Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

CACNA2D2 promotes tumorigenesis by stimulating cell proliferation and angiogenesis

Subjects

Abstract

In the present study, we have assessed whether a putative calcium channel α2δ2 auxiliary subunit (CACNA2D2 gene) could be involved in prostate cancer (PCA) progression. We therefore carried out experiments to determine whether this protein is expressed in PCA LNCaP cells and in PCA tissues, and whether its expression may be altered during cancer development. In addition, we evaluated the influence on cell proliferation of overexpressing or downregulating this subunit. In vitro experiments show that α2δ2 subunit overexpression is associated with increased cell proliferation, alterations of calcium homeostasis and the recruitment of a nuclear factor of activated T-cells pathway. Furthermore, we carried out in vivo experiments on immuno-deficient nude mice in order to evaluate the tumorigenic potency of the α2δ2 subunit. We show that α2δ2-overexpressing PCA LNCaP cells are more tumorigenic than control LNCaP cells when injected into nude mice. In addition, gabapentin, a ligand of α2δ2, reduces tumor development in LNCaP xenografts. Finally, we show that the action of α2δ2 on tumor development occurs not only through a stimulation of proliferation, but also through a stimulation of angiogenesis, via an increased secretion of vascular endothelial growth factor in cells overexpressing α2δ2.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Bidaud I, Mezghrani A, Swayne LA, Monteil A, Lory P . Voltage-gated calcium channels in genetic diseases. Biochim Biophys Acta 2006; 1763: 1169–1174.

    Article  CAS  Google Scholar 

  2. Monteith GR, Davis FM, Roberts-Thomson SJ . Calcium channels and pumps in cancer: changes and consequences. J Biol Chem 2012; 287: 31666–31673.

    Article  CAS  Google Scholar 

  3. Lee JM, Davis FM, Roberts-Thomson SJ, Monteith GR . Ion channels and transporters in cancer. 4. Remodeling of Ca(2+) signaling in tumorigenesis: role of Ca(2+) transport. Am J Physiol Cell Physiol 2011; 301: C969–C976.

    Article  CAS  Google Scholar 

  4. Wang XT, Nagaba Y, Cross HS, Wrba F, Zhang L, Guggino SE . The mRNA of L-type calcium channel elevated in colon cancer: protein distribution in normal and cancerous colon. Am J Pathol 2000; 157: 1549–1562.

    Article  CAS  Google Scholar 

  5. Toyota M, Ho C, Ohe-Toyota M, Baylin SB, Issa JP . Inactivation of CACNA1G, a T-type calcium channel gene, by aberrant methylation of its 5' CpG island in human tumors. Cancer Res 1999; 59: 4535–4541.

    CAS  Google Scholar 

  6. Fiske JL, Fomin VP, Brown ML, Duncan RL, Sikes RA . Voltage-sensitive ion channels and cancer. Cancer Metastasis Rev 2006; 25: 493–500.

    Article  CAS  Google Scholar 

  7. Kunzelmann K . Ion channels and cancer. J Membr Biol 2005; 205: 159–173.

    Article  CAS  Google Scholar 

  8. Bennett ES, Smith BA, Harper JM . Voltage-gated Na+ channels confer invasive properties on human prostate cancer cells. Pflugers Arch 2004; 447: 908–914.

    Article  CAS  Google Scholar 

  9. Mariot P, Vanoverberghe K, Lalevee N, Rossier MF, Prevarskaya N . Overexpression of an alpha 1H (Cav3.2) T-type calcium channel during neuroendocrine differentiation of human prostate cancer cells. J Biol Chem 2002; 277: 10824–10833.

    Article  CAS  Google Scholar 

  10. Skryma R, Van Coppenolle F, Dufy-Barbe L, Dufy B, Prevarskaya N . Characterization of Ca(2+)-inhibited potassium channels in the LNCaP human prostate cancer cell line. Receptors Channels 1999; 6: 241–253.

    CAS  Google Scholar 

  11. Spitzner M, Ousingsawat J, Scheidt K, Kunzelmann K, Schreiber R . Voltage-gated K+ channels support proliferation of colonic carcinoma cells. Faseb J 2007; 21: 35–44.

    Article  CAS  Google Scholar 

  12. Gackiere F, Bidaux G, Delcourt P, Van Coppenolle F, Katsogiannou M, Dewailly E et al. CaV3.2 T-type calcium channels are involved in calcium-dependent secretion of neuroendocrine prostate cancer cells. J Biol Chem 2008; 283: 10162–10173.

    Article  CAS  Google Scholar 

  13. Lerman MI, Minna JD . The 630-kb lung cancer homozygous deletion region on human chromosome 3p21.3: identification and evaluation of the resident candidate tumor suppressor genes. The International Lung Cancer Chromosome 3p21.3 Tumor Suppressor Gene Consortium. Cancer Res 2000; 60: 6116–6133.

    CAS  Google Scholar 

  14. Ghosh S, Ghosh A, Maiti GP, Alam N, Roy A, Roy B et al. Alterations of 3p21.31 tumor suppressor genes in head and neck squamous cell carcinoma: Correlation with progression and prognosis. Int J Cancer 2008; 123: 2594–2604.

    Article  CAS  Google Scholar 

  15. Wanajo A, Sasaki A, Nagasaki H, Shimada S, Otsubo T, Owaki S et al. Methylation of the calcium channel-related gene, CACNA2D3, is frequent and a poor prognostic factor in gastric cancer. Gastroenterology 2008; 135: 580–590.

    Article  CAS  Google Scholar 

  16. Mitra R, Lee J, Jo J, Milani M, McClintick JN, Edenberg HJ et al. Prediction of postoperative recurrence-free survival in non-small cell lung cancer by using an internationally validated gene expression model. Clin Cancer Res 2011; 17: 2934–2946.

    Article  CAS  Google Scholar 

  17. Halatsch ME, Low S, Mursch K, Hielscher T, Schmidt U, Unterberg A et al. Candidate genes for sensitivity and resistance of human glioblastoma multiforme cell lines to erlotinib. Laboratory investigation. J Neurosurg 2009; 111: 211–218.

    Article  CAS  Google Scholar 

  18. Carboni GL, Gao B, Nishizaki M, Xu K, Minna JD, Roth JA et al. CACNA2D2-mediated apoptosis in NSCLC cells is associated with alterations of the intracellular calcium signaling and disruption of mitochondria membrane integrity. Oncogene 2003; 22: 615–626.

    Article  CAS  Google Scholar 

  19. Dooley DJ, Taylor CP, Donevan S, Feltner D . Ca2+ channel alpha2delta ligands: novel modulators of neurotransmission. Trends Pharmacol Sci 2007; 28: 75–82.

    Article  CAS  Google Scholar 

  20. Li Z, Taylor CP, Weber M, Piechan J, Prior F, Bian F et al. Pregabalin is a potent and selective ligand for alpha(2)delta-1 and alpha(2)delta-2 calcium channel subunits. Eur J Pharmacol 2011; 667: 80–90.

    Article  CAS  Google Scholar 

  21. Starborg M, Gell K, Brundell E, Hoog C . The murine Ki-67 cell proliferation antigen accumulates in the nucleolar and heterochromatic regions of interphase cells and at the periphery of the mitotic chromosomes in a process essential for cell cycle progression. J Cell Sci 1996; 109: 143–153.

    CAS  Google Scholar 

  22. Dolphin AC . Calcium channel auxiliary alpha2delta and beta subunits: trafficking and one step beyond. Nat Rev Neurosci 2012; 13: 542–555.

    Article  CAS  Google Scholar 

  23. Liu C, Hermann TE . Characterization of ionomycin as a calcium ionophore. J Biol Chem 1978; 253: 5892–5894.

    CAS  Google Scholar 

  24. Lytton J, Westlin M, Hanley MR . Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca-ATPase family of calcium pumps. J Biol Chem 1991; 266: 17067–17071.

    CAS  Google Scholar 

  25. Davies A, Hendrich J, Van Minh AT, Wratten J, Douglas L, Dolphin AC . Functional biology of the alpha(2)delta subunits of voltage-gated calcium channels. Trends Pharmacol Sci 2007; 28: 220–228.

    Article  CAS  Google Scholar 

  26. da Costa Prando E, Cavalli LR, Rainho CA . Evidence of epigenetic regulation of the tumor suppressor gene cluster flanking RASSF1 in breast cancer cell lines. Epigenetics 2011; 6: 1413–1424.

    Article  CAS  Google Scholar 

  27. Zhao W, Wang L, Han H, Jin K, Lin N, Guo T et al. 1B50-1, a mAb raised against recurrent tumor cells, targets liver tumor-initiating cells by binding to the calcium channel alpha2delta1 subunit. Cancer Cell 2013; 23: 541–556.

    Article  CAS  Google Scholar 

  28. Negrini S, Prada I, D'Alessandro R, Meldolesi J . REST: an oncogene or a tumor suppressor? Trends Cell Biol 2013; 23: 289–295.

    Article  CAS  Google Scholar 

  29. Pelosi G, Fumagalli C, Trubia M, Sonzogni A, Rekhtman N, Maisonneuve P et al. Dual role of RASSF1 as a tumor suppressor and an oncogene in neuroendocrine tumors of the lung. Anticancer Res 2010; 30: 4269–4281.

    CAS  Google Scholar 

  30. Hobom M, Dai S, Marais E, Lacinova L, Hofmann F, Klugbauer N . Neuronal distribution and functional characterization of the calcium channel alpha2delta-2 subunit. Eur J Neurosci 2000; 12: 1217–1226.

    Article  CAS  Google Scholar 

  31. Dolphin AC, Wyatt CN, Richards J, Beattie RE, Craig P, Lee JH et al. The effect of alpha2-delta and other accessory subunits on expression and properties of the calcium channel alpha1G. J Physiol 1999; 519: 35–45.

    Article  CAS  Google Scholar 

  32. Gackiere F, Warnier M, Katsogiannou M, Derouiche S, Delcourt P, Dewailly E et al. Functional coupling between large-conductance potassium channels and Cav3.2 voltage-dependent calcium channels participates in prostate cancer cell growth. Biol Open 2013; 2: 941–951.

    Article  CAS  Google Scholar 

  33. Canti C, Nieto-Rostro M, Foucault I, Heblich F, Wratten J, Richards MW et al. The metal-ion-dependent adhesion site in the Von Willebrand factor-A domain of alpha2delta subunits is key to trafficking voltage-gated Ca2+ channels. Proc Natl Acad Sci USA 2005; 102: 11230–11235.

    Article  CAS  Google Scholar 

  34. Whittaker CA, Hynes RO . Distribution and evolution of von Willebrand/integrin A domains: widely dispersed domains with roles in cell adhesion and elsewhere. Mol Biol Cell 2002; 13: 3369–3387.

    Article  CAS  Google Scholar 

  35. Eroglu C, Allen NJ, Susman MW, O'Rourke NA, Park CY, Ozkan E et al. Gabapentin receptor alpha2delta-1 is a neuronal thrombospondin receptor responsible for excitatory CNS synaptogenesis. Cell 2009; 139: 380–392.

    Article  CAS  Google Scholar 

  36. Garcia K, Nabhani T, Garcia J . The calcium channel alpha2/delta1 subunit is involved in extracellular signalling. J Physiol 2008; 586: 727–738.

    Article  CAS  Google Scholar 

  37. Bornstein P . Thrombospondins function as regulators of angiogenesis. J Cell Commun Signal 2009; 3: 189–200.

    Article  Google Scholar 

  38. Kondratska K, Kondratskyi A, Yassine M, Lemonnier L, Lepage G, Morabito A et al. Orai1 and STIM1 mediate SOCE and contribute to apoptotic resistance of pancreatic adenocarcinoma. Biochim Biophys Acta 2014; 1843: 2263–2269.

    Article  CAS  Google Scholar 

  39. Chomczynski P, Sacchi N . Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 1987; 162: 156–159.

    Article  CAS  Google Scholar 

  40. Katsogiannou M, El Boustany C, Gackiere F, Delcourt P, Athias A, Mariot P et al. Caveolae contribute to the apoptosis resistance induced by the alpha(1A)-adrenoceptor in androgen-independent prostate cancer cells. PLoS One 2009; 4: e7068.

    Article  Google Scholar 

  41. Gackiere F, Bidaux G, Lory P, Prevarskaya N, Mariot P . A role for voltage gated T-type calcium channels in mediating "capacitative" calcium entry? Cell Calcium 2006; 39: 357–366.

    Article  CAS  Google Scholar 

  42. Oh C, Park S, Lee EK, Yoo YJ . Downregulation of ubiquitin level via knockdown of polyubiquitin gene Ubb as potential cancer therapeutic intervention. Sci Rep 2013; 3: 2623.

    Article  Google Scholar 

  43. Wilhelm MT, Rufini A, Wetzel MK, Tsuchihara K, Inoue S, Tomasini R et al. Isoform-specific p73 knockout mice reveal a novel role for delta Np73 in the DNA damage response pathway. Genes Dev 2010; 24: 549–560.

    Article  CAS  Google Scholar 

  44. Lim DJ, Liu XL, Sutkowski DM, Braun EJ, Lee C, Kozlowski JM . Growth of an androgen-sensitive human prostate cancer cell line, LNCaP, in nude mice. Prostate 1993; 22: 109–118.

    Article  CAS  Google Scholar 

  45. Zour E, Lodhi SA, Nesbitt RU, Silbering SB, Chaturvedi PR . Stability studies of gabapentin in aqueous solutions. Pharm Res 1992; 9: 595–600.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the members of the imaging platform BICEL, E Richard and C Slommiany for their helpful contribution. This work was supported by INSERM, the University of Lille1 and the Region Nord-Pas de Calais. This work was supported by INSERM, the University of Lille1 and the Region Nord-Pas de Calais.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Mariot.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Warnier, M., Roudbaraki, M., Derouiche, S. et al. CACNA2D2 promotes tumorigenesis by stimulating cell proliferation and angiogenesis. Oncogene 34, 5383–5394 (2015). https://doi.org/10.1038/onc.2014.467

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.467

This article is cited by

Search

Quick links