Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

MiR-181 family: regulators of myeloid differentiation and acute myeloid leukemia as well as potential therapeutic targets

Abstract

MicroRNAs have been shown to play an important role in normal hematopoisis and leukemogenesis. Here, we report function and mechanisms of miR-181 family in myeloid differentiation and acute myeloid leukemia (AML). The aberrant overexpression of all the miR-181 family members (miR-181a/b/c/d) was detected in French–American–British M1, M2 and M3 subtypes of adult AML patients. By conducting gain- and loss-of-function experiments, we demonstrated that miR-181a inhibits granulocytic and macrophage-like differentiation of HL-60 cells and CD34+ hematopoietic stem/progenitor cells (HSPCs) by directly targeting and downregulating the expression of PRKCD (which then affected the PRKCD-P38-C/EBPα pathway), CTDSPL (which then affected the phosphorylation of retinoblastoma protein) and CAMKK1. The three genes were also demonstrated to be the targets of miR-181b, miR-181c and miR-181d, respectively. Significantly decreases in the expression levels of the target proteins were detected in AML patients. Inhibition of the expression of miR-181 family members owing to Lenti-miRZip-181a infection in bone marrow blasts of AML patients increased target protein expression levels and partially reversed myeloid differentiation blockage. In the mice implanted with AML CD34+ HSPCs, expression inhibition of the miR-181 family by Lenti-miRZip-181a injection improved myeloid differentiation, inhibited engraftment and infiltration of the leukemic CD34+ cells into the bone marrow and spleen, and released leukemic symptoms. In conclusion, our findings revealed new mechanism of miR-181 family in normal hematopoiesis and AML development, and suggested that expression inhibition of the miR-181 family could provide a new strategy for AML therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Rosenbauer F, Tenen DG . Transcription factors in myeloid development: balancing differentiation with transformation. Nat Rev Immunol 2007; 7: 105–117.

    Article  CAS  PubMed  Google Scholar 

  2. Egeland T, Steen R, Quarsten H, Gaudernack G, Yang YC, Thorsby E . Myeloid differentiation of purified CD34+ cells after stimulation with recombinant human granulocyte-monocyte colony-stimulating factor (CSF), granulocyte-CSF, monocyte-CSF, and interleukin-3. Blood 1991; 78: 3192–3199.

    CAS  PubMed  Google Scholar 

  3. Chen CZ, Li L, Lodish HF, Bartel DP . MicroRNAs modulate hematopoietic lineage differentiation. Science 2004; 303: 83–86.

    Article  CAS  PubMed  Google Scholar 

  4. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR et al. Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French-American-British Cooperative Group. Ann Intern Med 1985; 103: 620–625.

    Article  CAS  PubMed  Google Scholar 

  5. Charrad RS, Li Y, Delpech B, Balitrand N, Clay D, Jasmin C et al. Ligation of the CD44 adhesion molecule reverses blockage of differentiation in human acute myeloid leukemia. Nat Med 1999; 5: 669–676.

    Article  CAS  PubMed  Google Scholar 

  6. Garzon R, Volinia S, Liu CG, Fernandez-Cymering C, Palumbo T, Pichiorri F et al. MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood 2008; 111: 3183–3189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005; 433: 769–773.

    Article  CAS  PubMed  Google Scholar 

  8. Yendamuri S, Calin GA . The role of microRNA in human leukemia: a review. Leukemia 2009; 23: 1257–1263.

    Article  CAS  PubMed  Google Scholar 

  9. Pulikkan JA, Dengler V, Peramangalam PS, Peer Zada AA, Muller-Tidow C, Bohlander SK et al. Cell-cycle regulator E2F1 and microRNA-223 comprise an autoregulatory negative feedback loop in acute myeloid leukemia. Blood 2010; 115: 1768–1778.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang XS, Gong JN, Yu J, Wang F, Zhang XH, Yin XL et al. MicroRNA-29a and microRNA-142-3p are regulators of myeloid differentiation and acute myeloid leukemia. Blood 2012; 119: 4992–5004.

    Article  CAS  PubMed  Google Scholar 

  11. Chen G, Zhu W, Shi D, Lv L, Zhang C, Liu P et al. MicroRNA-181a sensitizes human malignant glioma U87MG cells to radiation by targeting Bcl-2. Oncol Rep 2010; 23: 997–1003.

    CAS  PubMed  Google Scholar 

  12. Ji J, Yamashita T, Budhu A, Forgues M, Jia HL, Li C et al. Identification of microRNA-181 by genome-wide screening as a critical player in EpCAM-positive hepatic cancer stem cells. Hepatology 2009; 50: 472–480.

    Article  CAS  PubMed  Google Scholar 

  13. Wang B, Hsu SH, Majumder S, Kutay H, Huang W, Jacob ST et al. TGFbeta-mediated upregulation of hepatic miR-181b promotes hepatocarcinogenesis by targeting TIMP3. Oncogene 2010; 29: 1787–1797.

    Article  CAS  PubMed  Google Scholar 

  14. Pons A, Nomdedeu B, Navarro A, Gaya A, Gel B, Diaz T et al. Hematopoiesis-related microRNA expression in myelodysplastic syndromes. Leuk Lymphoma 2009; 50: 1854–1859.

    Article  CAS  PubMed  Google Scholar 

  15. Pichiorri F, Suh SS, Ladetto M, Kuehl M, Palumbo T, Drandi D et al. MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis. Proc Natl Acad Sci USA 2008; 105: 12885–12890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bisso A, Faleschini M, Zampa F, Capaci V, De Santa J, Santarpia L et al. Oncogenic miR-181a/b affect the DNA damage response in aggressive breast cancer. Cell Cycle 2013; 12: 1679–1687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Taylor MA, Sossey-Alaoui K, Thompson CL, Danielpour D, Schiemann WP . TGF-beta upregulates miR-181a expression to promote breast cancer metastasis. J Clin Invest 2013; 123: 150–163.

    Article  CAS  PubMed  Google Scholar 

  18. Debernardi S, Skoulakis S, Molloy G, Chaplin T, Dixon-McIver A, Young BD . MicroRNA miR-181a correlates with morphological sub-class of acute myeloid leukaemia and the expression of its target genes in global genome-wide analysis. Leukemia 2007; 21: 912–916.

    Article  CAS  PubMed  Google Scholar 

  19. Careccia S, Mainardi S, Pelosi A, Gurtner A, Diverio D, Riccioni R et al. A restricted signature of miRNAs distinguishes APL blasts from normal promyelocytes. Oncogene 2009; 28: 4034–4040.

    Article  CAS  PubMed  Google Scholar 

  20. Garzon R, Pichiorri F, Palumbo T, Visentini M, Aqeilan R, Cimmino A et al. MicroRNA gene expression during retinoic acid-induced differentiation of human acute promyelocytic leukemia. Oncogene 2007; 26: 4148–4157.

    Article  CAS  PubMed  Google Scholar 

  21. Wang X, Gocek E, Liu CG, Studzinski GP . MicroRNAs181 regulate the expression of p27Kip1 in human myeloid leukemia cells induced to differentiate by 1,25-dihydroxyvitamin D3. Cell Cycle 2009; 8: 736–741.

    Article  CAS  PubMed  Google Scholar 

  22. Georgantas RW 3rd, Hildreth R, Morisot S, Alder J, Liu CG, Heimfeld S et al. CD34+ hematopoietic stem-progenitor cell microRNA expression and function: a circuit diagram of differentiation control. Proc Natl Acad Sci USA 2007; 104: 2750–2755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kikkawa U, Matsuzaki H, Yamamoto T . Protein kinase C delta (PKC delta): activation mechanisms and functions. J Biochem 2002; 132: 831–839.

    Article  CAS  PubMed  Google Scholar 

  24. Kambhampati S, Li Y, Verma A, Sassano A, Majchrzak B, Deb DK et al. Activation of protein kinase C delta by all-trans-retinoic acid. J Biol Chem 2003; 278: 32544–32551.

    Article  CAS  PubMed  Google Scholar 

  25. Nitti M, Furfaro AL, Cevasco C, Traverso N, Marinari UM, Pronzato MA et al. PKC delta and NADPH oxidase in retinoic acid-induced neuroblastoma cell differentiation. Cell Signal 2010; 22: 828–835.

    Article  CAS  PubMed  Google Scholar 

  26. Gan X, Wang J, Wang C, Sommer E, Kozasa T, Srinivasula S et al. PRR5L degradation promotes mTORC2-mediated PKC-delta phosphorylation and cell migration downstream of Galpha12. Nat Cell Biol 2012; 14: 686–696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhao KW, Li X, Zhao Q, Huang Y, Li D, Peng ZG et al. Protein kinase Cdelta mediates retinoic acid and phorbol myristate acetate-induced phospholipid scramblase 1 gene expression: its role in leukemic cell differentiation. Blood 2004; 104: 3731–3738.

    Article  CAS  PubMed  Google Scholar 

  28. Chen C, Du J, Feng W, Song Y, Lu Z, Xu M et al. beta-Adrenergic receptors stimulate interleukin-6 production through Epac-dependent activation of PKCdelta/p38 MAPK signalling in neonatal mouse cardiac fibroblasts. Br J Pharmacol 2012; 166: 676–688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ono K, Han J . The p38 signal transduction pathway: activation and function. Cell Signal 2000; 12: 1–13.

    Article  CAS  PubMed  Google Scholar 

  30. Kashuba VI, Li J, Wang F, Senchenko VN, Protopopov A, Malyukova A et al. RBSP3 (HYA22) is a tumor suppressor gene implicated in major epithelial malignancies. Proc Natl Acad Sci USA 2004; 101: 4906–4911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dick FA, Dyson N . pRB contains an E2F1-specific binding domain that allows E2F1-induced apoptosis to be regulated separately from other E2F activities. Mol Cell 2003; 12: 639–649.

    Article  CAS  PubMed  Google Scholar 

  32. Li QJ, Chau J, Ebert PJ, Sylvester G, Min H, Liu G et al. miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 2007; 129: 147–161.

    Article  CAS  PubMed  Google Scholar 

  33. Fragoso R, Mao T, Wang S, Schaffert S, Gong X, Yue S et al. Modulating the strength and threshold of NOTCH oncogenic signals by mir-181a-1/b-1. PLoS Genet 2012; 8: e1002855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li Z, Huang H, Li Y, Jiang X, Chen P, Arnovitz S et al. Up-regulation of a HOXA-PBX3 homeobox-gene signature following down-regulation of miR-181 is associated with adverse prognosis in patients with cytogenetically abnormal AML. Blood 2012; 119: 2314–2324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cuesta R, Martinez-Sanchez A, Gebauer F . miR-181a regulates cap-dependent translation of p27(kip1) mRNA in myeloid cells. Mol Cell Biol 2009; 29: 2841–2851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ke G, Liang L, Yang JM, Huang X, Han D, Huang S et al. MiR-181a confers resistance of cervical cancer to radiation therapy through targeting the pro-apoptotic PRKCD gene. Oncogene 2013; 32: 3019–3027.

    Article  CAS  PubMed  Google Scholar 

  37. Hampson P, Chahal H, Khanim F, Hayden R, Mulder A, Assi LK et al. PEP005, a selective small-molecule activator of protein kinase C, has potent antileukemic activity mediated via the delta isoform of PKC. Blood 2005; 106: 1362–1368.

    Article  CAS  PubMed  Google Scholar 

  38. Feng W, Song Y, Chen C, Lu ZZ, Zhang Y . Stimulation of adenosine A(2B) receptors induces interleukin-6 secretion in cardiac fibroblasts via the PKC-delta-P38 signalling pathway. Br J Pharmacol 2010; 159: 1598–1607.

    Article  CAS  PubMed  Google Scholar 

  39. Rahman A, Anwar KN, Uddin S, Xu N, Ye RD, Platanias LC et al. Protein kinase C-delta regulates thrombin-induced ICAM-1 gene expression in endothelial cells via activation of p38 mitogen-activated protein kinase. Mol Cell Biol 2001; 21: 5554–5565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Studzinski GP, Wang X, Ji Y, Wang Q, Zhang Y, Kutner A et al. The rationale for deltanoids in therapy for myeloid leukemia: role of KSR-MAPK-C/EBP pathway. J Steroid Biochem Mol Biol 2005; 97: 47–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Senchenko VN, Anedchenko EA, Kondratieva TT, Krasnov GS, Dmitriev AA, Zabarovska VI et al. Simultaneous down-regulation of tumor suppressor genes RBSP3/CTDSPL, NPRL2/G21 and RASSF1A in primary non-small cell lung cancer. BMC Cancer 2010; 10: 75.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zheng YS, Zhang H, Zhang XJ, Feng DD, Luo XQ, Zeng CW et al. MiR-100 regulates cell differentiation and survival by targeting RBSP3, a phosphatase-like tumor suppressor in acute myeloid leukemia. Oncogene 2012; 31: 80–92.

    Article  PubMed  Google Scholar 

  43. Soderling TR . The Ca-calmodulin-dependent protein kinase cascade. Trends Biochem Sci 1999; 24: 232–236.

    Article  CAS  PubMed  Google Scholar 

  44. Verploegen S, Ulfman L, van Deutekom HW, van Aalst C, Honing H, Lammers JW et al. Characterization of the role of CaMKI-like kinase (CKLiK) in human granulocyte function. Blood 2005; 106: 1076–1083.

    Article  CAS  PubMed  Google Scholar 

  45. Lawson ND, Zain M, Zibello T, Picciotto MR, Nairn AC, Berliner N . Modulation of a calcium/calmodulin-dependent protein kinase cascade by retinoic acid during neutrophil maturation. Exp Hematol 1999; 27: 1682–1690.

    Article  CAS  PubMed  Google Scholar 

  46. Guest CB, Deszo EL, Hartman ME, York JM, Kelley KW, Freund GG . Ca2+/calmodulin-dependent kinase kinase alpha is expressed by monocytic cells and regulates the activation profile. PLoS ONE 2008; 3: e1606.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Naguibneva I, Ameyar-Zazoua M, Polesskaya A, Ait-Si-Ali S, Groisman R, Souidi M et al. The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nat Cell Biol 2006; 8: 278–284.

    Article  CAS  PubMed  Google Scholar 

  48. Ouyang YB, Lu Y, Yue S, Giffard RG . miR-181 targets multiple Bcl-2 family members and influences apoptosis and mitochondrial function in astrocytes. Mitochondrion 2012; 12: 213–219.

    Article  CAS  PubMed  Google Scholar 

  49. Schwind S, Maharry K, Radmacher MD, Mrozek K, Holland KB, Margeson D et al. Prognostic significance of expression of a single microRNA, miR-181a, in cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol 2010; 28: 5257–5264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Marcucci G, Radmacher MD, Maharry K, Mrozek K, Ruppert AS, Paschka P et al. MicroRNA expression in cytogenetically normal acute myeloid leukemia. N Engl J Med 2008; 358: 1919–1928.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China grants 31171311 and 30970616 (to J-WZ) and 81070435 (to H-MN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J-W Zhang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, R., Lin, HS., Zhang, XH. et al. MiR-181 family: regulators of myeloid differentiation and acute myeloid leukemia as well as potential therapeutic targets. Oncogene 34, 3226–3239 (2015). https://doi.org/10.1038/onc.2014.274

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.274

This article is cited by

Search

Quick links