Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Caspase-2 protects against oxidative stress in vivo

Abstract

Caspase-2 belongs to the caspase family of cysteine proteases with established roles in apoptosis. Recently, caspase-2 has been implicated in nonapoptotic functions including maintenance of genomic stability and tumor suppression. Our previous studies demonstrated that caspase-2 also regulates cellular redox status and delays the onset of several ageing-related traits. In the current study, we tested stress tolerance ability in caspase-2-deficient (Casp2−/−) mice by challenging both young and old mice with a low dose of the potent reactive oxygen species (ROS) generator, PQ that primarily affects lungs. In both groups of mice, PQ induced pulmonary damage. However, the lesions in caspase-2 knockout mice were consistently and reproducibly more severe than those in wild-type (WT) mice. Furthermore, serum interleukin (IL)-1β and IL-6 levels were higher in PQ-exposed aged Casp2−/− mice indicating increased inflammation. Interestingly, livers from Casp2−/− mice displayed karyomegaly, a feature commonly associated with ageing and aneuploidy. Given that Casp2−/− mice show impaired antioxidant defense, we tested oxidative damage in these mice. Protein oxidation significantly increased in PQ-injected old Casp2−/− mice. Moreover, FoxO1, SOD2 and Nrf2 expression levels were reduced and induction of superoxide dismutase (SOD) and glutathione peroxidase activity was not observed in PQ-treated Casp2−/− mice. Strong c-Jun amino-terminal kinase (JNK) activation was observed in Casp2−/− mice, indicative of increased stress. Together, our data strongly suggest that caspase-2 deficiency leads to increased cellular stress largely because these mice fail to respond to oxidative stress by upregulating their antioxidant defense mechanism. This makes the mice more vulnerable to exogenous challenges and may partly explain the shorter lifespan of Casp2−/− mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Kumar S, Kinoshita M, Noda M, Copeland NG, Jenkins NA . Induction of apoptosis by the mouse Nedd2 gene, which encodes a protein similar to the product of the Caenorhabditis elegans cell death gene ced-3 and the mammalian IL-1 beta-converting enzyme. Genes Dev 1994; 8: 1613–1626.

    Article  CAS  Google Scholar 

  2. Sidi S, Sanda T, Kennedy RD, Hagen AT, Jette CA, Hoffmans R et al. Chk1 suppresses a caspase-2 apoptotic response to DNA damage that bypasses p53, Bcl-2, and caspase-3. Cell 2008; 133: 864–877.

    Article  CAS  Google Scholar 

  3. Kumar S . Caspase 2 in apoptosis, the DNA damage response and tumour suppression: enigma no more? Nat Rev Cancer 2009; 9: 897–903.

    Article  CAS  Google Scholar 

  4. Ho LH, Read SH, Dorstyn L, Lambrusco L, Kumar S . Caspase-2 is required for cell death induced by cytoskeletal disruption. Oncogene 2008; 27: 3393–3404.

    Article  CAS  Google Scholar 

  5. Nutt LK, Margolis SS, Jensen M, Herman CE, Dunphy WG, Rathmell JC et al. Metabolic regulation of oocyte cell death through the CaMKII-mediated phosphorylation of caspase-2. Cell 2005; 123: 89–103.

    Article  CAS  Google Scholar 

  6. Puccini J, Dorstyn L, Kumar S . Caspase-2 as a tumour suppressor. Cell Death Differ 2013; 20: 1133–1139.

    Article  CAS  Google Scholar 

  7. Ho LH, Taylor R, Dorstyn L, Cakouros D, Bouillet P, Kumar S . A tumor suppressor function for caspase-2. Proc Natl Acad Sci USA 2009; 106: 5336–5341.

    Article  CAS  Google Scholar 

  8. Puccini J, Shalini S, Voss AK, Gatei M, Wilson CH, Hiwase DK et al. Loss of caspase-2 augments lymphomagenesis and enhances genomic instability in Atm-deficient mice. Proc Natl Acad Sci USA 2013; 110: 19920–19925.

    Article  CAS  Google Scholar 

  9. Dorstyn L, Puccini J, Nikolic A, Shalini S, Wilson CH, Norris MD et al. An unexpected role for caspase-2 in neuroblastoma. Cell Death Dis 2014; 5: e1383.

    Article  CAS  Google Scholar 

  10. Dorstyn L, Puccini J, Wilson CH, Shalini S, Nicola M, Moore S et al. Caspase-2 deficiency promotes aberrant DNA-damage response and genetic instability. Cell Death Differ 2012; 19: 1288–1298.

    Article  CAS  Google Scholar 

  11. Shalini S, Dorstyn L, Wilson C, Puccini J, Ho L, Kumar S . Impaired antioxidant defence and accumulation of oxidative stress in caspase-2-deficient mice. Cell Death Differ 2012; 19: 1370–1380.

    Article  CAS  Google Scholar 

  12. Zhang Y, Padalecki SS, Chaudhuri AR, De Waal E, Goins BA, Grubbs B et al. Caspase-2 deficiency enhances aging-related traits in mice. Mech Ageing Dev 2007; 128: 213–221.

    Article  CAS  Google Scholar 

  13. Bus JS, Gibson JE . Paraquat: model for oxidant-initiated toxicity. Environ Health Perspect 1984; 55: 37–46.

    Article  CAS  Google Scholar 

  14. Hassan HM, Fridovich I . Paraquat and Escherichia coli. Mechanism of production of extracellular superoxide radical. J Biol Chem 1979; 254: 10846–10852.

    CAS  PubMed  Google Scholar 

  15. Bus JS, Cagen SZ, Olgaard M, Gibson JE . A mechanism of paraquat toxicity in mice and rats. Toxicol Appl Pharmacol 1976; 35: 501–513.

    Article  CAS  Google Scholar 

  16. Smith P, Heath D . The pathology of the lung in paraquat poisoning. J Clin Pathol Suppl (R Coll Pathol) 1975; 9: 81–93.

    Article  CAS  Google Scholar 

  17. Ikeyama S, Kokkonen G, Shack S, Wang XT, Holbrook NJ . Loss in oxidative stress tolerance with aging linked to reduced extracellular signal-regulated kinase and Akt kinase activities. FASEB J 2002; 16: 114–116.

    Article  CAS  Google Scholar 

  18. Li J, Holbrook NJ . Common mechanisms for declines in oxidative stress tolerance and proliferation with aging. Free Radic Biol Med 2003; 35: 292–299.

    Article  CAS  Google Scholar 

  19. Thiruchelvam M, Brockel BJ, Richfield EK, Baggs RB, Cory-Slechta DA . Potentiated and preferential effects of combined paraquat and maneb on nigrostriatal dopamine systems: environmental risk factors for Parkinson's disease? Brain Res 2000; 873: 225–234.

    Article  CAS  Google Scholar 

  20. Lopez A . Respiratory System, Mediastinum and Pleurae vol. 529. Elsevier: St Louis, MO, USA, 2012.

    Google Scholar 

  21. Parsons MJ, McCormick L, Janke L, Howard A, Bouchier-Hayes L, Green DR . Genetic deletion of caspase-2 accelerates MMTV/c-neu-driven mammary carcinogenesis in mice. Cell Death Differ 2013; 20: 1174–1182.

    Article  CAS  Google Scholar 

  22. Gentric G, Desdouets C, Celton-Morizur S . Hepatocytes polyploidization and cell cycle control in liver physiopathology. Int J Hepatol 2012; 2012: 282430.

    Article  Google Scholar 

  23. Gorla GR, Malhi H, Gupta S . Polyploidy associated with oxidative injury attenuates proliferative potential of cells. J Cell Sci 2001; 114: 2943–2951.

    CAS  Google Scholar 

  24. Nakatani T, Inouye M, Mirochnitchenko O . Overexpression of antioxidant enzymes in transgenic mice decreases cellular ploidy during liver regeneration. Exp Cell Res 1997; 236: 137–146.

    Article  CAS  Google Scholar 

  25. Sanz N, Diez-Fernandez C, Alvarez A, Cascales M . Age-dependent modifications in rat hepatocyte antioxidant defense systems. J Hepatol 1997; 27: 525–534.

    Article  CAS  Google Scholar 

  26. He X, Wang L, Szklarz G, Bi Y, Ma Q . Resveratrol inhibits paraquat-induced oxidative stress and fibrogenic response by activating the nuclear factor erythroid 2-related factor 2 pathway. J Pharmacol Exp Ther 2012; 342: 81–90.

    Article  CAS  Google Scholar 

  27. Kaspar JW, Niture SK, Jaiswal AK . Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free Radic Biol Med 2009; 47: 1304–1309.

    Article  CAS  Google Scholar 

  28. Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD et al. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev 1999; 13: 76–86.

    Article  CAS  Google Scholar 

  29. Mercado N, Thimmulappa R, Thomas CM, Fenwick PS, Chana KK, Donnelly LE et al. Decreased histone deacetylase 2 impairs Nrf2 activation by oxidative stress. Biochem Biophys Res Commun 2011; 406: 292–298.

    Article  CAS  Google Scholar 

  30. Paroni G, Mizzau M, Henderson C, Del Sal G, Schneider C, Brancolini C . Caspase-dependent regulation of histone deacetylase 4 nuclear-cytoplasmic shuttling promotes apoptosis. Mol Biol Cell 2004; 15: 2804–2818.

    Article  CAS  Google Scholar 

  31. Bryan HK, Olayanju A, Goldring CE, Park BK . The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation. Biochem Pharmacol 2013; 85: 705–717.

    Article  CAS  Google Scholar 

  32. Li N, Muthusamy S, Liang R, Sarojini H, Wang E . Increased expression of miR-34a and miR-93 in rat liver during aging, and their impact on the expression of Mgst1 and Sirt1. Mech Ageing Dev 2011; 132: 75–85.

    Article  CAS  Google Scholar 

  33. Meng F, Glaser SS, Francis H, Yang F, Han Y, Stokes A et al. Epigenetic regulation of miR-34a expression in alcoholic liver injury. Am J Pathol 2012; 181: 804–817.

    Article  CAS  Google Scholar 

  34. Kops GJ, Dansen TB, Polderman PE, Saarloos I, Wirtz KW, Coffer PJ et al. Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature 2002; 419: 316–321.

    Article  CAS  Google Scholar 

  35. Calnan DR, Brunet A . The FoxO code. Oncogene 2008; 27: 2276–2288.

    Article  CAS  Google Scholar 

  36. Kurz T, Terman A, Brunk UT . Autophagy, ageing and apoptosis: the role of oxidative stress and lysosomal iron. Arch Biochem Biophys 2007; 462: 220–230.

    Article  CAS  Google Scholar 

  37. Gonzalez-Polo R, Niso-Santano M, Moran JM, Ortiz-Ortiz MA, Bravo-San Pedro JM, Soler G et al. Silencing DJ-1 reveals its contribution in paraquat-induced autophagy. J Neurochem 2009; 109: 889–898.

    Article  CAS  Google Scholar 

  38. Davis RJ . Signal transduction by the JNK group of MAP kinases. Cell 2000; 103: 239–252.

    Article  CAS  Google Scholar 

  39. Ogata M, Hino S, Saito A, Morikawa K, Kondo S, Kanemoto S et al. Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 2006; 26: 9220–9231.

    Article  CAS  Google Scholar 

  40. Wei Y, Sinha S, Levine B . Dual role of JNK1-mediated phosphorylation of Bcl-2 in autophagy and apoptosis regulation. Autophagy 2008; 4: 949–951.

    Article  CAS  Google Scholar 

  41. Tiwari M, Lopez-Cruzan M, Morgan WW, Herman B . Loss of caspase-2-dependent apoptosis induces autophagy after mitochondrial oxidative stress in primary cultures of young adult cortical neurons. J Biol Chem 2011; 286: 8493–8506.

    Article  CAS  Google Scholar 

  42. Tiwari M, Sharma LK, Vanegas D, Callaway DA, Bai Y, Lechleiter JD et al. A nonapoptotic role for CASP2/caspase 2: modulation of autophagy. Autophagy 2014; 10: 1054–1070.

    Article  CAS  Google Scholar 

  43. Braga M, Sinha Hikim AP, Datta S, Ferrini MG, Brown D, Kovacheva EL et al. Involvement of oxidative stress and caspase 2-mediated intrinsic pathway signaling in age-related increase in muscle cell apoptosis in mice. Apoptosis 2008; 13: 822–832.

    Article  CAS  Google Scholar 

  44. Panaretakis T, Laane E, Pokrovskaja K, Bjorklund AC, Moustakas A, Zhivotovsky B et al. Doxorubicin requires the sequential activation of caspase-2, protein kinase Cdelta, and c-Jun NH2-terminal kinase to induce apoptosis. Mol Biol Cell 2005; 16: 3821–3831.

    Article  CAS  Google Scholar 

  45. Matsuzawa A, Ichijo H . Redox control of cell fate by MAP kinase: physiological roles of ASK1-MAP kinase pathway in stress signaling. Biochim Biophys Acta 2008; 1780: 1325–1336.

    Article  CAS  Google Scholar 

  46. Jang S, Kelley KW, Johnson RW . Luteolin reduces IL-6 production in microglia by inhibiting JNK phosphorylation and activation of AP-1. Proc Natl Acad Sci USA 2008; 105: 7534–7539.

    Article  CAS  Google Scholar 

  47. Tan M, Ouyang Y, Jin M, Chen M, Liu P, Chao X et al. Downregulation of Nrf2/HO-1 pathway and activation of JNK/c-Jun pathway are involved in homocysteic acid-induced cytotoxicity in HT-22 cells. Toxicol Lett 2013; 223: 1–8.

    Article  CAS  Google Scholar 

  48. O'Reilly LA, Ekert P, Harvey N, Marsden V, Cullen L, Vaux DL et al. Caspase-2 is not required for thymocyte or neuronal apoptosis even though cleavage of caspase-2 is dependent on both Apaf-1 and caspase-9. Cell Death Differ 2002; 9: 832–841.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Jim Manavis for TUNEL, the staff at the SA Pathology animal resource facility for maintaining the mouse strains, and Swati Dawar for help with some of the immunoblots in Figure 4. This work was supported by the National Health and Medical Research Council (NHMRC) project grant (1021456), a Cancer Council Research Fellowship to LD and a NHMRC Senior Principal Research Fellowship (1002863) to SK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Kumar.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shalini, S., Puccini, J., Wilson, C. et al. Caspase-2 protects against oxidative stress in vivo. Oncogene 34, 4995–5002 (2015). https://doi.org/10.1038/onc.2014.413

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.413

This article is cited by

Search

Quick links