Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

CLIP2 as radiation biomarker in papillary thyroid carcinoma

Abstract

A substantial increase in papillary thyroid carcinoma (PTC) among children exposed to the radioiodine fallout has been one of the main consequences of the Chernobyl reactor accident. Recently, the investigation of PTCs from a cohort of young patients exposed to the post-Chernobyl radioiodine fallout at very young age and a matched nonexposed control group revealed a radiation-specific DNA copy number gain on chromosomal band 7q11.23 and the radiation-associated mRNA overexpression of CLIP2. In this study, we investigated the potential role of CLIP2 as a radiation marker to be used for the individual classification of PTCs into CLIP2-positive and -negative cases—a prerequisite for the integration of CLIP2 into epidemiological modelling of the risk of radiation-induced PTC. We were able to validate the radiation-associated CLIP2 overexpression at the protein level by immunohistochemistry (IHC) followed by relative quantification using digital image analysis software (P=0.0149). Furthermore, we developed a standardized workflow for the determination of CLIP2-positive and -negative cases that combines visual CLIP2 IHC scoring and CLIP2 genomic copy number status. In addition to the discovery cohort (n=33), two independent validation cohorts of PTCs (n=115) were investigated. High sensitivity and specificity rates for all three investigated cohorts were obtained, demonstrating robustness of the developed workflow. To analyse the function of CLIP2 in radiation-associated PTC, the CLIP2 gene regulatory network was reconstructed using global mRNA expression data from PTC patient samples. The genes comprising the first neighbourhood of CLIP2 (BAG2, CHST3, KIF3C, NEURL1, PPIL3 and RGS4) suggest the involvement of CLIP2 in the fundamental carcinogenic processes including apoptosis, mitogen-activated protein kinase signalling and genomic instability. In our study, we successfully developed and independently validated a workflow for the typing of PTC clinical samples into CLIP2-positive and CLIP2-negative and provided first insights into the CLIP2 interactome in the context of radiation-associated PTC.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Cardis E, Hatch M . The Chernobyl accident-an epidemiological perspective. Clin Oncol 2011; 23: 251–260.

    Article  CAS  Google Scholar 

  2. Tuttle RM, Vaisman F, Tronko MD . Clinical presentation and clinical outcomes in Chernobyl-related paediatric thyroid cancers: what do we know now? What can we expect in the future? Clin Oncol 2011; 23: 268–275.

    Article  CAS  Google Scholar 

  3. Cardis E, Howe G, Ron E, Bebeshko V, Bogdanova T, Bouville A et al. Cancer consequences of the Chernobyl accident: 20 years on. J Radiol Prot 2006; 26: 127–140.

    Article  PubMed  Google Scholar 

  4. Hess J, Thomas G, Braselmann H, Bauer V, Bogdanova T, Wienberg J et al. Gain of chromosome band 7q11 in papillary thyroid carcinomas of young patients is associated with exposure to low-dose irradiation. Proc Natl Acad Sci USA 2011; 108: 9595–9600.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Iizuka D, Imaoka T, Takabatake T, Nishimura M, Kakinuma S, Nishimura Y et al. DNA copy number aberrations and disruption of the p16Ink4a/Rb pathway in radiation-induced and spontaneous rat mammary carcinomas. Radiat Res 2010; 174: 206–215.

    Article  CAS  PubMed  Google Scholar 

  6. Ishida Y, Takabatake T, Kakinuma S, Doi K, Yamauchi K, Kaminishi M et al. Genomic and gene expression signatures of radiation in medulloblastomas after low-dose irradiation in Ptch1 heterozygous mice. Carcinogenesis 2010; 31: 1694–1701.

    Article  CAS  PubMed  Google Scholar 

  7. Mullenders L, Atkinson M, Paretzke H, Sabatier L, Bouffler S . Assessing cancer risks of low-dose radiation. Nat Rev Cancer 2009; 9: 596–604.

    Article  CAS  PubMed  Google Scholar 

  8. Klugbauer S, Lengfelder E, Demidchik EP, Rabes HM . High prevalence of RET rearrangement in thyroid tumors of children from Belarus after the Chernobyl reactor accident. Oncogene 1995; 11: 2459–2467.

    CAS  PubMed  Google Scholar 

  9. Hamatani K, Eguchi H, Ito R, Mukai M, Takahashi K, Taga M et al. RET/PTC rearrangements preferentially occurred in papillary thyroid cancer among atomic bomb survivors exposed to high radiation dose. Cancer Res 2008; 68: 7176–7182.

    Article  CAS  PubMed  Google Scholar 

  10. Leeman-Neill RJ, Brenner AV, Little MP, Bogdanova TI, Hatch M, Zurnadzy LY et al. RET/PTC and PAX8/PPARgamma chromosomal rearrangements in post-Chernobyl thyroid cancer and their association with iodine-131 radiation dose and other characteristics. Cancer 2013; 119: 1792–1799.

    Article  CAS  PubMed  Google Scholar 

  11. Tuttle RM, Lukes Y, Onstad L, Lushnikov E, Abrosimov A, Troshin V et al. ret/PTC activation is not associated with individual radiation dose estimates in a pilot study of neoplastic thyroid nodules arising in Russian children and adults exposed to Chernobyl fallout. Thyroid 2008; 18: 839–846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nikiforov YE, Rowland JM, Bove KE, Monforte-Munoz H, Fagin JA . Distinct pattern of ret oncogene rearrangements in morphological variants of radiation-induced and sporadic thyroid papillary carcinomas in children. Cancer Res 1997; 57: 1690–1694.

    CAS  PubMed  Google Scholar 

  13. Ricarte-Filho JC, Li S, Garcia-Rendueles ME, Montero-Conde C, Voza F, Knauf JA et al. Identification of kinase fusion oncogenes in post-Chernobyl radiation-induced thyroid cancers. J Clin Invest 2013; 123: 4935–4944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pernot E, Hall J, Baatout S, Benotmane MA, Blanchardon E, Bouffler S et al. Ionizing radiation biomarkers for potential use in epidemiological studies. Mutat Res 2012; 751: 258–286.

    Article  CAS  PubMed  Google Scholar 

  15. Abend M, Pfeiffer RM, Ruf C, Hatch M, Bogdanova TI, Tronko MD et al. Iodine-131 dose dependent gene expression in thyroid cancers and corresponding normal tissues following the Chernobyl accident. PLoS ONE 2012; 7: e39103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tronko M, Mabuchi K, Bogdanova T, Hatch M, Likhtarev I, Bouville A et al. Thyroid cancer in Ukraine after the Chernobyl accident (in the framework of the Ukraine-US Thyroid Project). J Radiol Prot 2012; 32: N65–N69.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Rojo MG, Bueno G, Slodkowska J . Review of imaging solutions for integrated quantitative immunohistochemistry in the Pathology daily practice. Folia Histochem Cytobiol 2009; 47: 349–354.

    PubMed  Google Scholar 

  18. Varga Z, Noske A, Ramach C, Padberg B, Moch H . Assessment of HER2 status in breast cancer: overall positivity rate and accuracy by fluorescence in situ hybridization and immunohistochemistry in a single institution over 12 years: a quality control study. BMC Cancer 2013; 13: 615.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Williams D . Cancer after nuclear fallout: lessons from the Chernobyl accident. Nat Rev Cancer 2002; 2: 543–549.

    Article  CAS  PubMed  Google Scholar 

  20. Tronko MD, Howe GR, Bogdanova TI, Bouville AC, Epstein OV, Brill AB et al. A cohort study of thyroid cancer and other thyroid diseases after the chornobyl accident: thyroid cancer in Ukraine detected during first screening. J Natl Cancer Inst 2006; 98: 897–903.

    Article  PubMed  Google Scholar 

  21. Brenner AV, Tronko MD, Hatch M, Bogdanova TI, Oliynik VA, Lubin JH et al. I-131 dose response for incident thyroid cancers in Ukraine related to the Chornobyl accident. Environ Health Perspect 2011; 119: 933–939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hoogenraad CC, Koekkoek B, Akhmanova A, Krugers H, Dortland B, Miedema M et al. Targeted mutation of Cyln2 in the Williams syndrome critical region links CLIP-115 haploinsufficiency to neurodevelopmental abnormalities in mice. Nat Genet 2002; 32: 116–127.

    Article  CAS  PubMed  Google Scholar 

  23. Ferrero GB, Howald C, Micale L, Biamino E, Augello B, Fusco C et al. An atypical 7q11.23 deletion in a normal IQ Williams-Beuren syndrome patient. Eur J Hum Genet 2010; 18: 33–38.

    Article  PubMed  Google Scholar 

  24. Suzuki T, Maruno M, Wada K, Kagawa N, Fujimoto Y, Hashimoto N et al. Genetic analysis of human glioblastomas using a genomic microarray system. Brain Tumor Pathol 2004; 21: 27–34.

    Article  CAS  PubMed  Google Scholar 

  25. Lassmann S, Weis R, Makowiec F, Roth J, Danciu M, Hopt U et al. Array CGH identifies distinct DNA copy number profiles of oncogenes and tumor suppressor genes in chromosomal- and microsatellite-unstable sporadic colorectal carcinomas. J Mol Med 2007; 85: 293–304.

    Article  CAS  PubMed  Google Scholar 

  26. Hoogenraad CC, Akhmanova A, Grosveld F, De Zeeuw CI, Galjart N . Functional analysis of CLIP-115 and its binding to microtubules. J Cell Sci 2000; 113 (Pt 12): 2285–2297.

    CAS  PubMed  Google Scholar 

  27. Galjart N . CLIPs and CLASPs and cellular dynamics. Nat Rev Mol Cell Biol 2005; 6: 487–498.

    Article  CAS  PubMed  Google Scholar 

  28. Karki S, Holzbaur EL . Cytoplasmic dynein and dynactin in cell division and intracellular transport. Curr Opin Cell Biol 1999; 11: 45–53.

    Article  CAS  PubMed  Google Scholar 

  29. Hoogenraad CC, Akhmanova A, Galjart N, De Zeeuw CI . LIMK1 and CLIP-115: linking cytoskeletal defects to Williams syndrome. Bioessays 2004; 26: 141–150.

    Article  CAS  PubMed  Google Scholar 

  30. Marchler-Bauer A, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH et al. CDD: specific functional annotation with the Conserved Domain Database. Nucleic Acids Res 2009; 37: D205–D210.

    Article  CAS  PubMed  Google Scholar 

  31. Yang X, Li H, Liu XS, Deng A, Liu X . Cdc2-mediated phosphorylation of CLIP-170 is essential for its inhibition of centrosome reduplication. J Biol Chem 2009; 284: 28775–28782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wieland G, Orthaus S, Ohndorf S, Diekmann S, Hemmerich P . Functional complementation of human centromere protein A (CENP-A) by Cse4p from Saccharomyces cerevisiae. Mol Cell Biol 2004; 24: 6620–6630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tanenbaum ME, Galjart N, van Vugt MA, Medema RH . CLIP-170 facilitates the formation of kinetochore-microtubule attachments. EMBO J 2006; 25: 45–57.

    Article  CAS  PubMed  Google Scholar 

  34. Lansbergen G, Komarova Y, Modesti M, Wyman C, Hoogenraad CC, Goodson HV et al. Conformational changes in CLIP-170 regulate its binding to microtubules and dynactin localization. J Cell Biol 2004; 166: 1003–1014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hoogenraad CC, Wulf P, Schiefermeier N, Stepanova T, Galjart N, Small JV et al. Bicaudal D induces selective dynein-mediated microtubule minus end-directed transport. EMBO J 2003; 22: 6004–6015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fumoto K, Hoogenraad CC, Kikuchi A . GSK-3beta-regulated interaction of BICD with dynein is involved in microtubule anchorage at centrosome. EMBO J 2006; 25: 5670–5682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  PubMed  Google Scholar 

  38. Teider N, Scott DK, Neiss A, Weeraratne SD, Amani VM, Wang Y et al. Neuralized1 causes apoptosis and downregulates Notch target genes in medulloblastoma. Neuro Oncol 2010; 12: 1244–1256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang HQ, Zhang HY, Hao FJ, Meng X, Guan Y, Du ZX . Induction of BAG2 protein during proteasome inhibitor-induced apoptosis in thyroid carcinoma cells. Br J Pharmacol 2008; 155: 655–660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Arndt V, Daniel C, Nastainczyk W, Alberti S, Hohfeld J . BAG-2 acts as an inhibitor of the chaperone-associated ubiquitin ligase CHIP. Mol Biol Cell 2005; 16: 5891–5900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Druey KM, Blumer KJ, Kang VH, Kehrl JH . Inhibition of G-protein-mediated MAP kinase activation by a new mammalian gene family. Nature 1996; 379: 742–746.

    Article  CAS  PubMed  Google Scholar 

  42. Nikiforov YE . Thyroid carcinoma: molecular pathways and therapeutic targets. Mod Pathol 2008; 21 (Suppl 2): S37–S43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xing M . Molecular pathogenesis and mechanisms of thyroid cancer. Nat Rev Cancer 2013; 13: 184–199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yamashita AS, Geraldo MV, Fuziwara CS, Kulcsar MA, Friguglietti CU, da Costa RB et al. Notch pathway is activated by MAPK signaling and influences papillary thyroid cancer proliferation. Transl Oncol 2013; 6: 197–205.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Strizzi L, Hardy KM, Seftor EA, Costa FF, Kirschmann DA, Seftor RE et al. Development and cancer: at the crossroads of Nodal and Notch signaling. Cancer Res 2009; 69: 7131–7134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Grewal T, Koese M, Tebar F, Enrich C . Differential regulation of RasGAPs in cancer. Genes Cancer 2011; 2: 288–297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xia Z, Dudek H, Miranti CK, Greenberg ME . Calcium influx via the NMDA receptor induces immediate early gene transcription by a MAP kinase/ERK-dependent mechanism. J Neurosci 1996; 16: 5425–5436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Muresan V, Abramson T, Lyass A, Winter D, Porro E, Hong F et al. KIF3C and KIF3A form a novel neuronal heteromeric kinesin that associates with membrane vesicles. Mol Biol Cell 1998; 9: 637–652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Goldstein LS . Kinesin molecular motors: transport pathways, receptors, and human disease. Proc Natl Acad Sci USA 2001; 98: 6999–7003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mandelkow E, Mandelkow EM . Kinesin motors and disease. Trends Cell Biol 2002; 12: 585–591.

    Article  CAS  PubMed  Google Scholar 

  51. De S, Cipriano R, Jackson MW, Stark GR . Overexpression of kinesins mediates docetaxel resistance in breast cancer cells. Cancer Res 2009; 69: 8035–8042.

    Article  CAS  PubMed  Google Scholar 

  52. Little MP, Heidenreich WF, Moolgavkar SH, Schollnberger H, Thomas DC . Systems biological and mechanistic modelling of radiation-induced cancer. Radiat Environ Biophys 2008; 47: 39–47.

    Article  CAS  PubMed  Google Scholar 

  53. Huang L, Snyder AR, Morgan WF . Radiation-induced genomic instability and its implications for radiation carcinogenesis. Oncogene 2003; 22: 5848–5854.

    Article  CAS  PubMed  Google Scholar 

  54. Morgan WF . Non-targeted and delayed effects of exposure to ionizing radiation: I. Radiation-induced genomic instability and bystander effects in vitro. Radiat Res 2003; 159: 567–580.

    Article  CAS  PubMed  Google Scholar 

  55. Morgan WF . Non-targeted and delayed effects of exposure to ionizing radiation: II. Radiation-induced genomic instability and bystander effects in vivo, clastogenic factors and transgenerational effects. Radiat Res 2003; 159: 581–596.

    Article  CAS  PubMed  Google Scholar 

  56. Williams ED . Guest Editorial: two proposals regarding the terminology of thyroid tumors. Int J Surg Pathol 2000; 8: 181–183.

    Article  PubMed  Google Scholar 

  57. Uhlen M, Bjorling E, Agaton C, Szigyarto CA, Amini B, Andersen E et al. A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteom 2005; 4: 1920–1932.

    Article  CAS  Google Scholar 

  58. Uhlen M, Oksvold P, Fagerberg L, Lundberg E, Jonasson K, Forsberg M et al. Towards a knowledge-based Human Protein Atlas. Nat Biotechnol 2010; 28: 1248–1250.

    Article  CAS  PubMed  Google Scholar 

  59. Team RDC . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, 2013.

    Google Scholar 

  60. Smyth GK . Limma: linear models for microarray data. In: Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W (eds) Bioinformatics and Computational Biology Solutions Using {R} and Bioconductor. Springer: New York, 2005, pp 397–420.

    Chapter  Google Scholar 

  61. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 2004; 5: R80.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Opgen-Rhein R, Strimmer K . From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data. BMC Syst Biol 2007; 1: 37.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545–15550.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Gray KA, Daugherty LC, Gordon SM, Seal RL, Wright MW, Bruford EA . Genenames.org: the HGNC resources in 2013. Nucleic Acids Res 2013; 41: D545–D552.

    Article  CAS  PubMed  Google Scholar 

  65. Benjamini Y, Hochberg Y . Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat So 1995; 57: 289–300.

    Google Scholar 

  66. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2001; 25: 402–408.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the International Pathology Panel of the Chernobyl Tissue Bank for confirmation of diagnosis: Professors A Abrosimov, TI Bogdanova, G Fadda, G Hant, V LiVolsi, J Rosai and ED Williams; The Chernobyl Tissue Bank for collection of thyroid tissue samples; Professor G Thomas for establishing the matched Genrisk-T cohort; Dr Peter Jacob for discussion and determination of the proportion of radiation-induced tumours among the exposed cases in the UkrAm cohort; U Buchholz, C Innerlohinger, E Konhäuser, CM Pflüger and A Selmaier for technical support; and H Braselmann for mathematical/statistical support. This study was supported by the European Commission, EpiRadBio project, FP7 Grant No. 269553 and in part by the European Commission, DoReMi project, Grant No. 249689.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Hess.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selmansberger, M., Feuchtinger, A., Zurnadzhy, L. et al. CLIP2 as radiation biomarker in papillary thyroid carcinoma. Oncogene 34, 3917–3925 (2015). https://doi.org/10.1038/onc.2014.311

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.311

This article is cited by

Search

Quick links