Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A link between inflammation and metastasis: serum amyloid A1 and A3 induce metastasis, and are targets of metastasis-inducing S100A4

Abstract

S100A4 is implicated in metastasis and chronic inflammation, but its function remains uncertain. Here we establish an S100A4-dependent link between inflammation and metastatic tumor progression. We found that the acute-phase response proteins serum amyloid A (SAA) 1 and SAA3 are transcriptional targets of S100A4 via Toll-like receptor 4 (TLR4)/nuclear factor-κB signaling. SAA proteins stimulated the transcription of RANTES (regulated upon activation normal T-cell expressed and presumably secreted), G-CSF (granulocyte-colony-stimulating factor) and MMP2 (matrix metalloproteinase 2), MMP3, MMP9 and MMP13. We have also shown for the first time that SAA stimulate their own transcription as well as that of proinflammatory S100A8 and S100A9 proteins. Moreover, they strongly enhanced tumor cell adhesion to fibronectin, and stimulated migration and invasion of human and mouse tumor cells. Intravenously injected S100A4 protein induced expression of SAA proteins and cytokines in an organ-specific manner. In a breast cancer animal model, ectopic expression of SAA1 or SAA3 in tumor cells potently promoted widespread metastasis formation accompanied by a massive infiltration of immune cells. Furthermore, coordinate expression of S100A4 and SAA in tumor samples from colorectal carcinoma patients significantly correlated with reduced overall survival. These data show that SAA proteins are effectors for the metastasis-promoting functions of S100A4, and serve as a link between inflammation and tumor progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Langley RR, Fidler IJ . The seed and soil hypothesis revisited—the role of tumor–stroma interactions in metastasis to different organs. Int J Cancer 2011; 128: 2527–2535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. DeNardo DG, Johansson M, Coussens LM . Immune cells as mediators of solid tumor metastasis. Cancer Metast Rev 2008; 27: 11–18.

    Article  CAS  Google Scholar 

  3. Fridman WH, Galon J, Pagès F, Tartour E, Sautès-Fridman C, Kroemer G . Prognostic and predictive impact of intra- and peritumoral immune infiltrates. Cancer Res 2011; 71: 5601–5605.

    Article  CAS  PubMed  Google Scholar 

  4. Malle E, Sodin-Semrl S, Kovacevic A . Serum amyloid A: an acute-phase protein involved in tumour pathogenesis. Cell Mol Life Sci 2009; 66: 9–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Larson MA, Wei SH, Weber A, Weber AT, McDonald TL . Induction of human mammary-associated serum amyloid A3 expression by prolactin or lipopolysaccharide. Biochem Biophys Res Commun 2003; 301: 1030–1037.

    Article  CAS  PubMed  Google Scholar 

  6. Furlaneto CJ, Campa A . A novel function of serum amyloid A: a potent stimulus for the release of tumor necrosis factor-alpha, interleukin-1beta, and interleukin-8 by human blood neutrophil. Biochem Biophys Res Commun 2000; 268: 405–408.

    Article  CAS  PubMed  Google Scholar 

  7. He R, Shepard LW, Chen J, Pan ZK, Ye RD . Serum amyloid A is an endogenous ligand that differentially induces IL-12 and IL-23. J Immunol 2006; 177: 4072–4079.

    Article  CAS  PubMed  Google Scholar 

  8. Song C, Hsu K, Yamen E, Yan W, Fock J, Witting PK et al. Serum amyloid A induction of cytokines in monocytes/macrophages and lymphocytes. Atherosclerosis 2009; 207: 374–383.

    Article  CAS  PubMed  Google Scholar 

  9. He RL, Zhou J, Hanson CZ, Chen J, Cheng N, Ye RD . Serum amyloid A induces G-CSF expression and neutrophilia via Toll-like receptor 2. Blood 2009; 113: 429–437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yamada T . Serum amyloid A (SAA): a concise review of biology, assay methods and clinical usefulness. Clin Chem Lab Med 1999; 37: 381–388.

    Article  CAS  PubMed  Google Scholar 

  11. Lee HY, Kim MK, Park KS, Bae YH, Yun J, Park JI et al. Serum amyloid A stimulates matrix metalloproteinase-9 upregulation via formyl peptide receptor like-1-mediated signaling in human monocytic cells. Biochem Biophys Res Commun 2005; 330: 989–998.

    Article  CAS  PubMed  Google Scholar 

  12. Zhao Y, Zhou S, Heng CK . Celecoxib inhibits serum amyloid a-induced matrix metalloproteinase-10 expression in human endothelial cells. J Vasc Res 2009; 46: 64–72.

    Article  CAS  PubMed  Google Scholar 

  13. Okamoto H, Katagiri Y, Kiire A, Momohara S, Kamatani N . Serum amyloid A activates nuclear factor-kappaB in rheumatoid synovial fibroblasts through binding to receptor of advanced glycation endproducts. J Rheumatol 2008; 35: 752–756.

    CAS  PubMed  Google Scholar 

  14. Hiratsuka S, Watanabe A, Sakurai Y, Akashi-Takamura S, Ishibashi S, Miyake K et al. The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a pre-metastatic phase. Nat Cell Biol 2008; 10: 1349–1355.

    Article  CAS  PubMed  Google Scholar 

  15. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 2005; 438: 820–827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Grigorian M, Ambartsumian N, Lukanidin E . Metastasis-inducing S100A4 protein: implication in non-malignant human pathologies. Curr Mol Med 2008; 8: 492–496.

    Article  CAS  PubMed  Google Scholar 

  17. Zibert JR, Skov L, Thyssen JP, Jacobsen GK, Grigorian M . Significance of the S100A4 protein in psoriasis. J Invest Dermatol 2010; 130: 150–160.

    Article  CAS  PubMed  Google Scholar 

  18. Cerezo LA, Kuncová K, Mann H, Tomcík M, Zámecník J, Lukanidin E et al. The metastasis promoting protein S100A4 is increased in idiopathic inflammatory myopathies. Rheumatology (Oxford) 2011; 50: 1766–1772.

    Article  Google Scholar 

  19. Marenholz I, Heizmann CW, Fritz G . S100 proteins in mouse and man: from evolution to function and pathology (including an update of the nomenclature). Biochem Biophys Res Commun 2004; 322: 1111–1122.

    Article  CAS  PubMed  Google Scholar 

  20. Fritz G, Botelho HM, Morozova-Roche LA, Gomes CM . Natural and amyloid self-assembly of S100 proteins: structural basis of functional diversity. FEBS J 2010; 277: 4578–4590.

    Article  CAS  PubMed  Google Scholar 

  21. Ebralidze A, Tulchinsky E, Grigorian M, Afanasyeva A, Senin V, Revazova E et al. Isolation and characterization of a gene specifically expressed in different metastatic cells and whose deduced gene product has a high degree of homology to a Ca2þ-binding protein family. Genes Dev 1989; 3: 1086–1093.

    Article  CAS  PubMed  Google Scholar 

  22. Grigorian M, Ambartsumian N, Lykkesfeldt AE, Bastholm L, Elling F, Georgiev G et al. Effect of mts1 (S100A4) expression on the progression of human breast cancer cells. Int J Cancer 1996; 67: 831–841.

    Article  CAS  PubMed  Google Scholar 

  23. Maelandsmo GM, Hovig E, Skrede M, Engebraaten O, Flørenes VA, Myklebost O et al. Reversal of the in vivo metastatic phenotype of human tumor cells by an anti-CAPL (mts1) ribozyme. Cancer Res 1996; 56: 5490–5498.

    CAS  PubMed  Google Scholar 

  24. Ambartsumian NS, Grigorian MS, Larsen IF, Karlstrøm O, Sidenius N, Rygaard J et al. Metastasis of mammary carcinomas in GRS/A hybrid mice transgenic for the mts1 gene. Oncogene 1996; 13: 1621–1630.

    CAS  PubMed  Google Scholar 

  25. Davies MP, Rudland PS, Robertson L, Parry EW, Jolicoeur P, Barraclough R . Expression of the calcium-binding protein S100A4 (p9Ka) in MMTV-neu transgenic mice induces metastasis of mammary tumours. Oncogene 1996; 13: 1631–1637.

    CAS  PubMed  Google Scholar 

  26. Schmidt-Hansen B, Klingelhöfer J, Grum-Schwensen B, Christensen A, Andresen S, Kruse C et al. Functional significance of metastasis-inducing S100A4 (Mts1) in tumor–stroma interplay. J Biol Chem 2004; 279: 24498–24504.

    Article  CAS  PubMed  Google Scholar 

  27. Helfman DM, Kim E, Lukanidin E, Grigorian M . The metastasis associated protein S100A4. Br J Cancer 2005; 92: 1955–1958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Grum-Schwensen B, Klingelhöfer J, Grigorian M, Almholt K, Nielsen BS, Lukanidin E et al. Lung metastasis fails in MMTV-PyMT oncomice lacking S100A4 due to a T-cell deficiency in primary tumors. Cancer Res 2010; 70: 936–947.

    Article  CAS  PubMed  Google Scholar 

  29. Klingelhöfer J, Grum-Schwensen B, Beck MK, Knudsen RS, Grigorian M, Lukanidin E et al. Anti-S100A4 antibody suppresses metastasis formation by blocking stroma cell invasion. Neoplasia 2012; 14: 1260–1268.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lin Y, Rajala MW, Berger JP, Moller DE, Barzilai N, Scherer PE . Hyperglycemia-induced production of acute phase reactants in adipose tissue. J Biol Chem 2001; 276: 42077–42083.

    Article  CAS  PubMed  Google Scholar 

  31. Ehrchen JM, Sunderkötter C, Foell D, Vogl T, Roth J . The endogenous Toll-like receptor 4 agonist S100A8/S100A9 (calprotectin) as innate amplifier of infection, autoimmunity, and cancer. J Leukoc Biol 2009; 86: 557–566.

    Article  CAS  PubMed  Google Scholar 

  32. O'Neill LA . Signal transduction pathways activated by the IL-1 receptor/toll-like receptor superfamily. Curr Top Microbiol Immunol 2002; 270: 47–61.

    CAS  PubMed  Google Scholar 

  33. Klingelhöfer J, Møller HD, Sumer EU, Berg CH, Ambartsumian N, Grigorian M et al. EGFR ligands as new extracellular targets for the metastasis-promoting S100A4 protein. FEBS J 2009; 276: 5936–5948.

    Article  PubMed  Google Scholar 

  34. Lukanidin E, Sleeman JP . Building the niche: The role of the S100 proteins in metastatic growth. Semin Cancer Biol 2012; 22: 216–225.

    Article  CAS  PubMed  Google Scholar 

  35. Gregory AD, Houghton AM . Tumor-associated neutrophils: new targets for cancer therapy. Cancer Res 2011; 71: 2411–2416.

    Article  CAS  PubMed  Google Scholar 

  36. Schmid MC, Varner JA . Myeloid cells in the tumor microenvironment: modulation of tumor angiogenesis and tumor inflammation. J Oncol 2010; 2010: 201026.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tan W, Zhang W, Strasner A, Grivennikov S, Cheng JQ, Hoffman RM et al. Tumour-infiltrating regulatory T cells stimulate mammary cancer metastasis through RANKL-RANK signalling. Nature 2011; 470: 548–553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Aguirre-Ghiso JA, Liu D, Mignatti A, Kovalski K, Ossowski L . Urokinase receptor and fibronectin regulate the ERK(MAPK) to p38(MAPK) activity ratios that determine carcinoma cell proliferation or dormancy in vivo. Mol Biol Cell 2001; 12: 863–879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cabezón T, Celis JE, Skibshøj I, Klingelhöfer J, Grigorian M, Gromov P et al. Expression of S100A4 by a variety of cell types present in the tumor microenvironment of human breast cancer. Int J Cancer 2007; 121: 1433–1444.

    Article  PubMed  Google Scholar 

  40. Klingelhofer J, Šenolt L, Baslund B, Nielsen GH, Skibshøj I, Pavelka K et al. Up-regulation of metastasis-promoting S100A4 (Mts1) in rheumatoid arthritis: putative involvement in the pathogenesis of RA. Arthritis Rheum 2007; 56: 779–789.

    Article  CAS  PubMed  Google Scholar 

  41. Sung HJ, Ahn JM, Yoon YH, Rhim TY, Park CS, Park JY et al. Identification and validation of SAA as a potential lung cancer biomarker and its involvement in metastatic pathogenesis of lung cancer. J Proteome Res 2011; 10: 1383–1395.

    Article  CAS  PubMed  Google Scholar 

  42. Cunnane G . Amyloid precursors and amyloidosis in inflammatory arthritis. Curr Opin Rheumatol 2001; 13: 67–73.

    Article  CAS  PubMed  Google Scholar 

  43. Mullan RH, Bresnihan B, Golden-Mason L, Markham T, O'Hara R, FitzGerald O et al. Acute-phase serum amyloid A stimulation of angiogenesis, leukocyte recruitment, and matrix degradation in rheumatoid arthritis through an NF-kappaB-dependent signal transduction pathway. Arthritis Rheum 2006; 54: 105–114.

    Article  CAS  PubMed  Google Scholar 

  44. Grigorian M, Tulchinsky E, Burrone O, Tarabykina S, Georgiev G, Lukanidin E . Modulation of mts1 expression in mouse and human normal and tumor cells. Electrophoresis 1994; 15: 463–468.

    Article  CAS  PubMed  Google Scholar 

  45. Pear W, Nolan GP, Scott ML, Baltimore D . Production of high titer helper-free retroviruses by transient transfection. Proc Natl Acad Sci USA 1993; 90: 8392–8396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Møller HD, Ralfkjær U, Cremers N, Frankel M, Pedersen RT, Klingelhöfer J et al. Role of fibulin-5 in metastatic organ colonization. Mol Cancer Res 2011; 9: 553–563.

    Article  PubMed  Google Scholar 

  47. Novitskaya V, Grigorian M, Kriajevska M, Tarabykina S, Bronstein I, Berezin V et al. Oligomeric forms of the metastasis-related Mts1 (S100A4) protein stimulate neuronal differentiation in cultures of rat hippocampal neurons. J Biol Chem 2000; 275: 41278–41286.

    Article  CAS  PubMed  Google Scholar 

  48. Bang CA, Bro S, Bartels ED, Pedersen TX, Nielsen LB. . Effect of uremia on HDL composition, vascular inflammation, and atherosclerosis in wild-type mice. Am J Physiol Renal Physiol 2007; 293: 1325–1331.

    Article  Google Scholar 

  49. Baumann P, Cremers N, Kroese F, Orend G, Chiquet-Ehrismann R, Uede T et al. CD24 expression causes the acquisition of multiple cellular properties associated with tumor growth and metastasis. Cancer Res 2005; 65: 10783–10793.

    Article  CAS  PubMed  Google Scholar 

  50. Forst B, Hansen MT, Klingelhöfer J, Møller HD, Nielsen GH, Grum-Schwensen B et al. Metastasis-inducing S100A4 and RANTES cooperate in promoting tumor progression in mice. PLoS One 2010; 5: e10374.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ambartsumian N, Christensen CRL, Lukanidin E . Endothelial cell invasion assay. Cell Biology, Vol. 1.: Academic Press: Waltham, MA, USA 2005, pp 363–366.

    Article  Google Scholar 

  52. Schmidt-Hansen B, Klingelhöfer J, Grum-Schwensen B, Christensen A, Andresen S, Kruse C et al. Functional significance of metastasis-inducing S100A4(Mts1) in tumor–stroma interplay. J Biol Chem 2004; 279: 24498–24504.

    Article  CAS  PubMed  Google Scholar 

  53. Stein U, Walther W, Arlt F, Schwabe H, Smith J, Fichtner I et al. MACC1, a newly identified key regulator of HGF-MET signaling, predicts colon cancer metastasis. Nat Med 2009; 15: 59–67.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ekaterina Dulina, Inge Skibshøj and Lene Bregnholt Larsen for careful technical assistance. We gratefully acknowledge funding by the European Union (TuMIC, Health-F2-2008-201662) and INARMERA (FP7-INCO-2010-6), the Danish Cancer Society and the Dansk Kræftforsknings Fond.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Grigorian.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansen, M., Forst, B., Cremers, N. et al. A link between inflammation and metastasis: serum amyloid A1 and A3 induce metastasis, and are targets of metastasis-inducing S100A4. Oncogene 34, 424–435 (2015). https://doi.org/10.1038/onc.2013.568

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.568

Keywords

This article is cited by

Search

Quick links