Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

CCN5/WISP-2 promotes growth arrest of triple-negative breast cancer cells through accumulation and trafficking of p27Kip1 via Skp2 and FOXO3a regulation

Abstract

The matricellular protein CCN5/WISP-2 represents a promising target in triple-negative breast cancer (TNBC) because treatment or induced activation of CCN5 in TNBC cells promotes cell growth arrest at the G0/G1 phase, reduces cell proliferation and delays tumor growth in the xenograft model. Our studies found that the p27Kip1 tumor suppressor protein is upregulated and relocalized to the nucleus from cytoplasm by CCN5 in these cells and that these two events (upregulation and relocalization of p27Kip1) are critical for CCN5-induced growth inhibition of TNBC cells. In the absence of CCN5, p27Kip1 resides mostly in the cytoplasm, which is associated with the aggressive nature of cancer cells. Mechanistically, CCN5 inhibits Skp2 expression, which seems to stabilize the p27Kip1 protein in these cells. On the other hand, CCN5 also recruits FOXO3a to mediate the transcriptional regulation of p27Kip1. The recruitment of FOXO3a is achieved by the induction of its expression and activity through shifting from cytoplasm to the nucleus. Our data indicate that CCN5 blocks PI3K/AKT signaling to dephosphorylate at S318, S253 and Thr32 in FOXO3a for nuclear relocalization and activation of FOXO3a. Moreover, inhibition of α6β1 receptors diminishes CCN5 action on p27Kip1 in TNBC cells. Collectively, these data suggest that CCN5 effectively inhibits TNBC growth through the accumulation and trafficking of p27Kip1 via Skp2 and FOXO3a regulation, and thus, activation of CCN5 may have the therapeutic potential to kill TNBC.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Oliveira LR, Jeffrey SS, Ribeiro-Silva A . Stem cells in human breast cancer. Histol Histopathol 2010; 25: 371–385.

    CAS  PubMed  Google Scholar 

  2. Simpson PT, Gale T, Reis-Filho JS, Jones C, Parry S, Sloane JP et al. Columnar cell lesions of the breast: the missing link in breast cancer progression? A morphological and molecular analysis. Am J Surg Pathol 2005; 29: 734–746.

    Article  Google Scholar 

  3. Banerjee SK, Banerjee S . CCN5/WISP-2: A micromanager of breast cancer progression. J Cell Commun Signal 2012; 6: 63–71.

    Article  Google Scholar 

  4. Fritah A, Saucier C, De WO, Bracke M, Bieche I, Lidereau R et al. Role of WISP-2/CCN5 in the maintenance of a differentiated and noninvasive phenotype in human breast cancer cells. Mol Cell Biol 2008; 28: 1114–1123.

    Article  CAS  Google Scholar 

  5. Dhar G, Mehta S, Banerjee S, Gardner A, McCarty BM, Mathur SC et al. Loss of WISP-2/CCN5 signaling in human pancreatic cancer: a potential mechanism for epithelial-mesenchymal-transition. Cancer Lett 2007; 254: 63–70.

    Article  CAS  Google Scholar 

  6. Sabbah M, Prunier C, Ferrand N, Megalophonos V, Lambein K, De Wever O et al. CCN5, a novel transcriptional repressor of the transforming growth factor beta signaling pathway. Mol Cell Biol 2011; 31: 1459–1469.

    Article  CAS  Google Scholar 

  7. Haque I, Banerjee S, Mehta S, De A, Majumder M, Mayo MS et al. Cysteine-rich 61-connective tissue growth factor-nephroblastoma-overexpressed 5 (CCN5)/Wnt-1-induced signaling protein-2 (WISP-2) regulates microRNA-10b via hypoxia-inducible factor-1alpha-TWIST signaling networks in human breast cancer cells. J Biol Chem 2011; 286: 43475–43485.

    Article  CAS  Google Scholar 

  8. Banerjee S, Dhar G, Haque I, Kambhampati S, Mehta S, Sengupta K et al. CCN5/WISP-2 expression in breast adenocarcinoma is associated with less frequent progression of the disease and suppresses the invasive phenotypes of tumor cells. Cancer Res 2008; 68: 7606–7612.

    Article  CAS  Google Scholar 

  9. Dhar G, Banerjee S, Dhar K, Tawfik O, Mayo MS, Vanveldhuizen PJ et al. Gain of oncogenic function of p53 mutants induces invasive phenotypes in human breast cancer cells by silencing CCN5/WISP-2. Cancer Res 2008; 68: 4580–4587.

    Article  CAS  Google Scholar 

  10. Besson A, Dowdy SF, Roberts JM . CDK inhibitors: cell cycle regulators and beyond. Dev Cell 2008; 14: 159–169.

    Article  CAS  Google Scholar 

  11. Alkarain A, Jordan R, Slingerland J . p27 deregulation in breast cancer: prognostic significance and implications for therapy. J Mammary Gland Biol Neoplasia 2004; 9: 67–80.

    Article  CAS  Google Scholar 

  12. Besson A, Assoian RK, Roberts JM . Regulation of the cytoskeleton: an oncogenic function for CDK inhibitors? Nat Rev Cancer 2004; 4: 948–955.

    Article  CAS  Google Scholar 

  13. Sherr CJ, Roberts JM . CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 1999; 13: 1501–1512.

    Article  CAS  Google Scholar 

  14. Coqueret O . New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment? Trends Cell Biol 2003; 13: 65–70.

    Article  CAS  Google Scholar 

  15. Mineta H, Miura K, Suzuki I, Takebayashi S, Amano H, Araki K et al. Low p27 expression correlates with poor prognosis for patients with oral tongue squamous cell carcinoma. Cancer 1999; 85: 1011–1017.

    Article  CAS  Google Scholar 

  16. Chu IM, Hengst L, Slingerland JM . The Cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy. Nat Rev Cancer 2008; 8: 253–267.

    Article  CAS  Google Scholar 

  17. Toyoshima H, Hunter T . p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell 1994; 78: 67–74.

    Article  CAS  Google Scholar 

  18. Wander SA, Zhao D, Slingerland JM . p27: a barometer of signaling deregulation and potential predictor of response to targeted therapies. Clin Cancer Res 2011; 17: 12–18.

    Article  CAS  Google Scholar 

  19. Nourse J, Firpo E, Flanagan WM, Coats S, Polyak K, Lee MH et al. Interleukin-2-mediated elimination of the p27Kip1 cyclin-dependent kinase inhibitor prevented by rapamycin. Nature 1994; 372: 570–573.

    Article  CAS  Google Scholar 

  20. Polyak K, Kato JY, Solomon MJ, Sherr CJ, Massague J, Roberts JM et al. p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-beta and contact inhibition to cell cycle arrest. Genes Dev 1994; 8: 9–22.

    Article  CAS  Google Scholar 

  21. Bloom J, Pagano M . Deregulated degradation of the cdk inhibitor p27 and malignant transformation. Semin Cancer Biol 2003; 13: 41–47.

    Article  CAS  Google Scholar 

  22. Slingerland J, Pagano M . Regulation of the cdk inhibitor p27 and its deregulation in cancer. J Cell Physiol 2000; 183: 10–17.

    Article  CAS  Google Scholar 

  23. Baldassarre G, Belletti B, Bruni P, Boccia A, Trapasso F, Pentimalli F et al. Overexpressed cyclin D3 contributes to retaining the growth inhibitor p27 in the cytoplasm of thyroid tumor cells. J Clin Invest 1999; 104: 865–874.

    Article  CAS  Google Scholar 

  24. Sgambato A, Cittadini A, Faraglia B, Weinstein IB . Multiple functions of p27(Kip1) and its alterations in tumor cells: a review. J Cell Physiol 2000; 183: 18–27.

    Article  CAS  Google Scholar 

  25. Asada M, Yamada T, Ichijo H, Delia D, Miyazono K, Fukumuro K et al. Apoptosis inhibitory activity of cytoplasmic p21(Cip1/WAF1) in monocytic differentiation. EMBO J 1999; 18: 1223–1234.

    Article  CAS  Google Scholar 

  26. Blagosklonny MV . Are p27 and p21 cytoplasmic oncoproteins? Cell Cycle 2002; 1: 391–393.

    Article  CAS  Google Scholar 

  27. Motti ML, Califano D, Troncone G, De Marco C, Migliaccio I, Palmieri E et al. Complex regulation of the cyclin-dependent kinase inhibitor p27kip1 in thyroid cancer cells by the PI3K/AKT pathway: regulation of p27kip1 expression and localization. Am J Pathol 2005; 166: 737–749.

    Article  CAS  Google Scholar 

  28. Tan P, Cady B, Wanner M, Worland P, Cukor B, Magi-Galluzzi C et al. The cell cycle inhibitor p27 is an independent prognostic marker in small (T1a,b) invasive breast carcinomas. Cancer Res 1997; 57: 1259–1263.

    CAS  PubMed  Google Scholar 

  29. Barbareschi M, van Tinteren H, Mauri FA, Veronese S, Peterse H, Maisonneuve P et al. p27(kip1) expression in breast carcinomas: an immunohistochemical study on 512 patients with long-term follow-up. Int J Cancer 2000; 89: 236–241.

    Article  CAS  Google Scholar 

  30. Reed W, Florems VA, Holm R, Hannisdal E, Nesland JM . Elevated levels of p27, p21 and cyclin D1 correlate with positive oestrogen and progesterone receptor status in node-negative breast carcinoma patients. Virchows Arch 1999; 435: 116–124.

    Article  CAS  Google Scholar 

  31. De Paola F, Vecci AM, Granato AM, Liverani M, Monti F, Innoceta AM et al. p27/kip1 expression in normal epithelium, benign and neoplastic breast lesions. J Pathol 2002; 196: 26–31.

    Article  CAS  Google Scholar 

  32. Troncone G, Migliaccio I, Caleo A, Palmieri EA, Iaccarino A, Sparano L et al. p27(Kip1) expression and grading of breast cancer diagnosed on cytological samples. Diagn Cytopathol 2004; 30: 375–380.

    Article  Google Scholar 

  33. Banerjee S, Saxena N, Sengupta K, Tawfik O, Mayo MS, Banerjee SK . WISP-2 gene in human breast cancer: estrogen and progesterone inducible expression and regulation of tumor cell proliferation. Neoplasia 2003; 5: 63–73.

    Article  CAS  Google Scholar 

  34. Moller MB . P27 in cell cycle control and cancer. Leuk Lymphoma 2000; 39: 19–27.

    Article  CAS  Google Scholar 

  35. Chen Y, Robles AI, Martinez LA, Liu F, Gimenez-Conti IB, Conti CJ . Expression of G1 cyclins, cyclin-dependent kinases, and cyclin-dependent kinase inhibitors in androgen-induced prostate proliferation in castrated rats. Cell Growth Differ 1996; 7: 1571–1578.

    CAS  Google Scholar 

  36. Kossatz U, Dietrich N, Zender L, Buer J, Manns MP, Malek NP . Skp2-dependent degradation of p27kip1 is essential for cell cycle progression. Genes Dev 2004; 18: 2602–2607.

    Article  CAS  Google Scholar 

  37. Nakayama K, Nagahama H, Minamishima YA, Miyake S, Ishida N, Hatakeyama S et al. Skp2-mediated degradation of p27 regulates progression into mitosis. Dev Cell 2004; 6: 661–672.

    Article  CAS  Google Scholar 

  38. Nakayama KI, Nakayama K . Regulation of the cell cycle by SCF-type ubiquitin ligases. Semin Cell Dev Biol 2005; 16: 323–333.

    Article  CAS  Google Scholar 

  39. Spruck C, Strohmaier H, Watson M, Smith AP, Ryan A, Krek TW et al. A CDK-independent function of mammalian Cks1: targeting of SCF(Skp2) to the CDK inhibitor p27Kip1. Mol Cell 2001; 7: 639–650.

    Article  CAS  Google Scholar 

  40. Wei S, Chu PC, Chuang HC, Hung WC, Kulp SK, Chen CS . Targeting the oncogenic E3 ligase Skp2 in prostate and breast cancer cells with a novel energy restriction-mimetic agent. PLoS ONE 2012; 7: e47298.

    Article  CAS  Google Scholar 

  41. Carrano AC, Eytan E, Hershko A, Pagano M . SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol 1999; 1: 193–199.

    Article  CAS  Google Scholar 

  42. Nakao T, Geddis AE, Fox NE, Kaushansky K . PI3K/Akt/FOXO3a pathway contributes to thrombopoietin-induced proliferation of primary megakaryocytes in vitro and in vivo via modulation of p27(Kip1). Cell Cycle 2008; 7: 257–266.

    Article  CAS  Google Scholar 

  43. Zhang S, Huan W, Wei H, Shi J, Fan J, Zhao J et al. FOXO3a/p27kip1 expression and essential role after acute spinal cord injury in adult rat. J Cell Biochem 2013; 114: 354–365.

    Article  CAS  Google Scholar 

  44. Greer EL, Brunet A . FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 2005; 24: 7410–7425.

    Article  CAS  Google Scholar 

  45. Lin K, Dorman JB, Rodan A, Kenyon C . daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 1997; 278: 1319–1322.

    Article  CAS  Google Scholar 

  46. Jun JI, Lau LF . Taking aim at the extracellular matrix: CCN proteins as emerging therapeutic targets. Nat Rev Drug Discov 2011; 10: 945–963.

    Article  CAS  Google Scholar 

  47. Russo JW, Castellot JJ . CCN5: biology and pathophysiology. J Cell Commun Signal 2010; 4: 119–130.

    Article  Google Scholar 

  48. Viglietto G, Motti ML, Bruni P, Melillo RM, D'Alessio A, Califano D et al. Cytoplasmic relocalization and inhibition of the cyclin-dependent kinase inhibitor p27(Kip1) by PKB/Akt-mediated phosphorylation in breast cancer. Nat Med 2002; 8: 1136–1144.

    Article  CAS  Google Scholar 

  49. Jiang Y, Zhao RC, Verfaillie CM . Abnormal integrin-mediated regulation of chronic myelogenous leukemia CD34+ cell proliferation: BCR/ABL up-regulates the cyclin-dependent kinase inhibitor, p27Kip, which is relocated to the cell cytoplasm and incapable of regulating cdk2 activity. Proc Natl Acad Sci USA 2000; 97: 10538–10543.

    Article  CAS  Google Scholar 

  50. Levenson AS, Jordan VC . Transfection of human estrogen receptor (ER) cDNA into ER-negative mammalian cell lines. J Steroid Biochem Mol Biol 1994; 51: 229–239.

    Article  CAS  Google Scholar 

  51. Nakayama K, Nagahama H, Minamishima YA, Matsumoto M, Nakamichi I, Kitagawa K et al. Targeted disruption of Skp2 results in accumulation of cyclin E and p27(Kip1), polyploidy and centrosome overduplication. EMBO J 2000; 19: 2069–2081.

    Article  CAS  Google Scholar 

  52. Haque I, De A, Majumder M, Mehta S, McGregor D, Banerjee SK et al. The matricellular protein CCN1/Cyr61 is a critical regulator of Sonic Hedgehog in pancreatic carcinogenesis. J Biol Chem 2012; 287: 38569–38579.

    Article  CAS  Google Scholar 

  53. Banerjee S, Sengupta K, Saxena NK, Dhar K, Banerjee SK . Epidermal growth factor induces WISP-2/CCN5 expression in estrogen receptor-alpha-positive breast tumor cells through multiple molecular cross-talks. Mol Cancer Res 2005; 3: 151–162.

    Article  CAS  Google Scholar 

  54. Banerjee S, Sengupta K, Dhar K, Mehta S, D’Amore PA, Dhar G et al. Breast cancer cells secreted platelet-derived growth factor-induced motility of vascular smooth muscle cells is mediated through neuropilin-1. Mol Carcinog 2006; 45: 871–880.

    Article  CAS  Google Scholar 

  55. Dhar K, Banerjee S, Dhar G, Sengupta K, Banerjee SK . Insulin-like growth factor-1 (IGF-1) induces WISP-2/CCN5 via multiple molecular cross-talks and is essential for mitogenic switch by IGF-1 axis in estrogen receptor-positive breast tumor cells. Cancer Res 2007; 67: 1520–1526.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

These studies were supported by VA Merit Award grants (SKB and SB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S K Banerjee.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haque, I., Banerjee, S., De, A. et al. CCN5/WISP-2 promotes growth arrest of triple-negative breast cancer cells through accumulation and trafficking of p27Kip1 via Skp2 and FOXO3a regulation. Oncogene 34, 3152–3163 (2015). https://doi.org/10.1038/onc.2014.250

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.250

This article is cited by

Search

Quick links