Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Transcriptional repression of Sin3B by Bmi-1 prevents cellular senescence and is relieved by oncogene activation

Abstract

The Polycomb group protein Bmi-1 is an essential regulator of cellular senescence and is believed to function largely through the direct repression of the Ink4a/Arf locus. However, concurrent deletion of Ink4a/Arf does not fully rescue the defects detected in Bmi-1−/− mice, indicating that additional Bmi-1 targets remain to be identified. The expression of the chromatin-associated Sin3B protein is stimulated by oncogenic stress, and is required for oncogene-induced senescence. Here we demonstrate that oncogenic stress leads to the dissociation of Bmi-1 from the Sin3B locus, resulting in increased Sin3B expression and subsequent entry into cellular senescence. Furthermore, Sin3B is required for the senescent phenotype and elevated levels of reactive oxygen species elicited upon Bmi-1 depletion. Altogether, these results identify Sin3B as a novel direct target of Bmi-1, and establish Bmi-1-driven repression of Sin3B as an essential regulator of cellular senescence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Kuilman T, Michaloglou C, Mooi WJ, Peeper DS . The essence of senescence. Genes Dev 2010; 24: 2463–2479.

    Article  CAS  Google Scholar 

  2. Campisi J . Cellular senescence as a tumor-suppressor mechanism. Trends Cell Biol 2001; 11: S27–S31.

    Article  CAS  Google Scholar 

  3. Collado M, Gil J, Efeyan A, Guerra C, Schuhmacher AJ, Barradas M et al. Tumour biology: senescence in premalignant tumours. Nature 2005; 436: 642.

    Article  CAS  Google Scholar 

  4. Caldwell ME, DeNicola GM, Martins CP, Jacobetz MA, Maitra A, Hruban RH et al. Cellular features of senescence during the evolution of human and murine ductal pancreatic cancer. Oncogene 2012; 31: 1599–1608.

    Article  CAS  Google Scholar 

  5. Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 2005; 436: 720–724.

    Article  CAS  Google Scholar 

  6. Dimauro T, David G . Ras-induced senescence and its physiological relevance in cancer. Curr Cancer Drug Targets 2010; 10: 869–876.

    Article  CAS  Google Scholar 

  7. Campisi J . Aging, cellular senescence, and cancer. Annu Rev Physiol 2013; 75: 685–705.

    Article  CAS  Google Scholar 

  8. Sharpless NE, DePinho RA . Cancer: crime and punishment. Nature 2005; 436: 636–637.

    Article  CAS  Google Scholar 

  9. Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 2005; 436: 725–730.

    Article  CAS  Google Scholar 

  10. David G . Regulation of oncogene-induced cell cycle exit and senescence by chromatin modifiers. Cancer Biol Ther 2012; 13: 992–1000.

    Article  CAS  Google Scholar 

  11. Richly H, Aloia L, Di Croce L . Roles of the Polycomb group proteins in stem cells and cancer. Cell Death Disease 2011; 2: e204.

    Article  CAS  Google Scholar 

  12. Sauvageau M, Sauvageau G . Polycomb group proteins: multi-faceted regulators of somatic stem cells and cancer. Cell Stem Cell 2010; 7: 299–313.

    Article  CAS  Google Scholar 

  13. Simon JA, Kingston RE . Occupying chromatin: Polycomb mechanisms for getting to genomic targets, stopping transcriptional traffic, and staying put. Mol Cell 2013; 49: 808–824.

    Article  CAS  Google Scholar 

  14. Haupt Y, Alexander WS, Barri G, Klinken SP, Adams JM . Novel zinc finger gene implicated as myc collaborator by retrovirally accelerated lymphomagenesis in E mu-myc transgenic mice. Cell 1991; 65: 753–763.

    Article  CAS  Google Scholar 

  15. van Lohuizen M, Verbeek S, Scheijen B, Wientjens E, van der Gulden H, Berns A . Identification of cooperating oncogenes in E mu-myc transgenic mice by provirus tagging. Cell 1991; 65: 737–752.

    Article  CAS  Google Scholar 

  16. Molofsky AV, Pardal R, Iwashita T, Park IK, Clarke MF, Morrison SJ . Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 2003; 425: 962–967.

    Article  CAS  Google Scholar 

  17. Park IK, Qian D, Kiel M, Becker MW, Pihalja M, Weissman IL et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 2003; 423: 302–305.

    Article  CAS  Google Scholar 

  18. van der Lugt NM, Domen J, Linders K, van Roon M, Robanus-Maandag E, te Riele H et al. Posterior transformation, neurological abnormalities, and severe hematopoietic defects in mice with a targeted deletion of the bmi-1 proto-oncogene. Genes Dev 1994; 8: 757–769.

    Article  CAS  Google Scholar 

  19. Jacobs JJ, Kieboom K, Marino S, DePinho RA, van Lohuizen M . The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 1999; 397: 164–168.

    Article  CAS  Google Scholar 

  20. Bracken AP, Kleine-Kohlbrecher D, Dietrich N, Pasini D, Gargiulo G, Beekman C et al. The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev 2007; 21: 525–530.

    Article  CAS  Google Scholar 

  21. Arranz L, Herrera-Merchan A, Ligos JM, de Molina A, Dominguez O, Gonzalez S . Bmi1 is critical to prevent Ikaros-mediated lymphoid priming in hematopoietic stem cells. Cell Cycle 2012; 11: 65–78.

    Article  CAS  Google Scholar 

  22. Oguro H, Yuan J, Ichikawa H, Ikawa T, Yamazaki S, Kawamoto H et al. Poised lineage specification in multipotential hematopoietic stem and progenitor cells by the polycomb protein Bmi1. Cell Stem Cell 2010; 6: 279–286.

    Article  CAS  Google Scholar 

  23. Bruggeman SW, Valk-Lingbeek ME, van der Stoop PP, Jacobs JJ, Kieboom K, Tanger E et al. Ink4a and Arf differentially affect cell proliferation and neural stem cell self-renewal in Bmi1-deficient mice. Genes Dev 2005; 19: 1438–1443.

    Article  CAS  Google Scholar 

  24. Oguro H, Iwama A, Morita Y, Kamijo T, van Lohuizen M, Nakauchi H . Differential impact of Ink4a and Arf on hematopoietic stem cells and their bone marrow microenvironment in Bmi1-deficient mice. J Exp Med 2006; 203: 2247–2253.

    Article  CAS  Google Scholar 

  25. Liu J, Cao L, Chen J, Song S, Lee IH, Quijano C et al. Bmi1 regulates mitochondrial function and the DNA damage response pathway. Nature 2009; 459: 387–392.

    Article  CAS  Google Scholar 

  26. David G, Grandinetti KB, Finnerty PM, Simpson N, Chu GC, Depinho RA . Specific requirement of the chromatin modifier mSin3B in cell cycle exit and cellular differentiation. Proc Natl Acad Sci USA 2008; 105: 4168–4172.

    Article  CAS  Google Scholar 

  27. Grandinetti KB, Jelinic P, DiMauro T, Pellegrino J, Fernandez Rodriguez R, Finnerty PM et al. Sin3B expression is required for cellular senescence and is up-regulated upon oncogenic stress. Cancer Res 2009; 69: 6430–6437.

    Article  CAS  Google Scholar 

  28. Kennedy AL, Morton JP, Manoharan I, Nelson DM, Jamieson NB, Pawlikowski JS et al. Activation of the PIK3CA/AKT pathway suppresses senescence induced by an activated RAS oncogene to promote tumorigenesis. Mol Cell 2011; 42: 36–49.

    Article  CAS  Google Scholar 

  29. Bernard D, Martinez-Leal JF, Rizzo S, Martinez D, Hudson D, Visakorpi T et al. CBX7 controls the growth of normal and tumor-derived prostate cells by repressing the Ink4a/Arf locus. Oncogene 2005; 24: 5543–5551.

    Article  CAS  Google Scholar 

  30. Dietrich N, Bracken AP, Trinh E, Schjerling CK, Koseki H, Rappsilber J et al. Bypass of senescence by the polycomb group protein CBX8 through direct binding to the INK4A-ARF locus. EMBO J 2007; 26: 1637–1648.

    Article  CAS  Google Scholar 

  31. Yap KL, Li S, Munoz-Cabello AM, Raguz S, Zeng L, Mujtaba S et al. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell 2010; 38: 662–674.

    Article  CAS  Google Scholar 

  32. Zhu J, Woods D, McMahon M, Bishop JM . Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev 1998; 12: 2997–3007.

    Article  CAS  Google Scholar 

  33. Lee BY, Han JA, Im JS, Morrone A, Johung K, Goodwin EC et al. Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell 2006; 5: 187–195.

    Article  CAS  Google Scholar 

  34. Acosta JC, O'Loghlen A, Banito A, Guijarro MV, Augert A, Raguz S et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 2008; 133: 1006–1018.

    Article  CAS  Google Scholar 

  35. Kuilman T, Michaloglou C, Vredeveld LC, Douma S, van Doorn R, Desmet CJ et al. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 2008; 133: 1019–1031.

    Article  CAS  Google Scholar 

  36. Chatoo W, Abdouh M, David J, Champagne MP, Ferreira J, Rodier F et al. The polycomb group gene Bmi1 regulates antioxidant defenses in neurons by repressing p53 pro-oxidant activity. J Neurosci 2009; 29: 529–542.

    Article  CAS  Google Scholar 

  37. Parrinello S, Samper E, Krtolica A, Goldstein J, Melov S, Campisi J . Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nat Cell Biol 2003; 5: 741–747.

    Article  CAS  Google Scholar 

  38. Irani K, Xia Y, Zweier JL, Sollott SJ, Der CJ, Fearon ER et al. Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science 1997; 275: 1649–1652.

    Article  CAS  Google Scholar 

  39. Lee AC, Fenster BE, Ito H, Takeda K, Bae NS, Hirai T et al. Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J Biol Chem 1999; 274: 7936–7940.

    Article  CAS  Google Scholar 

  40. van Oevelen C, Bowman C, Pellegrino J, Asp P, Cheng J, Parisi F et al. The mammalian Sin3 proteins are required for muscle development and sarcomere specification. Mol Cell Biol 2010; 30: 5686–5697.

    Article  CAS  Google Scholar 

  41. Zhang H, Cichetti G, Onda H, Koon HB, Asrican K, Bajraszweski N et al. Loss of Tsc1/Tsc2 activates mTOR and disrupts PI3K-Akt signaling through downregulation of PDGFR. J Clin Investig 2003; 112: 1223–1233.

    Article  CAS  Google Scholar 

  42. Wang J, Jacob NK, Ladner KJ, Beg A, Perko JD, Tanner SM et al. RelA/p65 functions to maintain cellular senescence by regulating genomic stability and DNA repair. EMBO Rep 2009; 10: 1272–1278.

    Article  CAS  Google Scholar 

  43. Liu Y, Liu F, Yu H, Zhao X, Sashida G, Deblasio A et al. Akt phosphorylates the transcriptional repressor bmi1 to block its effects on the tumor-suppressing ink4a-arf locus. Sci Signal 2012; 5: ra77.

    PubMed  PubMed Central  Google Scholar 

  44. Nacerddine K, Beaudry JB, Ginjala V, Westerman B, Mattiroli F, Song JY et al. Akt-mediated phosphorylation of Bmi1 modulates its oncogenic potential, E3 ligase activity, and DNA damage repair activity in mouse prostate cancer. J Clin Investig 2012; 122: 1920–1932.

    Article  CAS  Google Scholar 

  45. Rielland M, Cantor DJ, Graveline R, Hajdu C, Mara L, de Diego Diaz B et al. Senescence-associated SIN3B promotes inflammation and pancreatic cancer progression. J Clin Investig 2014; 124: 2125–2135.

    Article  CAS  Google Scholar 

  46. Jelinic P, Pellegrino J, David G . A novel mammalian complex containing Sin3B mitigates histone acetylation and RNA polymerase II progression within transcribed loci. Mol Cell Biol 2011; 21: 54–62.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to all members of the David laboratory for helpful discussions during the preparation of the manuscript. We thank Drs Sally Temple, Gabriella De Vita, Goberdhan Dimri, David Levy and Marty McMahon for the generous gifts of plasmids used in this study and Dr Michael Garabedian for helpful discussions. We wish to acknowledge the Skirball Institute of Biomolecular Medicine for hosting our laboratory following Hurricane Sandy. All animal experiments were done in accordance with the guidelines of the National Institutes of Health (NIH) and were approved by the NYU School of Medicine Institutional Animal Care and Use Committee. This work was funded by the American Cancer Society (115014-RSG-08-054-01-GMC to DG), the National Institute of Health (5R01CA148639 and 5R21CA155736 to DG), the Irma T. Hirschl Charitable Trust (DG), the Samuel Waxman Cancer Research Foundation (DG) and a Feinberg NYU individual grant (DG). DT, CDJ and BAJ were supported by predoctoral NIH training grants T32CA009161 (DT, CDJ) and T32GM066704 (BAJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G David.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DiMauro, T., Cantor, D., Bainor, A. et al. Transcriptional repression of Sin3B by Bmi-1 prevents cellular senescence and is relieved by oncogene activation. Oncogene 34, 4011–4017 (2015). https://doi.org/10.1038/onc.2014.322

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.322

This article is cited by

Search

Quick links