Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

CHIP buffers heterogeneous Bcl-2 expression levels to prevent augmentation of anticancer drug-resistant cell population

Subjects

Abstract

Many types of cancer display heterogeneity in various features, including gene expression and malignant potential. This heterogeneity is associated with drug resistance and cancer progression. Recent studies have shown that the expression of a major protein quality control ubiquitin ligase, carboxyl terminus of Hsc70-interacting protein (CHIP), is negatively correlated with breast cancer clinicopathological stages and poor overall survival. Here we show that CHIP acts as a capacitor of heterogeneous Bcl-2 expression levels and prevents an increase in the anticancer drug-resistant population in breast cancer cells. CHIP knockdown in breast cancer cells increased variation in Bcl-2 expression levels, an antiapoptotic protein, among the cells. Our results also showed that CHIP knockdown increased the proportion of anticancer drug-resistant cells. These findings suggest that CHIP buffers variation in gene expression levels, affecting resistance to anticancer drugs. In single-cell clones derived from breast cancer cell lines, CHIP knockdown did not alter the variation in Bcl-2 expression levels and the proportion of anticancer drug-resistant cells. In contrast, when clonal cells were treated with a mutagen, the variation in Bcl-2 expression levels and proportion of anticancer drug-resistant cells were altered by CHIP knockdown. These results suggest that CHIP masks genetic variations to suppress heterogeneous Bcl-2 expression levels and prevents augmentation of the anticancer drug-resistant population of breast cancer cells. Because genetic variation is a major driver of heterogeneity, our results suggest that the degree of heterogeneity in expression levels is decided by a balance between genetic variation and the buffering capacity of CHIP.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM . Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 2010; 127: 2893–2917.

    Article  CAS  PubMed  Google Scholar 

  2. Polyak K . Breast cancer: origins and evolution. J Clin Invest 2007; 117: 3155–3163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Heng HH, Bremer SW, Stevens JB, Ye KJ, Liu G, Ye CJ . Genetic and epigenetic heterogeneity in cancer: a genome-centric perspective. J Cell Physiol 2009; 220: 538–547.

    Article  CAS  PubMed  Google Scholar 

  4. Lambert G, Estevez-Salmeron L, Oh S, Liao D, Emerson BM, Tlsty TD et al. An analogy between the evolution of drug resistance in bacterial communities and malignant tissues. Nat Rev Cancer 2011; 11: 375–382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yang JY, Ha SA, Yang YS, Kim JW . p-Glycoprotein ABCB5 and YB-1 expression plays a role in increased heterogeneity of breast cancer cells: correlations with cell fusion and doxorubicin resistance. BMC cancer 2010; 10: 388.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC, Welch JS et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 2012; 481: 506–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Longley DB, Johnston PG . Molecular mechanisms of drug resistance. J Pathol 2005; 205: 275–292.

    Article  CAS  PubMed  Google Scholar 

  8. Coley HM . Mechanisms and consequences of chemotherapy resistance in breast cancer. Ejc Suppl 2009; 7: 3–7.

    Article  CAS  Google Scholar 

  9. Rudin CM, Yang Z, Schumaker LM, VanderWeele DJ, Newkirk K, Egorin MJ et al. Inhibition of glutathione synthesis reverses Bcl-2-mediated cisplatin resistance. Cancer Res 2003; 63: 312–318.

    CAS  PubMed  Google Scholar 

  10. Davis JM, Navolanic PM, Weinstein-Oppenheimer CR, Steelman LS, Hu W, Konopleva M et al. Raf-1 and Bcl-2 induce distinct and common pathways that contribute to breast cancer drug resistance. Clin Cancer Res 2003; 9: 1161–1170.

    CAS  PubMed  Google Scholar 

  11. Lima RT, Martins LM, Guimaraes JE, Sambade C, Vasconcelos MH . Specific downregulation of bcl-2 and xIAP by RNAi enhances the effects of chemotherapeutic agents in MCF-7 human breast cancer cells. Cancer Gene Ther 2004; 11: 309–316.

    Article  CAS  PubMed  Google Scholar 

  12. Tabuchi Y, Matsuoka J, Gunduz M, Imada T, Ono R, Ito M et al. Resistance to paclitaxel therapy is related with Bcl-2 expression through an estrogen receptor mediated pathway in breast cancer. Int J Oncol 2009; 34: 313–319.

    CAS  PubMed  Google Scholar 

  13. Tsujimoto Y, Shimizu S . VDAC regulation by the Bcl-2 family of proteins. Cell Death Differ 2000; 7: 1174–1181.

    Article  CAS  PubMed  Google Scholar 

  14. Youle RJ, Strasser A . The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 2008; 9: 47–59.

    Article  CAS  PubMed  Google Scholar 

  15. Sierra A, Castellsague X, Tortola S, Escobedo A, Lloveras B, Peinado MA et al. Apoptosis loss and bcl-2 expression: key determinants of lymph node metastases in T1 breast cancer. Clin Cancer Res 1996; 2: 1887–1894.

    CAS  PubMed  Google Scholar 

  16. Kajiro M, Hirota R, Nakajima Y, Kawanowa K, So-ma K, Ito I et al. The ubiquitin ligase CHIP acts as an upstream regulator of oncogenic pathways. Nat Cell Biol 2009; 11: 312–319.

    Article  CAS  PubMed  Google Scholar 

  17. Ballinger CA, Connell P, Wu Y, Hu Z, Thompson LJ, Yin LY et al. Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol Cell Biol 1999; 19: 4535–4545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jiang J, Ballinger CA, Wu Y, Dai Q, Cyr DM, Hohfeld J et al. CHIP is a U-box-dependent E3 ubiquitin ligase: identification of Hsc70 as a target for ubiquitylation. J Biol Chem 2001; 276: 42938–42944.

    Article  CAS  PubMed  Google Scholar 

  19. Murata S, Minami Y, Minami M, Chiba T, Tanaka K . CHIP is a chaperone-dependent E3 ligase that ubiquitylates unfolded protein. EMBO Rep 2001; 2: 1133–1138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Goldberg AL . Protein degradation and protection against misfolded or damaged proteins. Nature 2003; 426: 895–899.

    Article  CAS  PubMed  Google Scholar 

  21. Patani N, Jiang W, Newbold R, Mokbel K . Prognostic implications of carboxyl-terminus of Hsc70 interacting protein and lysyl-oxidase expression in human breast cancer. J Carcinog 2010; 9: 9.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Drewinko B, Brown BW, Gottlieb JA . The effect of cis-diamminedichloroplatinum (II) on cultured human lymphoma cells and its therapeutic implications. Cancer Res 1973; 33: 3091–3095.

    CAS  PubMed  Google Scholar 

  23. Kampinga HH, Kanon B, Salomons FA, Kabakov AE, Patterson C . Overexpression of the cochaperone CHIP enhances Hsp70-dependent folding activity in mammalian cells. Mol Cell Biol 2003; 23: 4948–4958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rutherford SL, Lindquist S . Hsp90 as a capacitor for morphological evolution. Nature 1998; 396: 336–342.

    Article  CAS  PubMed  Google Scholar 

  25. Queitsch C, Sangster TA, Lindquist S . Hsp90 as a capacitor of phenotypic variation. Nature 2002; 417: 618–624.

    Article  CAS  PubMed  Google Scholar 

  26. Sollars V, Lu X, Xiao L, Wang X, Garfinkel MD, Ruden DM . Evidence for an epigenetic mechanism by which Hsp90 acts as a capacitor for morphological evolution. Nat Genet 2003; 33: 70–74.

    Article  CAS  PubMed  Google Scholar 

  27. Papendorp JT, Schatz RW, Soto AM, Sonnenschein C . On the role of 17 alpha-estradiol and 17 beta-estradiol in the proliferation of MCF7 and T47D-A11 human breast tumor cells. J Cell Physiol 1985; 125: 591–595.

    Article  CAS  PubMed  Google Scholar 

  28. Butler WB, Berlinski PJ, Hillman RM, Kelsey WH, Toenniges MM . Relation of in vitro properties to tumorigenicity for a series of sublines of the human breast cancer cell line MCF-7. Cancer Res 1986; 46: 6339–6348.

    CAS  PubMed  Google Scholar 

  29. Resnicoff M, Medrano EE, Podhajcer OL, Bravo AI, Bover L, Mordoh J . Subpopulations of MCF7 cells separated by Percoll gradient centrifugation: a model to analyze the heterogeneity of human breast cancer. Proc Natl Acad Sci USA 1987; 84: 7295–7299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McDiarmid HM, Douglas GR, Coomber BL, Josephy PD . Epithelial and fibroblast cell lines cultured from the transgenic BigBlue rat: an in vitro mutagenesis assay. Mutat Res 2001; 497: 39–47.

    Article  CAS  PubMed  Google Scholar 

  31. Young RL, Korsmeyer SJ . A negative regulatory element in the bcl-2 5′-untranslated region inhibits expression from an upstream promoter. Mol Cell Biol 1993; 13: 3686–3697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee JH, Jeon MH, Seo YJ, Lee YJ, Ko JH, Tsujimoto Y et al. CA repeats in the 3′-untranslated region of bcl-2 mRNA mediate constitutive decay of bcl-2 mRNA. J Biol Chem 2004; 279: 42758–42764.

    Article  CAS  PubMed  Google Scholar 

  33. Miyashita T, Harigai M, Hanada M, Reed JC . Identification of a p53-dependent negative response element in the bcl-2 gene. Cancer Res 1994; 54: 3131–3135.

    CAS  PubMed  Google Scholar 

  34. Hewitt SM, Hamada S, McDonnell TJ, Rauscher FJ 3rd, Saunders GF . Regulation of the proto-oncogenes bcl-2 and c-myc by the Wilms' tumor suppressor gene WT1. Cancer Res 1995; 55: 5386–5389.

    CAS  PubMed  Google Scholar 

  35. Wilson BE, Mochon E, Boxer LM . Induction of bcl-2 expression by phosphorylated CREB proteins during B-cell activation and rescue from apoptosis. Mol Cell Biol 1996; 16: 5546–5556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kurland JF, Kodym R, Story MD, Spurgers KB, Mcdonnell TJ, Meyn RE . NF-kappaB1 (p50) homodimers contribute to transcription of the bcl-2 oncogene. J Biol Chem 2001; 276: 45380–45386.

    Article  CAS  PubMed  Google Scholar 

  37. Gomez-Manzano C, Mitlinga P, Fueyo J, Lee HY, Hu M, Spurgers KB et al. Transfer of E2F-1 to human glioma cells results in transcriptional up-regulation of Bcl-2. Cancer Res 2001; 61: 6693–6697.

    CAS  PubMed  Google Scholar 

  38. Decary S, Decesse JT, Ogryzko V, Reed JC, Naguibneva I, Harel-Bellan A et al. The retinoblastoma protein binds the promoter of the survival gene bcl-2 and regulates its transcription in epithelial cells through transcription factor AP-2. Mol Cell Biol 2002; 22: 7877–7888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Stevenson HS, Fu SW, Pinzone JJ, Rheey J, Simmens SJ, Berg PE . BP1 transcriptionally activates bcl-2 and inhibits TNFalpha-induced cell death in MCF7 breast cancer cells. Breast Cancer Res 2007; 9: R60.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Banerji S, Cibulskis K, Rangel-Escareno C, Brown KK, Carter SL, Frederick AM et al. Sequence analysis of mutations and translocations across breast cancer subtypes. Nature 2012; 486: 405–409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 2012; 486: 346–352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Magee JA, Piskounova E, Morrison SJ . Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell 2012; 21: 283–296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Marusyk A, Almendro V, Polyak K . Intra-tumour heterogeneity: a looking glass for cancer? Nat Rev Cancer 2012; 12: 323–334.

    Article  CAS  PubMed  Google Scholar 

  44. Theodoraki MA, Caplan AJ . Quality control and fate determination of Hsp90 client proteins. Biochim Biophys Acta 2012; 1823: 683–688.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan. We would like to thank Enago (www.enago.jp) for the English language review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Kimura.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsuchiya, M., Nakajima, Y., Waku, T. et al. CHIP buffers heterogeneous Bcl-2 expression levels to prevent augmentation of anticancer drug-resistant cell population. Oncogene 34, 4656–4663 (2015). https://doi.org/10.1038/onc.2014.387

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.387

This article is cited by

Search

Quick links