. Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nat Biotechnol 2009; 27: 361–368.

    Article  CAS  Google Scholar 

  21. Wu H, Coskun V, Tao J, Xie W, Ge W, Yoshikawa K et al. Dnmt3a-dependent nonpromoter DNA methylation facilitates transcription of neurogenic genes. Science 2010; 329: 444–448.

    Article  CAS  Google Scholar 

  22. Russler-Germain DA, Spencer DH, Young MA, Lamprecht TL, Miller CA, Fulton R et al. The R882H DNMT3A mutation associated with AML dominantly inhibits wild-type DNMT3A by blocking its ability to form active tetramers. Cancer Cell 2014; 25: 442–454.

    Article  CAS  Google Scholar 

  23. Connor F, Bertwistle D, Mee PJ, Ross GM, Swift S, Grigorieva E et al. Tumorigenesis and a DNA repair defect in mice with a truncating Brca2 mutation. Nat Genet 1997; 17: 423–430.

    Article  CAS  Google Scholar 

  24. Lin W, Sampathi S, Dai H, Liu C, Zhou M, Hu J et al. Mammalian DNA2 helicase/nuclease cleaves G-quadruplex DNA and is required for telomere integrity. EMBO J 2013; 32: 1425–1439.

    Article  CAS  Google Scholar 

  25. Schaetzlein S, Chahwan R, Avdievich E, Roa S, Wei K, Eoff RL et al. Mammalian Exo1 encodes both structural and catalytic functions that play distinct roles in essential biological processes. Proc Natl Acad Sci USA 2013; 110: 2470–2479.

    Article  Google Scholar 

  26. Steele-Perkins G, Fang W, Yang XH, Van Gele M, Carling T, Gu J et al. Tumor formation and inactivation of RIZ1, an Rb-binding member of a nuclear protein-methyltransferase superfamily. Genes Dev 2001; 15: 2250–2262.

    Article  CAS  Google Scholar 

  27. Ramkumar C, Kong Y, Cui H, Hao S, Jones SN, Gerstein RM et al. Smurf2 regulates the senescence response and suppresses tumorigenesis in mice. Cancer Res 2012; 72: 2714–2719.

    Article  CAS  Google Scholar 

  28. Wang Y, Klumpp S, Amin HM, Liang H, Li J, Estrov Z et al. SSBP2 is an in vivo tumor suppressor and regulator of LDB1 stability. Oncogene 2010; 29: 3044–3053.

    Article  CAS  Google Scholar 

  29. Shang Q, Zhang D, Guo C, Lin Q, Guo Z, Deng C . Potential synergism of Bim with p53 in mice with Myc-induced lymphoma in a mouse lymphoma model. Mol Med Rep 2012; 5: 1401–1408.

    CAS  PubMed  Google Scholar 

  30. Baudino TA, Maclean KH, Brennan J, Parganas E, Yang C, Aslanian A et al. Myc-mediated proliferation and lymphomagenesis, but not apoptosis, are compromised by E2f1 loss. Mol Cell 2003; 11: 905–914.

    Article  CAS  Google Scholar 

  31. Orii KE, Lee Y, Kondo N, McKinnon PJ . Selective utilization of nonhomologous end-joining and homologous recombination DNA repair pathways during nervous system development. Proc Natl Acad Sci USA 2006; 103: 10017–10022.

    Article  CAS  Google Scholar 

  32. Mann MB, Hodges CA, Barnes E, Vogel H, Hassold TJ, Luo G et al. Defective sister-chromatid cohesion, aneuploidy and cancer predisposition in a mouse model of type II Rothmund-Thomson syndrome. Hum Mol Genet 2005; 14: 813–825.

    Article  CAS  Google Scholar 

  33. Schuster C, Berger A, Hoelzl MA, Putz EM, Frenzel A, Simma O et al. The cooperating mutation or "second hit" determines the immunologic visibility toward MYC-induced murine lymphomas. Blood 2011; 118: 4635–4645.

    Article  CAS  Google Scholar 

  34. Opavsky R, Wang SH, Trikha P, Raval A, Huang Y, Wu YZ et al. CpG island methylation in a mouse model of lymphoma is driven by the genetic configuration of tumor cells. PLoS Gene 2007; 3: 1757–1769.

    CAS  Google Scholar 

  35. Opavsky R, Tsai SY, Guimond M, Arora A, Opavska J, Becknell B et al. Specific tumor suppressor function for E2F2 in Myc-induced T-cell lymphomagenesis. Proc Natl Acad Sci USA 2007; 104: 15400–15405.

    Article  CAS  Google Scholar 

  36. Iskander K, Barrios RJ, Jaiswal AK . Disruption of NAD(P)H:quinone oxidoreductase 1 gene in mice leads to radiation induced myeloproliferative disease. Cancer Res 2008; 68: 7915–7922.

    Article  CAS  Google Scholar 

  37. Liu J, Xiang Z, Ma X . Role of IFN regulatory factor-1 and IL-12 in immunological resistance to pathogenesis of N-methyl-N-nitrosourea-induced T lymphoma. J Immunol 2004; 173: 1184–1193.

    Article  CAS  Google Scholar 

  38. Li H, Kaminski MS, Li Y, Yildiz M, Ouillette P, Jones S et al. Mutations in linker histone genes HIST1H1 B, C, D, and E; OCT2 (POU2F2); IRF8; and ARID1A underlying the pathogenesis of follicular lymphoma. Blood 2014; 123: 1487–1498.

    Article  CAS  Google Scholar 

  39. Kulis M, Heath S, Bibikova M, Queirós AC, Navarro A, Clot G et al. Epigenomic analysis detects widespread gene-body DNA hypomethylation in chronic lymphocytic leukemia. Nat Genet 2011; 44: 1236–1242.

    Article  Google Scholar 

  40. Palamarchuk A, Yan PS, Zanesi N, Wang L, Rodrigues B, Murphy M et al. Tcl1 protein functions as an inhibitor of de novo DNA methylation in B-cell chronic lymphocytic leukemia (CLL). Proc Natl Acad Sci USA 2012; 109: 2555–2560.

    Article  CAS  Google Scholar 

  41. Gao Q, Steine EJ, Barrasa MI, Hockemeyer D, Pawlak M, Fu D et al. Deletion of the de novo DNA methyltransferase Dnmt3a promotes lung tumor progression. Proc Natl Acad Sci USA 2011; 108: 18061–18066.

    Article  CAS  Google Scholar 

  42. Weis B, Schmidt J, Maamar H, Raj A, Lin H, Tóth C et al. Inhibition of intestinal tumor formation by deletion of the DNA methyltransferase 3a. Oncogene; e-pub ahead of print 19 May 2014; doi:10.1038/onc.2014.114.

    Article  Google Scholar 

  43. Vasanthakumar A, Lepore JB, Zegarek MH, Kocherginsky M, Singh M, Davis EM et al. Dnmt3b is a haploinsufficient tumor suppressor gene in Myc-induced lymphomagenesis. Blood 2013; 121: 2059–2063.

    Article  CAS  Google Scholar 

  44. Challen GA, Sun D, Jeong M, Luo M, Jelinek J, Berg JS et al. Dnmt3a is essential for hematopoietic stem cell differentiation. Nat Genet 2011; 44: 23–31.

    Article  Google Scholar 

  45. Robertson KD, Ait-Si-Ali S, Yokochi T, Wade PA, Jones PL, Wolffe AP . DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nat Genet 2000; 25: 338–342.

    Article  CAS  Google Scholar 

  46. Puto LA, Reed JC . Daxx represses RelB target promoters via DNA methyltransferase recruitment and DNA hypermethylation. Genes Dev 2008; 22: 998–1010.

    Article  CAS  Google Scholar 

  47. Hervouet E, Vallette FM, Cartron PF . Dnmt3/transcription factor interactions as crucial players in targeted DNA methylation. Epigenetics 2009; 4: 487–499.

    Article  CAS  Google Scholar 

  48. Wang YA, Kamarova Y, Shen KC, Jiang Z, Hahn MJ, Wang Y et al. DNA methyltransferase-3a interacts with p53 and represses p53-mediated gene expression. Cancer Biol Ther 2005; 4: 1138–1143.

    Article  CAS  Google Scholar 

  49. Li H, Rauch T, Chen ZX, Szabó PE, Riggs AD, Pfeifer GP . The histone methyltransferase SETDB1 and the DNA methyltransferase DNMT3A interact directly and localize to promoters silenced in cancer cells. J Biol Chem 2006; 281: 19489–19500.

    Article  CAS  Google Scholar 

  50. Robinson MD, McCarthy DJ, Smyth GK . edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010; 26: 139–140.

    Article  CAS  Google Scholar 

  51. Robinson MD, Smyth GK . Moderated statistical tests for assessing differences in tag abundance. Bioinformatics 2007; 23: 2881–2887.

    Article  CAS  Google Scholar 

  52. Baldi P, Long AD . A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes. Bioinformatics 2001; 17: 509–519.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Opavsky.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haney, S., Hlady, R., Opavska, J. et al. Methylation-independent repression of Dnmt3b contributes to oncogenic activity of Dnmt3a in mouse MYC-induced T-cell lymphomagenesis. Oncogene 34, 5436–5446 (2015). https://doi.org/10.1038/onc.2014.472

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.472

This article is cited by

Search

Quick links