Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Nfkb1 is a haploinsufficient DNA damage-specific tumor suppressor

Abstract

NF-κB proteins play a central and subunit-specific role in the response to DNA damage. Previous work identified p50/NF-κB1 as being necessary for cytotoxicity in response to DNA alkylation damage. Given the importance of damage-induced cell death for the maintenance of genomic stability, we examined whether Nfkb1 acts as a tumor suppressor in the setting of alkylation damage. Hprt mutation analysis demonstrates that Nfkb1−/− cells accumulate more alkylator-induced, but not ionizing radiation (IR)-induced, mutations than similarly treated wild-type cells. Subsequent in vivo tumor induction studies reveal that following alkylator treatment, but not IR, Nfkb1−/− mice develop more lymphomas than similarly treated Nfkb1+/+ animals. Heterozygous mice develop lymphomas at an intermediate rate and retain functional p50 in their tumors, indicating that Nfkb1 acts in a haploinsufficient manner. Analysis of human cancers, including therapy-related myeloid neoplasms, demonstrates that NFKB1 mRNA expression is downregulated compared with control samples in multiple hematological malignancies. These data indicate that Nfkb1 is a haploinsufficient, pathway-specific tumor suppressor that prevents the development of hematologic malignancy in the setting of alkylation damage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Allan JM, Travis LB . Mechanisms of therapy-related carcinogenesis. Nat Rev Cancer 2005; 5: 943–955.

    Article  CAS  Google Scholar 

  2. Smith SM, Le Beau MM, Huo D, Karrison T, Sobecks RM, Anastasi J et al. Clinical-cytogenetic associations in 306 patients with therapy-related myelodysplasia and myeloid leukemia: the University of Chicago series. Blood 2003; 102: 43–52.

    Article  CAS  Google Scholar 

  3. Rayet B, Gelinas C . Aberrant rel/nfkb genes and activity in human cancer. Oncogene 1999; 18: 6938–6947.

    Article  CAS  Google Scholar 

  4. Greten FR, Eckmann L, Greten TF, Park JM, Li ZW, Egan LJ et al. IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 2004; 118: 285–296.

    Article  CAS  Google Scholar 

  5. Perkins ND . NF-kappaB: tumor promoter or suppressor? Trends Cell Biol 2004; 14: 64–69.

    Article  CAS  Google Scholar 

  6. Dajee M, Lazarov M, Zhang JY, Cai T, Green CL, Russell AJ et al. NF-kappaB blockade and oncogenic Ras trigger invasive human epidermal neoplasia. Nature 2003; 421: 639–643.

    Article  CAS  Google Scholar 

  7. Ryan KM, Ernst MK, Rice NR, Vousden KH . Role of NF-kappaB in p53-mediated programmed cell death. Nature 2000; 404: 892–897.

    Article  CAS  Google Scholar 

  8. Rocha S, Garrett MD, Campbell KJ, Schumm K, Perkins ND . Regulation of NF-kappaB and p53 through activation of ATR and Chk1 by the ARF tumour suppressor. Embo J 2005; 24: 1157–1169.

    Article  CAS  Google Scholar 

  9. Wolff B, Naumann M . INK4 cell cycle inhibitors direct transcriptional inactivation of NF-kappaB. Oncogene 1999; 18: 2663–2666.

    Article  CAS  Google Scholar 

  10. Gerondakis S, Grumont R, Gugasyan R, Wong L, Isomura I, Ho W et al. Unravelling the complexities of the NF-kappaB signalling pathway using mouse knockout and transgenic models. Oncogene 2006; 25: 6781–6799.

    Article  CAS  Google Scholar 

  11. Schmitt AM, Crawley CD, Kang S, Raleigh DR, Yu X, Wahlstrom JS et al. p50 (NF-kappaB1) is an effector protein in the cytotoxic response to DNA methylation damage. Mol Cell 2011; 44: 785–796.

    Article  CAS  Google Scholar 

  12. Newlands ES, Stevens MF, Wedge SR, Wheelhouse RT, Brock C . Temozolomide: a review of its discovery, chemical properties, pre-clinical development and clinical trials. Cancer Treat Rev 1997; 23: 35–61.

    Article  CAS  Google Scholar 

  13. Margison GP, Santibanez Koref MF, Povey AC . Mechanisms of carcinogenicity/chemotherapy by O6-methylguanine. Mutagenesis 2002; 17: 483–487.

    Article  CAS  Google Scholar 

  14. Joshi VV, Frei JV . Effects of dose and schedule of methylnitrosourea on incidence of malignant lymphoma in adult female mice. J Natl Cancer Inst 1970; 45: 335–339.

    CAS  PubMed  Google Scholar 

  15. Dumenco LL, Allay E, Norton K, Gerson SL . The prevention of thymic lymphomas in transgenic mice by human O6-alkylguanine-DNA alkyltransferase. Science 1993; 259: 219–222.

    Article  CAS  Google Scholar 

  16. Sha WC, Liou HC, Tuomanen EI, Baltimore D . Targeted disruption of the p50 subunit of NF-kappa B leads to multifocal defects in immune responses. Cell 1995; 80: 321–330.

    Article  CAS  Google Scholar 

  17. Hoffmann A, Leung TH, Baltimore D . Genetic analysis of NF-kappaB/Rel transcription factors defines functional specificities. Embo J 2003; 22: 5530–5539.

    Article  CAS  Google Scholar 

  18. Piccaluga PP, Agostinelli C, Califano A, Rossi M, Basso K, Zupo S et al. Gene expression analysis of peripheral T cell lymphoma, unspecified, reveals distinct profiles and new potential therapeutic targets. J Clin Invest 2007; 117: 823–834.

    Article  CAS  Google Scholar 

  19. Andersson A, Ritz C, Lindgren D, Eden P, Lassen C, Heldrup J et al. Microarray-based classification of a consecutive series of 121 childhood acute leukemias: prediction of leukemic and genetic subtype as well as of minimal residual disease status. Leukemia 2007; 21: 1198–1203.

    Article  CAS  Google Scholar 

  20. Haslinger C, Schweifer N, Stilgenbauer S, Dohner H, Lichter P, Kraut N et al. Microarray gene expression profiling of B-cell chronic lymphocytic leukemia subgroups defined by genomic aberrations and VH mutation status. J Clin Oncol 2004; 22: 3937–3949.

    Article  CAS  Google Scholar 

  21. Rosenwald A, Alizadeh AA, Widhopf G, Simon R, Davis RE, Yu X et al. Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia. J Exp Med 2001; 194: 1639–1647.

    Article  CAS  Google Scholar 

  22. Rosenwald A, Wright G, Chan WC, Connors JM, Campo E, Fisher RI et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med 2002; 346: 1937–1947.

    Article  Google Scholar 

  23. Glauert HP, Eyigor A, Tharappel JC, Cooper S, Lee EY, Spear BT . Inhibition of hepatocarcinogenesis by the deletion of the p50 subunit of NF-kappaB in mice administered the peroxisome proliferator Wy-14,643. Toxicol Sci 2006; 90: 331–336.

    Article  CAS  Google Scholar 

  24. Massoumi R, Chmielarska K, Hennecke K, Pfeifer A, Fassler R . Cyld inhibits tumor cell proliferation by blocking Bcl-3-dependent NF-kappaB signaling. Cell 2006; 125: 665–677.

    Article  CAS  Google Scholar 

  25. Chang PY, Draheim K, Kelliher MA, Miyamoto S . NFKB1 is a direct target of the TAL1 oncoprotein in human T leukemia cells. Cancer Res 2006; 66: 6008–6013.

    Article  CAS  Google Scholar 

  26. Li Z, Wang X, Yu RY, Ding BB, Yu JJ, Dai XM et al. BCL-6 negatively regulates expression of the NF-kappaB1 p105/p50 subunit. J Immunol 2005; 174: 205–214.

    Article  CAS  Google Scholar 

  27. Keller U, Nilsson JA, Maclean KH, Old JB, Cleveland JL . Nfkb 1 is dispensable for Myc-induced lymphomagenesis. Oncogene 2005; 24: 6231–6240.

    Article  CAS  Google Scholar 

  28. Karban AS, Okazaki T, Panhuysen CI, Gallegos T, Potter JJ, Bailey-Wilson JE et al. Functional annotation of a novel NFKB1 promoter polymorphism that increases risk for ulcerative colitis. Hum Mol Genet 2004; 13: 35–45.

    Article  CAS  Google Scholar 

  29. Wood ME, Vogel V, Ng A, Foxhall L, Goodwin P, Travis LB . Second malignant neoplasms: assessment and strategies for risk reduction. J Clin Oncol 2012; 30: 3734–3745.

    Article  Google Scholar 

  30. Neyns B, Cordera S, Joosens E, Pouratian N . Non-Hodgkin's lymphoma in patients with glioma treated with temozolomide. J Clin Oncol 2008; 26: 4518–4519.

    Article  Google Scholar 

  31. Kinzler KW, Vogelstein B . Cancer-susceptibility genes. Gatekeepers and caretakers. Nature 1997; 386: 763.

    Article  Google Scholar 

  32. Sherr CJ . Principles of tumor suppression. Cell 2004; 116: 235–246.

    Article  CAS  Google Scholar 

  33. Yamini B, Yu X, Dolan ME, Wu MH, Darga TE, Kufe DW et al. Inhibition of nuclear factor-kappaB activity by temozolomide involves O6-methylguanine induced inhibition of p65 DNA binding. Cancer Res 2007; 67: 6889–6898.

    Article  CAS  Google Scholar 

  34. Olive PL, Banath JP . The comet assay: a method to measure DNA damage in individual cells. Nat Protoc 2006; 1: 23–29.

    Article  CAS  Google Scholar 

  35. McNerney ME, Brown CD, Wang X, Bartom ET, Karmakar S, Bandlamudi C et al. CUX1 is a haploinsufficient tumor suppressor gene on chromosome 7 frequently inactivated in acute myeloid leukemia. Blood 2013; 121: 975–983.

    Article  CAS  Google Scholar 

  36. Barrett T, Troup DB, Wilhite SE, Ledoux P, Evangelista C, Kim IF et al. NCBI GEO: archive for functional genomics data sets–10 years on. Nucleic Acids Res 2011; 39: D1005–D1010.

    Article  CAS  Google Scholar 

  37. Davis S, Meltzer PS . GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics 2007; 23: 1846–1847.

    Article  Google Scholar 

  38. Du P, Kibbe WA, Lin SM . lumi: a pipeline for processing Illumina microarray. Bioinformatics 2008; 24: 1547–1548.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to RF de Pooter and B Kee for helpful contributions. This work was supported by NIH grant 1R01CA136937 (to BY), The Ludwig Center for Metastasis Research; Leukemia & Lymphoma Society Fellow award (M.E.M) and the Chicago Cancer Genomes Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Yamini.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voce, D., Schmitt, A., Uppal, A. et al. Nfkb1 is a haploinsufficient DNA damage-specific tumor suppressor. Oncogene 34, 2807–2813 (2015). https://doi.org/10.1038/onc.2014.211

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.211

This article is cited by

Search

Quick links