Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

TMBIM protein family: ancestral regulators of cell death

Abstract

The control of apoptosis in mammals has been historically associated with the activity of the BCL-2 family of proteins at the mitochondria. In the past years, a novel group of cell death regulators have emerged, known as the Transmembrane BAX Inhibitor-1 Motif-containing (TMBIM) protein family. This group of proteins is composed of at least six highly conserved members expressed in mammals, with homologs in insects, fish, plants, viruses and yeast. Different studies indicate that all TMBIM family members have inhibitory activities in different setting of apoptosis. Here, we overview and integrate possible mechanisms underlying the impact of the TMBIM protein family in the regulation of cell death, which include activities at diverse subcellular compartments, including death receptor regulation, modulation of endoplasmic reticulum (ER) calcium homeostasis, ER stress signaling, autophagy, reactive oxygen species production, among other effects. The possible intersection between the BCL-2 and TMBIM family in the control of cell death is also discussed, in addition to their implication in the progression of cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Danial NN, Korsmeyer SJ . Cell death: critical control points. Cell 2004; 116: 205–219.

    CAS  PubMed  Google Scholar 

  2. Youle RJ, Strasser A . The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 2008; 9: 47–59.

    Article  CAS  PubMed  Google Scholar 

  3. Ow YP, Green DR, Hao Z, Mak TW . Cytochrome c: functions beyond respiration. Nat Rev Mol Cell Biol 2008; 9: 532–542.

    CAS  PubMed  Google Scholar 

  4. Zamzami N, Marchetti P, Castedo M, Zanin C, Vayssiere JL, Petit PX et al. Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo. J Exp Med 1995; 181: 1661–1672.

    CAS  PubMed  Google Scholar 

  5. Dussmann H, Rehm M, Kogel D, Prehn JH . Outer mitochondrial membrane permeabilization during apoptosis triggers caspase-independent mitochondrial and caspase-dependent plasma membrane potential depolarization: a single-cell analysis. J Cell Sci 2003; 116: 525–536.

    CAS  PubMed  Google Scholar 

  6. Liu X, Kim CN, Yang J, Jemmerson R, Wang X . Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 1996; 86: 147–157.

    CAS  PubMed  Google Scholar 

  7. Antignani A, Youle RJ . How do Bax and Bak lead to permeabilization of the outer mitochondrial membrane? Curr Opin Cell Biol 2006; 18: 685–689.

    CAS  PubMed  Google Scholar 

  8. Green DR, Kroemer G . The pathophysiology of mitochondrial cell death. Science 2004; 305: 626–629.

    CAS  PubMed  Google Scholar 

  9. Kelekar A, Thompson CB . Bcl-2-family proteins: the role of the BH3 domain in apoptosis. Trends Cell Biol 1998; 8: 324–330.

    CAS  PubMed  Google Scholar 

  10. Martinou JC, Youle RJ . Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev Cell 2011; 21: 92–101.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Tait SW, Green DR . Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 2010; 11: 621–632.

    CAS  PubMed  Google Scholar 

  12. Kim H, Rafiuddin-Shah M, Tu HC, Jeffers JR, Zambetti GP, Hsieh JJ et al. Hierarchical regulation of mitochondrion-dependent apoptosis by BCL-2 subfamilies. Nat Cell Biol 2006; 8: 1348–1358.

    CAS  PubMed  Google Scholar 

  13. Ren D, Tu HC, Kim H, Wang GX, Bean GR, Takeuchi O et al. BID, BIM, and PUMA are essential for activation of the BAX- and BAK-dependent cell death program. Science 2010; 330: 1390–1393.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Happo L, Strasser A, Cory S . BH3-only proteins in apoptosis at a glance. J Cell Sci 2012; 125: 1081–1087.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Buttner S, Eisenberg T, Carmona-Gutierrez D, Ruli D, Knauer H, Ruckenstuhl C et al. Endonuclease G regulates budding yeast life and death. Mol Cell 2007; 25: 233–246.

    PubMed  Google Scholar 

  16. Carmona-Gutierrez D, Eisenberg T, Buttner S, Meisinger C, Kroemer G, Madeo F . Apoptosis in yeast: triggers, pathways, subroutines. Cell Death Differ 2010; 17: 763–773.

    CAS  PubMed  Google Scholar 

  17. Eisenberg T, Buttner S, Kroemer G, Madeo F . The mitochondrial pathway in yeast apoptosis. Apoptosis 2007; 12: 1011–1023.

    CAS  PubMed  Google Scholar 

  18. Ludovico P, Rodrigues F, Almeida A, Silva MT, Barrientos A, Corte-Real M . Cytochrome c release and mitochondria involvement in programmed cell death induced by acetic acid in Saccharomyces cerevisiae. Mol Biol Cell 2002; 13: 2598–2606.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Madeo F, Frohlich E, Frohlich KU . A yeast mutant showing diagnostic markers of early and late apoptosis. J Cell Biol 1997; 139: 729–734.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Madeo F, Herker E, Maldener C, Wissing S, Lachelt S, Herlan M et al. A caspase-related protease regulates apoptosis in yeast. Mol Cell 2002; 9: 911–917.

    CAS  PubMed  Google Scholar 

  21. Wissing S, Ludovico P, Herker E, Buttner S, Engelhardt SM, Decker T et al. An AIF orthologue regulates apoptosis in yeast. J Cell Biol 2004; 166: 969–974.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ligr M, Madeo F, Frohlich E, Hilt W, Frohlich KU, Wolf DH . Mammalian Bax triggers apoptotic changes in yeast. FEBS Lett 1998; 438: 61–65.

    CAS  PubMed  Google Scholar 

  23. Priault M, Camougrand N, Chaudhuri B, Schaeffer J, Manon S . Comparison of the effects of bax-expression in yeast under fermentative and respiratory conditions: investigation of the role of adenine nucleotides carrier and cytochrome c. FEBS Lett 1999; 456: 232–238.

    CAS  PubMed  Google Scholar 

  24. Xu Q, Reed JC . Bax inhibitor-1, a mammalian apoptosis suppressor identified by functional screening in yeast. Mol Cell 1998; 1: 337–346.

    CAS  PubMed  Google Scholar 

  25. Huckelhoven R . BAX Inhibitor-1, an ancient cell death suppressor in animals and plants with prokaryotic relatives. Apoptosis 2004; 9: 299–307.

    CAS  PubMed  Google Scholar 

  26. Ishikawa T, Watanabe N, Nagano M, Kawai-Yamada M, Lam E . Bax inhibitor-1: a highly conserved endoplasmic reticulum-resident cell death suppressor. Cell Death Differ 2011; 18: 1271–1278.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Carrara G, Saraiva N, Gubser C, Johnson BF, Smith GL . Six-transmembrane topology for Golgi anti-apoptotic protein (GAAP) and Bax inhibitor 1 (BI-1) provides model for the transmembrane Bax inhibitor-containing motif (TMBIM) family. J Biol Chem 2012; 287: 15896–15905.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Chae HJ, Kim HR, Xu C, Bailly-Maitre B, Krajewska M, Krajewski S et al. BI-1 regulates an apoptosis pathway linked to endoplasmic reticulum stress. Mol Cell 2004; 15: 355–366.

    CAS  PubMed  Google Scholar 

  29. Kawai M, Pan L, Reed JC, Uchimiya H . Evolutionally conserved plant homologue of the Bax inhibitor-1 (BI-1) gene capable of suppressing Bax-induced cell death in yeast(1). FEBS Lett 1999; 464: 143–147.

    CAS  PubMed  Google Scholar 

  30. Henke N, Lisak DA, Schneider L, Habicht J, Pergande M, Methner A . The ancient cell death suppressor BAX inhibitor-1. Cell Calcium 2011; 50: 251–260.

    CAS  PubMed  Google Scholar 

  31. Reimers K, Choi CY, Bucan V, Vogt PM . The Bax Inhibitor-1 (BI-1) family in apoptosis and tumorigenesis. Curr Mol Med 2008; 8: 148–156.

    CAS  PubMed  Google Scholar 

  32. Zhou J, Zhu T, Hu C, Li H, Chen G, Xu G et al. Comparative genomics and function analysis on BI1 family. Comput Biol Chem 2008; 32: 159–162.

    CAS  PubMed  Google Scholar 

  33. Hu L, Smith TF, Goldberger G . LFG: a candidate apoptosis regulatory gene family. Apoptosis 2009; 14: 1255–1265.

    CAS  PubMed  Google Scholar 

  34. Rojas-Rivera D, Armisen R, Colombo A, Martinez G, Eguiguren AL, Diaz A et al. TMBIM3/GRINA is a novel unfolded protein response (UPR) target gene that controls apoptosis through the modulation of ER calcium homeostasis. Cell Death Differ 2012; 19: 1013–1026.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Yamaji T, Nishikawa K, Hanada K, Transmembrane BAX . inhibitor motif containing (TMBIM) family proteins perturbs a trans-Golgi network enzyme, Gb3 synthase, and reduces Gb3 biosynthesis. J Biol Chem 2010; 285: 35505–35518.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Robinson KS, Clements A, Williams AC, Berger CN, Frankel G . Bax inhibitor 1 in apoptosis and disease. Oncogene 2011; 30: 2391–2400.

    CAS  PubMed  Google Scholar 

  37. Buttner S, Ruli D, Vogtle FN, Galluzzi L, Moitzi B, Eisenberg T et al. A yeast BH3-only protein mediates the mitochondrial pathway of apoptosis. EMBO J 2011; 30: 2779–2792.

    PubMed  PubMed Central  Google Scholar 

  38. Aouacheria A, Rech de Laval V, Combet C, Hardwick JM . Evolution of Bcl-2 homology motifs: homology versus homoplasy. Trends Cell Biol 2013; 23: 103–111.

    CAS  PubMed  Google Scholar 

  39. Yoshisue H, Suzuki K, Kawabata A, Ohya T, Zhao H, Sakurada K et al. Large scale isolation of non-uniform shear stress-responsive genes from cultured human endothelial cells through the preparation of a subtracted cDNA library. Atherosclerosis 2002; 162: 323–334.

    CAS  PubMed  Google Scholar 

  40. Shukla S, Fujita K, Xiao Q, Liao Z, Garfield S, Srinivasula SM . A shear stress responsive gene product PP1201 protects against Fas-mediated apoptosis by reducing Fas expression on the cell surface. Apoptosis 2011; 16: 162–173.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhao H, Ito A, Kimura SH, Yabuta N, Sakai N, Ikawa M et al. RECS1 deficiency in mice induces susceptibility to cystic medial degeneration. Genes Genet Syst 2006; 81: 41–50.

    CAS  PubMed  Google Scholar 

  42. Somia NV, Schmitt MJ, Vetter DE, Van Antwerp D, Heinemann SF, Verma IM . LFG: an anti-apoptotic gene that provides protection from Fas-mediated cell death. Proc Natl Acad Sci USA 1999; 96: 12667–12672.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Schweitzer B, Suter U, Taylor V . Neural membrane protein 35/Lifeguard is localized at postsynaptic sites and in dendrites. Brain Res Mol Brain Res 2002; 107: 47–56.

    CAS  PubMed  Google Scholar 

  44. Hurtado de Mendoza T, Perez-Garcia CG, Kroll TT, Hoong NH, O'Leary DD, Verma IM . Antiapoptotic protein Lifeguard is required for survival and maintenance of Purkinje and granular cells. Proc Natl Acad Sci USA 2011; 108: 17189–17194.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Fernandez M, Segura MF, Sole C, Colino A, Comella JX, Cena V . Lifeguard/neuronal membrane protein 35 regulates Fas ligand-mediated apoptosis in neurons via microdomain recruitment. J Neurochem 2007; 103: 190–203.

    CAS  PubMed  Google Scholar 

  46. Lindsten T, Ross AJ, King A, Zong WX, Rathmell JC, Shiels HA et al. The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol Cell 2000; 6: 1389–1399.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Lisbona F, Rojas-Rivera D, Thielen P, Zamorano S, Todd D, Martinon F et al. BAX inhibitor-1 is a negative regulator of the ER stress sensor IRE1alpha. Mol Cell 2009; 33: 679–691.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Krajewska M, Xu L, Xu W, Krajewski S, Kress CL, Cui J et al. Endoplasmic reticulum protein BI-1 modulates unfolded protein response signaling and protects against stroke and traumatic brain injury. Brain Res 2011; 1370: 227–237.

    CAS  PubMed  Google Scholar 

  49. Bailly-Maitre B, Fondevila C, Kaldas F, Droin N, Luciano F, Ricci JE et al. Cytoprotective gene bi-1 is required for intrinsic protection from endoplasmic reticulum stress and ischemia-reperfusion injury. Proc Natl Acad Sci USA 2006; 103: 2809–2814.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Bailly-Maitre B, Belgardt BF, Jordan SD, Coornaert B, von Freyend MJ, Kleinridders A et al. Hepatic Bax inhibitor-1 inhibits IRE1alpha and protects from obesity-associated insulin resistance and glucose intolerance. J Biol Chem 2010; 285: 6198–6207.

    CAS  PubMed  Google Scholar 

  51. Kotsafti A, Farinati F, Cardin R, Burra P, Bortolami M . Bax inhibitor-1 down-regulation in the progression of chronic liver diseases. BMC Gastroenterol 2010; 10: 35.

    PubMed  PubMed Central  Google Scholar 

  52. Gubser C, Bergamaschi D, Hollinshead M, Lu X, van Kuppeveld FJ, Smith GL . A new inhibitor of apoptosis from vaccinia virus and eukaryotes. PLoS Pathogen 2007; 3: e17.

    Google Scholar 

  53. Alcami A, Smith GL . Vaccinia, cowpox, and camelpox viruses encode soluble gamma interferon receptors with novel broad species specificity. J Virol 1995; 69: 4633–4639.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Moore JB, Smith GL . Steroid hormone synthesis by a vaccinia enzyme: a new type of virus virulence factor. EMBO J 1992; 11: 1973–1980.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Oka T, Sayano T, Tamai S, Yokota S, Kato H, Fujii G et al. Identification of a novel protein MICS1 that is involved in maintenance of mitochondrial morphology and apoptotic release of cytochrome c. Mol Biol Cell 2008; 19: 2597–2608.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Chen YB, Aon MA, Hsu YT, Soane L, Teng X, McCaffery JM et al. Bcl-xL regulates mitochondrial energetics by stabilizing the inner membrane potential. J Cell Biol 2011; 195: 263–276.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Li Y, Kelder B, Kopchick JJ . Identification, isolation, and cloning of growth hormone (GH)-inducible interscapular brown adipose complementary deoxyribonucleic acid from GH antagonist mice. Endocrinology 2001; 142: 2937–2945.

    CAS  PubMed  Google Scholar 

  58. Yoshida T, Nagata S, Kataoka H . Ghitm is an ortholog of the Bombyx mori prothoracic gland-derived receptor (Pgdr) that is ubiquitously expressed in mammalian cells and requires an N-terminal signal sequence for expression. Biochem Biophys Res Commun 2006; 341: 13–18.

    CAS  PubMed  Google Scholar 

  59. Reimers K, Choi CY, Bucan V, Vogt PM . The growth-hormone inducible transmembrane protein (Ghitm) belongs to the Bax inhibitory protein-like family. Int J Biol Sci 2007; 3: 471–476.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Kumar KN, Tilakaratne N, Johnson PS, Allen AE, Michaelis EK . Cloning of cDNA for the glutamate-binding subunit of an NMDA receptor complex. Nature 1991; 354: 70–73.

    CAS  PubMed  Google Scholar 

  61. Hollmann M, Heinemann S . Cloned glutamate receptors. Annu Rev Neurosci 1994; 17: 31–108.

    CAS  PubMed  Google Scholar 

  62. Szuchet S, Plachetzki DC, Eaton KS . Oligodendrocyte transmembrane protein: a novel member of the glutamate-binding protein subfamily. Biochem Biophys Res Commun 2001; 283: 900–907.

    CAS  PubMed  Google Scholar 

  63. Nielsen JA, Chambers MA, Romm E, Lee LY, Berndt JA, Hudson LD . Mouse transmembrane BAX inhibitor motif 3 (Tmbim3) encodes a 38 kDa transmembrane protein expressed in the central nervous system. Mol Cell Biochem 2011; 357: 73–81.

    CAS  PubMed  Google Scholar 

  64. Galindo KA, Lu WJ, Park JH, Abrams JM . The Bax/Bak ortholog in Drosophila, Debcl, exerts limited control over programmed cell death. Development 2009; 136: 275–283.

    CAS  PubMed  Google Scholar 

  65. Sevrioukov EA, Burr J, Huang EW, Assi HH, Monserrate JP, Purves DC et al. Drosophila Bcl-2 proteins participate in stress-induced apoptosis, but are not required for normal development. Genesis 2007; 45: 184–193.

    CAS  PubMed  Google Scholar 

  66. Jette CA, Flanagan AM, Ryan J, Pyati UJ, Carbonneau S, Stewart RA et al. BIM and other BCL-2 family proteins exhibit cross-species conservation of function between zebrafish and mammals. Cell Death Differ 2008; 15: 1063–1072.

    CAS  PubMed  Google Scholar 

  67. Tsujimoto Y, Shimizu S . Role of the mitochondrial membrane permeability transition in cell death. Apoptosis 2007; 12: 835–840.

    CAS  PubMed  Google Scholar 

  68. Zhivotovsky B, Galluzzi L, Kepp O, Kroemer G . Adenine nucleotide translocase: a component of the phylogenetically conserved cell death machinery. Cell Death Differ 2009; 16: 1419–1425.

    CAS  PubMed  Google Scholar 

  69. de Mattia F, Gubser C, van Dommelen MM, Visch HJ, Distelmaier F, Postigo A et al. Human Golgi antiapoptotic protein modulates intracellular calcium fluxes. Mol Biol Cell 2009; 20: 3638–3645.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Kiviluoto S, Vervliet T, Ivanova H, Decuypere JP, De Smedt H, Missiaen L et al. Regulation of inositol 1,4,5-trisphosphate receptors during endoplasmic reticulum stress. Biochim Biophys Acta 2013; 1833: 1612–1624.

    CAS  PubMed  Google Scholar 

  71. Kim HR, Lee GH, Ha KC, Ahn T, Moon JY, Lee BJ et al. Bax inhibitor-1 Is a pH-dependent regulator of Ca2+ channel activity in the endoplasmic reticulum. J Biol Chem 2008; 283: 15946–15955.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Westphalen BC, Wessig J, Leypoldt F, Arnold S, Methner A . BI-1 protects cells from oxygen glucose deprivation by reducing the calcium content of the endoplasmic reticulum. Cell Death Differ 2005; 12: 304–306.

    CAS  PubMed  Google Scholar 

  73. Bultynck G, Kiviluoto S, Henke N, Ivanova H, Schneider L, Rybalchenko V et al. The C terminus of Bax inhibitor-1 forms a Ca2+-permeable channel pore. J Biol Chem 2012; 287: 2544–2557.

    CAS  PubMed  Google Scholar 

  74. Lee GH, Hwang JD, Choi JY, Park HJ, Cho JY, Kim KW et al. An acidic pH environment increases cell death and pro-inflammatory cytokine release in osteoblasts: the involvement of BAX inhibitor-1. Int J Biochem Cell Biol 2011; 43: 1305–1317.

    CAS  PubMed  Google Scholar 

  75. Kiviluoto S, Schneider L, Luyten T, Vervliet T, Missiaen L, De Smedt H et al. Bax inhibitor-1 is a novel IP(3) receptor-interacting and -sensitizing protein. Cell Death Disease 2012; 3: e367.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Kiviluoto S, Luyten T, Schneider L, Lisak D, Rojas-Rivera D, Welkenhuyzen K et al. Bax inhibitor-1-mediated Ca(2+) leak is decreased by cytosolic acidosis. Cell Calcium 2013; 54: 186–192.

    CAS  PubMed  Google Scholar 

  77. Xu C, Xu W, Palmer AE, Reed JC . BI-1 regulates endoplasmic reticulum Ca2+ homeostasis downstream of Bcl-2 family proteins. J Biol Chem 2008; 283: 11477–11484.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Ahn T, Yun CH, Kim HR, Chae HJ . Cardiolipin phosphatidylserine, and BH4 domain of Bcl-2 family regulate Ca2+/H+ antiporter activity of human Bax inhibitor-1. Cell Calcium 2010; 47: 387–396.

    CAS  PubMed  Google Scholar 

  79. Bailly-Maitre B, Bard-Chapeau E, Luciano F, Droin N, Bruey JM, Faustin B et al. Mice lacking bi-1 gene show accelerated liver regeneration. Cancer Res 2007; 67: 1442–1450.

    CAS  PubMed  Google Scholar 

  80. Lee GH, Ahn T, Kim DS, Park SJ, Lee YC, Yoo WH et al. Bax inhibitor 1 increases cell adhesion through actin polymerization: involvement of calcium and actin binding. Mol Cell Biol 2010; 30: 1800–1813.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Lee GH, Kim HK, Chae SW, Kim DS, Ha KC, Cuddy M et al. Bax inhibitor-1 regulates endoplasmic reticulum stress-associated reactive oxygen species and heme oxygenase-1 expression. J Biol Chem 2007; 282: 21618–21628.

    CAS  PubMed  Google Scholar 

  82. Lee GH, Kim HR, Chae HJ . Bax inhibitor-1 regulates the expression of P450 2E1 through enhanced lysosome activity. Int J Biochem Cell Biol 2012; 44: 600–611.

    CAS  PubMed  Google Scholar 

  83. Kim JH, Lee ER, Jeon K, Choi HY, Lim H, Kim SJ et al. Role of BI-1 (TEGT)-mediated ERK1/2 activation in mitochondria-mediated apoptosis and splenomegaly in BI-1 transgenic mice. Biochim Biophys Acta 2012; 1823: 876–888.

    CAS  PubMed  Google Scholar 

  84. Saraiva N, Prole DL, Carrara G, Maluquer de Motes C, Johnson BF, Byrne B et al. Human and viral Golgi anti-apoptotic proteins (GAAPs) oligomerize via different mechanisms and monomeric GAAP inhibits apoptosis and modulates calcium. J Biol Chem 2013; 288: 13057–13067.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Saraiva N, Prole DL, Carrara G, Johnson BF, Taylor CW, Parsons M et al. hGAAP promotes cell adhesion and migration via the stimulation of store-operated Ca2+ entry and calpain 2. J Cell Biol 2013; 202: 699–713.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Hetz C, Martinon F, Rodriguez D, Glimcher LH . The unfolded protein response: integrating stress signals through the stress sensor IRE1alpha. Physiol Rev 2011; 91: 1219–1243.

    CAS  PubMed  Google Scholar 

  87. Walter P, Ron D . The unfolded protein response: from stress pathway to homeostatic regulation. Science 2011; 334: 1081–1086.

    CAS  PubMed  Google Scholar 

  88. Hetz C, Glimcher LH . Fine-tuning of the unfolded protein response: assembling the IRE1alpha interactome. Mol Cell 2009; 35: 551–561.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Hetz C . The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 2012; 13: 89–102.

    CAS  PubMed  Google Scholar 

  90. Tabas I, Ron D . Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol 2011; 13: 184–190.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Urra H, Dufey E, Lisbona F, Rojas-Rivera D, Hetz C . When ER stress reaches a dead end. Biochim Biophys Acta 2013; 1833: 3507–3517.

    CAS  PubMed  Google Scholar 

  92. Hetz C, Bernasconi P, Fisher J, Lee AH, Bassik MC, Antonsson B et al. Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1alpha. Science 2006; 312: 572–576.

    CAS  PubMed  Google Scholar 

  93. Rodriguez DA, Zamorano S, Lisbona F, Rojas-Rivera D, Urra H, Cubillos-Ruiz JR et al. BH3-only proteins are part of a regulatory network that control the sustained signalling of the unfolded protein response sensor IRE1alpha. EMBO J 2012; 31: 2322–2335.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Rong J, Chen L, Toth JI, Tcherpakov M, Petroski MD, Reed JC . Bifunctional apoptosis regulator (BAR), an endoplasmic reticulum (ER)-associated E3 ubiquitin ligase, modulates BI-1 protein stability and function in ER Stress. J Biol Chem 2011; 286: 1453–1463.

    CAS  PubMed  Google Scholar 

  95. Lee GH, Kim DS, Kim HT, Lee JW, Chung CH, Ahn T et al. Enhanced lysosomal activity is involved in Bax inhibitor-1-induced regulation of the endoplasmic reticulum (ER) stress response and cell death against ER stress: involvement of vacuolar H+-ATPase (V-ATPase). J Biol Chem 2011; 286: 24743–24753.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Castillo K, Rojas-Rivera D, Lisbona F, Caballero B, Nassif M, Court FA et al. BAX inhibitor-1 regulates autophagy by controlling the IRE1alpha branch of the unfolded protein response. EMBO J 2011; 30: 4465–4478.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 2005; 122: 927–939.

    CAS  PubMed  Google Scholar 

  98. Sano R, Hou YC, Hedvat M, Correa RG, Shu CW, Krajewska M et al. Endoplasmic reticulum protein BI-1 regulates Ca(2)(+)-mediated bioenergetics to promote autophagy. Genes Devel 2012; 26: 1041–1054.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Cebulski J, Malouin J, Pinches N, Cascio V, Austriaco N . Yeast Bax inhibitor, Bxi1p, is an ER-localized protein that links the unfolded protein response and programmed cell death in Saccharomyces cerevisiae. PLoS One 2011; 6: e20882.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Chae HJ, Ke N, Kim HR, Chen S, Godzik A, Dickman M et al. Evolutionarily conserved cytoprotection provided by Bax inhibitor-1 homologs from animals, plants, and yeast. Gene 2003; 323: 101–113.

    CAS  PubMed  Google Scholar 

  101. Cakir B . Bax induces activation of the unfolded protein response by inducing HAC1 mRNA splicing in Saccharomyces cerevisiae. Yeast 2012; 29: 395–406.

    CAS  PubMed  Google Scholar 

  102. Dejeans N, Hetz C, Bard F, Hupp T, Agostinis P, Samali A et al. Addicted to secrete—novel concepts and targets in cancer therapy. Trends Mol Med 2014.

  103. Hetz C, Chevet E, Harding HP . Targeting the unfolded protein response in disease. Nat Rev Drug Discov 2013; 12: 703–719.

    CAS  PubMed  Google Scholar 

  104. Tanaka R, Ishiyama T, Uchihara T, Inadome Y, Iijima T, Morishita Y et al. Expression of the Bax inhibitor-1 gene in pulmonary adenocarcinoma. Cancer 2006; 106: 648–653.

    CAS  PubMed  Google Scholar 

  105. Grzmil M, Kaulfuss S, Thelen P, Hemmerlein B, Schweyer S, Obenauer S et al. Expression and functional analysis of Bax inhibitor-1 in human breast cancer cells. J Pathol 2006; 208: 340–349.

    CAS  PubMed  Google Scholar 

  106. Grzmil M, Thelen P, Hemmerlein B, Schweyer S, Voigt S, Mury D et al. Bax inhibitor-1 is overexpressed in prostate cancer and its specific down-regulation by RNA interference leads to cell death in human prostate carcinoma cells. Am J Pathol 2003; 163: 543–552.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Schmits R, Cochlovius B, Treitz G, Regitz E, Ketter R, Preuss KD et al. Analysis of the antibody repertoire of astrocytoma patients against antigens expressed by gliomas. Int J Cancer 2002; 98: 73–77.

    CAS  PubMed  Google Scholar 

  108. Villalva C, Trempat P, Greenland C, Thomas C, Girard JP, Moebius F et al. Isolation of differentially expressed genes in NPM-ALK-positive anaplastic large cell lymphoma. Br J Haematol 2002; 118: 791–798.

    CAS  PubMed  Google Scholar 

  109. Zhang M, Li X, Zhang Y, Zhou K . Bax inhibitor-1 mediates apoptosis-resistance in human nasopharyngeal carcinoma cells. Mol Cell Biochem 2010; 333: 1–7.

    CAS  PubMed  Google Scholar 

  110. Schmidt SM, Konig T, Bringmann A, Held S, von Schwarzenberg K, Heine A et al. Characterization of BAX inhibitor-1 as a novel leukemia-associated antigen. Leukemia 2009; 23: 1818–1824.

    CAS  PubMed  Google Scholar 

  111. Rhodes DR, Kalyana-Sundaram S, Mahavisno V, Varambally R, Yu J, Briggs BB et al. Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia 2007; 9: 166–180.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Wu X, Wang L, Ye Y, Aakre JA, Pu X, Chang GC et al. Genome-wide association study of genetic predictors of overall survival for non-small cell lung cancer in never smokers. Cancer Res 2013; 73: 4028–4038.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Li XY, Lai YK, Zhang JF, Luo HQ, Zhang MH, Zhou KY et al. Lentivirus-mediated RNA interference targeting Bax inhibitor-1 suppresses ex vivo cell proliferation and in vivo tumor growth of nasopharyngeal carcinoma. Hum Gene Ther 2011; 22: 1201–1208.

    CAS  PubMed  Google Scholar 

  114. Lee GH, Yan C, Shin SJ, Hong SC, Ahn T, Moon A et al. BAX inhibitor-1 enhances cancer metastasis by altering glucose metabolism and activating the sodium-hydrogen exchanger: the alteration of mitochondrial function. Oncogene 2010; 29: 2130–2141.

    CAS  PubMed  Google Scholar 

  115. Lee GH, Chae HJ, Kim HR . Monoamine carboxylate transporters are involved in BI-1-associated cancer metastasis in HT1080 colon fibrosarcoma cells. Int J Oncol 2011; 39: 209–216.

    CAS  PubMed  Google Scholar 

  116. Hsu CF, Sui CL, Wu WC, Wang JJ, Yang DH, Chen YC et al. Klf10 induces cell apoptosis through modulation of BI-1 expression and Ca2+ homeostasis in estrogen-responding adenocarcinoma cells. Int J Biochem Cell Biol 2011; 43: 666–673.

    CAS  PubMed  Google Scholar 

  117. Xiang-yong L, Yang-chao C, Ke-yuan Z, Mei-hong Z, Hai-qing L, Hsiang-fu K et al. Overexpression of Bax inhibitor-1 (BI-1) induces cell transformation in NIH3T3 cells. Cell Biol Int 2010; 34: 1099–1104.

    PubMed  Google Scholar 

  118. Yun CH, Chae HJ, Kim HR, Ahn T . Doxorubicin- and daunorubicin-induced regulation of Ca2+ and H+ fluxes through human bax inhibitor-1 reconstituted into membranes. J Pharm Sci 2012; 101: 1314–1326.

    CAS  PubMed  Google Scholar 

  119. Bucan V, Adili MY, Choi CY, Eddy MT, Vogt PM, Reimers K . Transactivation of lifeguard (LFG) by Akt-/LEF-1 pathway in MCF-7 and MDA-MB 231 human breast cancer cells. Apoptosis 2010; 15: 814–821.

    CAS  PubMed  Google Scholar 

  120. Bucan V, Reimers K, Choi CY, Eddy MT, Vogt PM . The anti-apoptotic protein lifeguard is expressed in breast cancer cells and tissues. Cell Mol Biol Lett 2010; 15: 296–310.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Bucan V, Choi CY, Lazaridis A, Vogt PM, Reimers K . Silencing of anti-apoptotic transmembrane protein lifeguard sensitizes solid tumor cell lines MCF-7 and SW872 to perifosine-induced cell death activation. Oncol Lett 2011; 2: 419–422.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Hunsberger JG, Machado-Vieira R, Austin DR, Zarate C, Chuang DM, Chen G et al. Bax inhibitor 1, a modulator of calcium homeostasis, confers affective resilience. Brain Res 2011; 1403: 19–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Lewis TB, Wood S, Michaelis EK, DuPont BR, Leach RJ . Localization of a gene for a glutamate binding subunit of a NMDA receptor (GRINA) to 8q24. Genomics 1996; 32: 131–133.

    CAS  PubMed  Google Scholar 

  124. Goswami DB, Jernigan CS, Chandran A, Iyo AH, May WL, Austin MC et al. Gene expression analysis of novel genes in the prefrontal cortex of major depressive disorder subjects. Progr Neuro-Psychopharmacol Biol Psychiatry 2012; 43C: 126–133.

    Google Scholar 

  125. Reich A, Spering C, Gertz K, Harms C, Gerhardt E, Kronenberg G et al. Fas/CD95 regulatory protein Faim2 is neuroprotective after transient brain ischemia. J Neurosci 2011; 31: 225–233.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Markkula E, Hulkkonen J, Penttila T, Puolakkainen M . Host cell Golgi anti-apoptotic protein (GAAP) and growth of Chlamydia pneumoniae. Microb Pathogen 2013; 54: 46–53.

    CAS  Google Scholar 

  127. Hemrajani C, Berger CN, Robinson KS, Marches O, Mousnier A, Frankel G . NleH effectors interact with Bax inhibitor-1 to block apoptosis during enteropathogenic Escherichia coli infection. Proc Natl Acad Sci USA 2010; 107: 3129–3134.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Robinson KS, Mousnier A, Hemrajani C, Fairweather N, Berger CN, Frankel G . The enteropathogenic Escherichia coli effector NleH inhibits apoptosis induced by Clostridium difficile toxin B. Microbiology 2010; 156: 1815–1823.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Ameisen JC . The origin of programmed cell death. Science 1996; 272: 1278–1279.

    CAS  PubMed  Google Scholar 

  130. Kroemer G . Mitochondrial implication in apoptosis. Towards an endosymbiont hypothesis of apoptosis evolution. Cell Death Differ 1997; 4: 443–456.

    CAS  PubMed  Google Scholar 

  131. Schmits R, Cochlovius B, Treitz G, Regitz E, Ketter R, Preuss KD et al. Analysis of the antibody repertoire of astrocytoma patients against antigens expressed by gliomas. Int J Cancer 2002; 98: 73–77.

    CAS  PubMed  Google Scholar 

  132. Lima RT, Martins LM, Guimaraes JE, Sambade C, Vasconcelos MH . Specific downregulation of bcl-2 and xIAP by RNAi enhances the effects of chemotherapeutic agents in MCF-7 human breast cancer cells. Cancer Gene Ther 2004; 11: 309–316.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by FONDEF D11I1007, Ring Initiative ACT1109, Millennium Institute No. P09-015-F, the Alzheimeŕs Association, FONDECYT No. 1100176, FONDECYT No. 1140549, ECOS CONICYT C13S02 CONICYT Grant USA2013-0003, the Muscular Dystrophy Association, ALS Therapy Alliance (CH) and FONDECYT No. 3130365 Post-doctoral grant (DRR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Hetz.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rojas-Rivera, D., Hetz, C. TMBIM protein family: ancestral regulators of cell death. Oncogene 34, 269–280 (2015). https://doi.org/10.1038/onc.2014.6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.6

Keywords

This article is cited by

Search

Quick links