Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Transforming growth factor-β promotes prostate bone metastasis through induction of microRNA-96 and activation of the mTOR pathway

Subjects

Abstract

Transforming growth factor-β (TGFβ) is enriched in the bone matrix and serves as a key factor in promoting bone metastasis in cancer. In addition, TGFβ signaling activates mammalian target of rapamycin (mTOR) functions, which is important for the malignant progression. Here, we demonstrate that TGFβ regulates the level of microRNA-96 (miR-96) through Smad-dependent transcription and that miR-96 promotes the bone metastasis in prostate cancer. The enhanced effects in cellular growth and invasiveness suggest that miR-96 functions as an oncomir/and metastamir. Supporting this idea, we identified a downstream target of the TGFβ-miR-96 signaling pathway to be AKT1S1 mRNA, whose translated protein is a negative regulator of mTOR kinase. Our findings provide a novel mechanism accounting for the TGFβ signaling and bone metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Ikushima H, Miyazono K . TGFbeta signalling: a complex web in cancer progression. Nat Rev Cancer 2010; 10: 415–424.

    Article  CAS  Google Scholar 

  2. Bhowmick NA, Chytil A, Plieth D, Gorska AE, Dumont N, Shappell S et al. TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 2004; 303: 848–851.

    Article  CAS  Google Scholar 

  3. Li X, Placencio V, Iturregui JM, Uwamariya C, Sharif-Afshar AR, Koyama T et al. Prostate tumor progression is mediated by a paracrine TGF-beta/Wnt3a signaling axis. Oncogene 2008; 27: 7118–7130.

    Article  CAS  Google Scholar 

  4. Ao M, Williams K, Bhowmick NA, Hayward SW . Transforming growth factor-beta promotes invasion in tumorigenic but not in nontumorigenic human prostatic epithelial cells. Cancer Res 2006; 66: 8007–8016.

    Article  CAS  Google Scholar 

  5. Lee C, Sintich SM, Mathews EP, Shah AH, Kundu SD, Perry KT et al. Transforming growth factor-beta in benign and malignant prostate. Prostate 1999; 39: 285–290.

    Article  CAS  Google Scholar 

  6. Tian M, Schiemann WP . The TGF-beta paradox in human cancer: an update. Future Oncol 2009; 5: 259–271.

    Article  CAS  Google Scholar 

  7. Derynck R, Zhang YE . Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 2003; 425: 577–584.

    Article  CAS  Google Scholar 

  8. Lamouille S, Derynck R . Cell size and invasion in TGF-beta-induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway. J Cell Biol 2007; 178: 437–451.

    Article  CAS  Google Scholar 

  9. Lamouille S, Connolly E, Smyth JW, Akhurst RJ, Derynck R . TGF-beta-induced activation of mTOR complex 2 drives epithelial-mesenchymal transition and cell invasion. J Cell Sci 2012; 125: 1259–1273.

    Article  CAS  Google Scholar 

  10. Bertoldo F, Silvestris F, Ibrahim T, Cognetti F, Generali D, Ripamonti CI et al. Targeting bone metastatic cancer: role of the mTOR pathway. Biochim Biophys Acta 2014; 1845: 248–254.

    CAS  PubMed  Google Scholar 

  11. Guertin DA, Sabatini DM . Defining the role of mTOR in cancer. Cancer Cell 2007; 12: 9–22.

    Article  CAS  Google Scholar 

  12. Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, Spooner E et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol cell 2007; 25: 903–915.

    Article  CAS  Google Scholar 

  13. Vander Haar E, Lee SI, Bandhakavi S, Griffin TJ, Kim DH . Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol 2007; 9: 316–323.

    Article  CAS  Google Scholar 

  14. Zoncu R, Efeyan A, Sabatini DM . mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 2011; 12: 21–35.

    Article  CAS  Google Scholar 

  15. Nicoloso MS, Spizzo R, Shimizu M, Rossi S, Calin GA . MicroRNAs—the micro steering wheel of tumour metastases. Nat Rev Cancer 2009; 9: 293–302.

    Article  CAS  Google Scholar 

  16. Butz H, Racz K, Hunyady L, Patocs A . Crosstalk between TGF-beta signaling and the microRNA machinery. Trends Pharmacol Sci 2012; 33: 382–393.

    Article  CAS  Google Scholar 

  17. Liu YN, Abou-Kheir W, Yin JJ, Fang L, Hynes P, Casey O et al. Critical and reciprocal regulation of KLF4 and SLUG in transforming growth factor beta-initiated prostate cancer epithelial-mesenchymal transition. Mol Cell Biol 2012; 32: 941–953.

    Article  Google Scholar 

  18. Liu YN, Yin JJ, Abou-Kheir W, Hynes PG, Casey OM, Fang L et al. MiR-1 and miR-200 inhibit EMT via Slug-dependent and tumorigenesis via Slug-independent mechanisms. Oncogene 2013; 32: 296–306.

    Article  CAS  Google Scholar 

  19. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS et al. Integrative genomic profiling of human prostate cancer. Cancer Cell 2010; 18: 11–22.

    Article  CAS  Google Scholar 

  20. Haflidadottir BS, Larne O, Martin M, Persson M, Edsjo A, Bjartell A et al. Upregulation of miR-96 enhances cellular proliferation of prostate cancer cells through FOXO1. PLoS ONE 2013; 8: e72400.

    Article  CAS  Google Scholar 

  21. Yin JJ, Zhang L, Munasinghe J, Linnoila RI, Kelly K . Cediranib/AZD2171 inhibits bone and brain metastasis in a preclinical model of advanced prostate cancer. Cancer Res 2010; 70: 8662–8673.

    Article  CAS  Google Scholar 

  22. Majumder PK, Febbo PG, Bikoff R, Berger R, Xue Q, McMahon LM et al. mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nat Med 2004; 10: 594–601.

    Article  CAS  Google Scholar 

  23. Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 2005; 436: 725–730.

    Article  CAS  Google Scholar 

  24. Martin P, Liu YN, Pierce R, Abou-Kheir W, Casey O, Seng V et al. Prostate epithelial Pten/TP53 loss leads to transformation of multipotential progenitors and epithelial to mesenchymal transition. Am J Pathol 2011; 179: 422–435.

    Article  CAS  Google Scholar 

  25. Fendler A, Jung M, Stephan C, Erbersdobler A, Jung K, Yousef GM . The antiapoptotic function of miR-96 in prostate cancer by inhibition of FOXO1. PLoS ONE 2013; 8: e80807.

    Article  Google Scholar 

  26. Lin H, Dai T, Xiong H, Zhao X, Chen X, Yu C et al. Unregulated miR-96 induces cell proliferation in human breast cancer by downregulating transcriptional factor FOXO3a. PLoS ONE 2010; 5: e15797.

    Article  CAS  Google Scholar 

  27. Yu S, Lu Z, Liu C, Meng Y, Ma Y, Zhao W et al. miRNA-96 suppresses KRAS and functions as a tumor suppressor gene in pancreatic cancer. Cancer Res 2010; 70: 6015–6025.

    Article  CAS  Google Scholar 

  28. Bedi A, Chang X, Noonan K, Pham V, Bedi R, Fertig EJ et al. Inhibition of TGF-beta enhances the in vivo antitumor efficacy of EGF receptor-targeted therapy. Mol Cancer Ther 2012; 11: 2429–2439.

    Article  CAS  Google Scholar 

  29. Sun C, Wang L, Huang S, Heynen GJ, Prahallad A, Robert C et al. Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma. Nature 2014; 508: 118–122.

    Article  CAS  Google Scholar 

  30. Brown K, Quintanilla M, Ramsden M, Kerr IB, Young S, Balmain A . v-ras genes from Harvey and BALB murine sarcoma viruses can act as initiators of two-stage mouse skin carcinogenesis. Cell 1986; 46: 447–456.

    Article  CAS  Google Scholar 

  31. Yadav V, Sultana S, Yadav J, Saini N . Gatifloxacin induces S and G2-phase cell cycle arrest in pancreatic cancer cells via p21/p27/p53. PLoS ONE 2012; 7: e47796.

    Article  CAS  Google Scholar 

  32. Gogna R, Madan E, Kuppusamy P, Pati U . Re-oxygenation causes hypoxic tumor regression through restoration of p53 wild-type conformation and post-translational modifications. Cell Death Dis 2012; 3: e286.

    Article  CAS  Google Scholar 

  33. Liu C, Zhu Y, Lou W, Nadiminty N, Chen X, Zhou Q et al. Functional p53 determines docetaxel sensitivity in prostate cancer cells. Prostate 2013; 73: 418–427.

    Article  CAS  Google Scholar 

  34. Skjoth IH, Issinger OG . Profiling of signaling molecules in four different human prostate carcinoma cell lines before and after induction of apoptosis. Int J Oncol 2006; 28: 217–229.

    PubMed  Google Scholar 

  35. Mishra S, Deng JJ, Gowda PS, Rao MK, Lin CL, Chen CL et al. Androgen receptor and microRNA-21 axis downregulates transforming growth factor beta receptor II (TGFBR2) expression in prostate cancer. Oncogene 2014; 33: 4097–4106.

    Article  CAS  Google Scholar 

  36. Yin J, Pollock C, Tracy K, Chock M, Martin P, Oberst M et al. Activation of the RalGEF/Ral pathway promotes prostate cancer metastasis to bone. Mol Cell Biol 2007; 27: 7538–7550.

    Article  CAS  Google Scholar 

  37. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545–15550.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was jointly supported by grants from the Taipei Medical University-Wan Fang Hospital (102TMU-WFH-05) to Y-N Liu, Taipei Medical University (TMU102-AE1-B30) to Y-C Tsai, the Ministry of Science and Technology (NSC102-2320-B-038-001) of Taiwan to Y-N Liu, and the Ministry of Science and Technology (NSC103-2311-B-038-001) of Taiwan to Y-C Tsai. We also thank Dr Ji-Hshiung Chen (Tzu Chi University) for reading the manuscript and for his comments and helpful suggestions. We also thank Dr Orla Casey for reviewing our manuscript and discussion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y-C Tsai or Y-N Liu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siu, M., Tsai, YC., Chang, YS. et al. Transforming growth factor-β promotes prostate bone metastasis through induction of microRNA-96 and activation of the mTOR pathway. Oncogene 34, 4767–4776 (2015). https://doi.org/10.1038/onc.2014.414

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.414

This article is cited by

Search

Quick links